Szydagis
 THE FORCES AMONGST N BODIES, PLUS CHAOS

$1 / r^{\wedge} n$ forces, and their bound states, in classical mechanics. Plus some chaos theory.

But 1st: Final Project Ideas

o Send me your plan

- No later than Monday, March 25!
- If you are in 577 (or, 477Y)
o Deadline i.e. due date
- Monday May $6^{\text {th }}$ for 577 : written (report and code). Oral on 4/30 optional

Suggested Final Projects (choose)

- Projectile motion with both wind + air resistance, and different distances from Earth, and on different planets, including escape velocity calculations and Corliolis force and any other relevant effects
- Orbital mechanics in 3 (or more! ()) dimensions with 3 or more bodies
- Machine learning to solve a particular problem, such as recognizing words within a particular genre
- Sim of particle physics detector, weather/climate/atmosphere, reactor,...
- Looking for a signal buried in noise (acoustic, color in light, etc.)
- Image analysis: e.g., find the cancerous tumor
- Gravitational wave discovery from BH merger
- 2 birds with 1 stone: something in your own research
- Quantum entanglement calculator (q-computer coherence simulator)
- Geometric optimization (how many irregularly-shaped products in a box)
- Non-ideal gas in thermodynamics/stat mech
- Revisit universe simulator with even wilder/wider assumptions
- Meta-analysis of existing results in some field
- Contrasting REAL random numbers and better generators to the default
- Propagation of sound/light/heat in complicated media (inhomogeneous)
- Complicated, realistic, time-varying electric and magnetic fields
- ETC: Conjugate gradient topology, fractals, Brownian motion, fluids. May a thousand flowers bloom, and let your imagination run wild

Continued

These lists here are NOT exhaustive despite being very long. Particle physics: ATLAS/CMS, DUNE.
o Just like with revisiting universe: take any existing HW or example further

- But would have to be MUCH further in order to qualify
o More projectile motion: look into oils/syrup/honey (viscous fluids), do initial velocity in all possible directions with additional acceleration, and an accelerating acceleration
o Nuclear physics: bombs and/or reactors and power plants. Fission, fusion
o Neural networks: Keras/TensorFlow, ROOT's TMultiLayerPerceptron
o Lattice QCD, QFT, QED. Ising model, solid state physics.
o More N-body sims, chaos theory (butterfly effect) e.g. double pendulum.
o Video game(s) (WITH PHYSICS). The Kessel Run?
- Neurology, neurophysiology, neuroscience, biophysics
- Quantum computing

Lastly: first come, first served! No dups. Need more ideas? Talk to me and/or Shane.

Intro to Verlet-Störmer Integration

AKA Leapfrog/Newton integration (called integration though DE solving; also called 'method').

- Algorithm for solving the (coupled differential) equations of motion for N bodies, numerically
- Basis for most if not all gravitational simulations in classical mechanics (orbital/celestial mechanics)

Astrodynamics!

- Coupled: no need to assume one mass is infinite and that then just one body is moving in a central potential
- Basis for all video-game gravity-based physics too
- Very similar to semi-implicit (midpoint) Euler method, though generalizing to coupled, second-order differential equations. Discovered over \& over
- ~Conserves the total energy (kinetic+potential). stable
- Similar accuracy to the great RK4 method but is faster.
- Not limited to one force only; any kind / \# should work
- Easier than Hamiltonian or Lagrangian actually for many cases structure of the algorithm; read it then work for NASA :-)

Gravity: A 1 / r^2 Force

o ~Unique: closed orbits. Few other power laws

- $2^{\text {nd }}$ power may be unique if counting back-reaction
o $F=G m M / r{ }^{\wedge} 2$ in Newton, which can be generalized to constant / $r^{\wedge}(\mathrm{d}-1)$ where d is \# of macroscopic spatial dimensions.
- Careful tests of separation^-2 law indicate we live in 3 dimensions. Extra must be small scale
- Action at a distance of Newton vs. light speed limitation of information transfer of Einstein
- Quantum Mechanics: it is a spin-2 boson, the graviton (undiscovered) which has zero mass

No mass: speed never different than c; gravitational force thus has an infinite reach. Would otherwise have extra "suppression term."

- General relativity: gravity is geometry of space-time

Possible Orbital Shapes

- Bound (collide / revolve around)
- Straight line: boom (or away)
- Circle (unstable! Slight perturbation creates an ellipse, such as disturbance of the bigger mass caused by back-reaction of gravity from smaller mass)
- Transitional border for different foci
- Ellipse: Not same as an oval!

