Computational Methods in Physics HOW TO SOLVE DIFFERENTIAL EQUATIONS

Euler, Euler-Cromer, RK4, and Verlet Methods

Outline: Where We Are Going

- Sasics: Euler and Euler++ :-) (more stable)
 - This week
 - Harmonic oscillator: pendulum example
 - Homework: rocket equation
- Runge-Kutta (fourth-order examples)
 - Cosmology example in class
 - Homework: the classical wave equation in 1-D
- The Störmer-Verlet "Leapfrog" algorithm
 - N-body Monte Carlo. A longer, tougher HW (20 pt)

Web Links for Euler, Pendulum

- http://tutorial.math.lamar.edu/Classes/DE/ EulersMethod.aspx
 - Study the many examples on this webpage!
- Full analytical solution with sin(theta) which we will be comparing my example to: We're still assuming
 - <u>http://sbfisica.org.br/rbef/pdf/070707.pdf</u> mas

assuming mass independence.

- Simple oscillation
 - <u>http://hyperphysics.phy-astr.gsu.edu/hbase/</u> <u>pend.html</u>
- Driven aka forced
 - hyperphysics.phy-astr.gsu.edu/hbase/oscdr.html

Euler-Cromer "Semi-Implicit"

- Better: conserves energy, dampens runaway errors (greater stability)
- Also known as: Euler-Richardson
- Two versions, Cromer and Richardson:
 - <u>https://stackoverflow.com/questions/77238290/is-</u> <u>the-euler-cromer-method-or-is-it-incorrect</u>

Preview of Pendulum Code

- We will NOT be using sin(theta) is = ~theta (small angle approximation). • theta" + (g/L)sin(theta) = 0 Define variables for initial and final values (i, i+1) Read in 'g' and length from file or set in code Provide initial values for theta AND theta' Latter can be 0 but former not 0 (unless reverse) Maximum time code simulates • Step size (in seconds) Smaller dt means greater precision. • Smaller better of course, but code slower
- Damping, etc. terms for some extra pizzazz
- If using angles in degrees, convert to rad!
 - The default in the C++ language

Default of radians: like most calculators.

Continued Output: screen or file, as usual, as you prefer.

- "for" loop from t=0 to maximum time, with a given step size
 - So, uses doubles not integers
 - OR, "while" loop with code ending based on accuracy or convergence (answer ~unchanging)
- o theta"_i = (-g/L)*sin(theta_i)
- theta'_f = theta'_i + dt * theta''_i
- theta_f = theta_i + dt * theta'_i

Equations: repeating on the whiteboard.

- theta_i + dt * theta'_f for Cromer
- Obviously, output time and angle (back to °)
- theta_i = theta_f and theta'_i = theta'_f

Can explore, if time permits

- Midpoint, secant instead of tangent,
- Integration methods from last week.

Applications: The Foucault Pendulum

Definitive proof the Earth rotates with no astro. We are NOT in a perfectly inertial reference frame

Free pendulum will change plane over course of day, and knock down pins for example. Lat-dependent. Modern versions are table-top even

Homework #5, due Thurs. 02/29

 Solve the rocket equation instead of pendulum with *2* methods: plain Euler and 1 better. Newton's broader 2nd law: doing on board

F=-w (but dm/dt => a>0!) v(t=0) = O(10^3) m/s

- -m(t)*g(t) = m(t)*a(t)+[dm(t)/dt]*v(t). F isn't ma!!
- Replace the 'a' & 'v' with h double-dot and dot...
- Plot F, m, a, g, v, h (starts on surf) vs. t all in SI ^{LEO} units. In pdf: analyze; draw concl on behavior. Low (Expected shapes?) <u>Time to LEO? Order mag</u>

imp = Get real values for *m*s, imp, thrust but no drag no rotation

- 1st: you have to make sure your time step is small enough program is accurate (~0.01 - 1 s)
 - May need to be so small you need millions of points
 - Might need to run program <u>several times</u>, then splice.

Second-order not first so is tricky, also coupled

 But, at least you can compare results for accuracy to the classical rocket equation (Tsiolkovsky, "ideal")

$$\Delta v = v_{e} \ln \frac{m_{0}}{m_{f}} = I_{sp}g_{0} \ln \frac{m_{0}}{m_{f}}$$
This is idealized (note the fixed g or g_0).
You can look up specific impulse in tables.
Where: Use I_{sp} , Thrust to find dm/dt (flat). Do e.g. Musk's Falcon Heavy, or Saturn V
 Δv is delta-v – the maximum change of velocity of the vehicle (with no external forces acting).
 m_{0} is the initial total mass, including propellant, also known as wet mass.
 m_{f} is the final total mass without propellant, also known as dry mass.
 $w_{e} = I_{sp}g_{0}$ is the effective exhaust velocity, where:
 I_{sp} is the specific impulse in dimension of time.
 g_{0} is standard gravity.
 ln is the natural logarithm function.
 ln

Extra credit: Impress me by adding the drag force of the air (with air density going down!!)
Go back to your Physics I textbook (hint: F prop to v^2, but also many parameters you must look up)

your code has to obey the last slide

- Final mass should be the dry mass (initial wet)
- To check Δv (max) determine final vel (minus 0)
- Modify my pendulum, or write your own fresh code from scratch (this is entirely your choice)
- Don't assume fixed g (too easy :) $GM_E/(R_E+h)^2$
- Apply common sense: doesn't take < seconds and doesn't take months-yrs.+ to get into orbit
- Never mix units: convert everything you find online into metric, and keep all there (*m* in kg)
- Feel free to study the many analytic derivations
 Plot *2* Euler-*like* methods (e.g., Richardson)