Parabola Hyperbola

In my own code, can do an example of very elliptical moon ($\mathrm{v} \ll v_{\text {_ }}$ circular but no collision)

o Unbound (escape) close-encounter and then leave, swinging around.

- Parabola (turning point between ellipse and hyperbola; mass escapes to infinity with zero kinetic energy)
- Hyperbola (@infinity with > 0 KE!)
o NEW with GR: non-Newtonian
- Inward-going spiral
- Counterintuitive that non-classical

An Aside story of elliptical dome in DC ("perfect" enough!)
o https://web.archive.org/web/20220605030226/http:// mathematica.stackexchange.com/questions/63690/oval-or-bunimovich-stadium

- J. Kepler's three laws of planetary motion
- Orbit of planet is ellipse with Sun at one focus
- Equal areas over equal periods of time (this implies planets move faster when closer to Sun)
- A changing acceleration: makes perfect sense since more force when nearer.
- Useful for slingshot maneuver "boosts/kicks" like in "The Martian." Real method NASA uses in real life, such as for various interplanetary probes.
- Square of orbital period proportional to cube of the semimajor axis of the ellipse that is the orbit
- Also, F = ma but $a=a$ of r, where a or little $g=(-) G^{*} M / r^{\wedge} 2$.
- Empirical only! Not first principles until Newton
- Cassini used a moon of Jupiter as a clock to find distance to Mars, allowing all other values to follow

Lagrange Points L2, L5

- WMAP, Planck, (e)LISA
- space station colonies?
- Earth-Moon, Earth-Sun
- Trojan exoplanets exist. httpss.| Iarxiv oro abs 1511.01068

Addendum: Gravitational Waves!

Their discovery is not same as discovery of graviton (despite QM wave-particle duality)

The NTeu Hork Times

Sranffiurter Allgemeine

LA NACION =
Los gremios llevaron al $\begin{gathered}\text { Griesa evalua si } \\ \text { facilita quee pais }\end{gathered}$ Gobierno sus planteos $\begin{aligned} & \text { facilita que el país } \\ & \text { salga del defautr }\end{aligned}$ y salieron conformes

theguardian

BUT, limit was set on graviton mass (maybe it's like neutrino? Small but non-zero 'm')

Pause for Code Running

o Plus, an in-class code checkup: are you able to (always) run my examples, close to real time?

More Examples from My Code

https://en.wikipedia.org/wiki/
Newton\%27s theorem of revolving orbits

Importance of Extra Dimensions

In Physics

$$
\begin{aligned}
& \Delta \Phi=4 \pi G \rho \\
& \Delta^{(D-1)} \Phi^{(D)}=4 \pi G^{(D)} \rho^{(D)} \quad \Delta^{(D-1)}=\partial_{1}^{2}+\cdots+\partial_{D-1}^{2} \\
& {\left[G^{(4)} \rho^{(4)}\right]=\left[G^{(D)} \rho^{(D)}\right]} \\
& {\left[G^{(D)}\right]=\left[G^{(4)}\right] \frac{\left[\rho^{(4)}\right]}{\left[\rho^{(D)}\right]}=\left[G^{(4)}\right] \frac{M L^{D-1}}{M L^{3}}=\left[G^{(4)}\right] L^{D-4} .} \\
& G^{(5)}=\ell C G^{(4)} \quad \text { Time permitting: Do } 1 / \wedge^{\wedge}(D-2) \text { on board. }
\end{aligned}
$$

Chaos Theory \times Rounding Effect

o No computer can store an infinite number of significant figures of course

- However, chaos theory goes back to $17^{\text {th }}$ century even, way before computers! Classical effect
o In certain systems, the final results are so badly dependent on the initial conditions that the smallest amount of rounding can lead to enormous errors
- In so-called "chaotic" systems, the error grows exponentially with time quantified by max Lyapunov exponent (error is uncertainty: compared to reality)
- A classic example: >=3 ~equal-mass objects

$\boldsymbol{x}(t)+\boldsymbol{\delta}(t)$
 $\|\boldsymbol{\delta}(0)\|$
 $\boldsymbol{x}(t)$

On board -- write down exponential. Comparing to reality: there is NO right answer, neither analytic nor even numerical in some cases. Must use nature's truth instead

What is ' r '? Let's pretend it is (+)step size (But this is a generic example!) Positive lambda is chaos (if always + even if step -> 0), negative is stable, and zero is border

HW7: DUE Th Mar. 28 at 11:59PM

o Explore a $3^{\text {rd }}$ body: throw in an in-between mass - Use my Earth-Moon sample as your "launching point"!
o Animation optional (it was only for fun anyway)

- If you do animation, take screen caps or upload saved video (in case code doesn't run on Shane's machine)
o You can make simplifying assumptions to help
o The bottom line: Demonstrate chaos, qualitatively
- Run the sim for a fixed amount of time t, and show that the final conditions (positions and/or speeds and/or accelerations) vary wildly depending on the initial conditions: 3D position \& speed of new body

More Detail ${ }_{\text {code }+ \text { report }}$

o Correctness: Does your system obey the Virial Theorem? Why or why not? Prove it or show it
o Derive U from F as you learned in Physics 101

- Plot the KE and PE or U (kinetic and potential energies) of the system with time for a sample case and verify that the Virial Theorem is being followed
- Don't make 100 plots: combine (colors, shapes, ...)
o EXTRA CREDIT: Quantify the deviation of your trajectories vs. the \# of decimal places in the initial conditions (xyz location, v, total E, pick)
- do this multiple times (for 1 of those quantities)
- derive some Lyapunov coefficients for the system and judge how much chaos you have got within it

Virial's Theorem

o <KE> = (n/2) * <PE>. True not just for grav ($\mathrm{n}=-1$)

$$
\begin{array}{ll}
\text { Not re-deriving here from classical mechanics } & -2 \text { for force } \\
& \text { means }-1 \text { for } \\
\end{array}
$$

$$
P . E .(\text { system }) \simeq-\frac{1}{2} G \frac{N^{2} m^{2}}{R_{\text {tot }}}=-\frac{1}{2} G \frac{M_{t o t}^{2}}{R_{\text {tot }}}
$$

$$
\begin{aligned}
\frac{1}{2} M_{t o t} v^{2} & =+\frac{1}{4} G \frac{M_{t o t}^{2}}{R_{t o t}}
\end{aligned} \quad \begin{aligned}
& \frac{\text { https://web.archive.org/web/ }}{\begin{array}{l}
\text { hosting.astro.cornell.edu/ }
\end{array}} \\
& M_{t o t} \simeq 2 \frac{R_{t o t} v^{2}}{G}
\end{aligned}
$$

o If a system "virializes," that means that it started out with the eq. being false, and then this becomes ~true (if the large system is spherically symmetric)

Steps Zero and One sat mem gany copp meorsen)
o Come up with an initial position: experiment!

- Not so close your three bodies collide in seconds
- Not so far away that unbound (i.e. open orbits)
o Initial velocity will also require experimentation
- Not so slow that, again, collisions occur too soon
- Not so fast that the bodies blast apart (escape 'v')
o Orbits have to be bound even if not closed, and stay on screen. Again, start with just TWO
- Use paper, and 2-body mechanics and central potentials, to estimate ords of mag (Fermi problem)
o Email me and/or come to office hours (mine, TA's) if you are having difficulties, as always!

Further Hints, Tips, Tricks

- Initial velocities cannot exceed escape of course! Would lead to unbounded (open) system
- But, order of magnitude of v _circular $=$ sqrt[G*M/R] Make initial net momentum p equal to $0!\mathrm{M} 1^{*} \mathrm{v} 1 \mathrm{x}+$ $M 2^{*} v 2 x+M 3^{*} v 3 x=0$ and similarly for y axis!! This will mean that the center of mass is fixed
- Re-calculate scaling factors from original EarthMoon example, to keep everything on the screen and start with 1.9, 2.1: small changes to square
o Use the extra day to NOT be up until 3am again

Extended Resources

Three-Body Chaos

In general, for three bodies: escape (or collision) may be inevitable if initial conditions not so pretty (like all $\mathrm{v}_{\mathrm{i}} \mathrm{s}=0$ in a triangular setup)
o https://en.wikipedia.org/wiki/Threebody problem
o https://www.wolframscience.com/ nks/notes-7-4--three-body-problem/
o https://medium.com/
@mikeharrisNY/misconceptions-about-the-three-body-problem-and-its-relation-to-forecastingc0c0a2bf44cc
o Google
Note that this chaos is still deterministic -- NOT stochastic
o YouTube: (random). This is NOT QM! Aperiodicity isn't randomness httos://WWW. youtube.com/watch? v=et7XvBenEo8

Ex: A Very Old 577 Final Project

Credit: former UAlbany graduate student Bertrand Carado (advisor: Prof. Kevin Knuth)

