Computational Methods in Physics

## HOW TO SOLVE DIFFERENTIAL EQUATIONS

## Euler, Euler-Cromer, RK4, and Verlet Methods

## Outline: Where We Are Going

o Basics: Euler and Euler++ :-) (more stable)

- This week
- Harmonic oscillator: pendulum example
- Homework: rocket equation
o Runge-Kutta (fourth-order examples)
- Cosmology example in class
- Homework: the classical wave equation in 1-D
o The Störmer-Verlet "Leapfrog" algorithm
- N-body Monte Carlo. A longer, tougher HW (20 pt)


## Web Links for Euler, Pendulum

o http://tutorial.math.lamar.edu/Classes/DE/
EulersMethod.aspx

- Study the many examples on this webpage!
o Full analytical solution with sin(theta) which we will be comparing my example to: $\begin{aligned} & \text { We're still } \\ & \text { assuming }\end{aligned}$
- http://sbfisica.org.br/rbef/pdf/070707.pdf mass
independence.
o Simple oscillation
- http://hyperphysics.phy-astr.gsu.edu/hbase/ pend.html
o Driven aka forced
- hyperphysics.phy-astr.gsu.edu/hbase/oscdr.html


## Euler-Cromer "Semi-Implicit"

o Better: conserves energy, dampens runaway errors (greater stability)
o Also known as: Euler-Richardson
o Two versions, Cromer and Richardson:

- https://stackoverflow.com/questions/77238290/is-the-euler-cromer-method-or-is-it-incorrect


## Preview of Pendulum Code



- Define variables for initial and final values ( $\mathrm{i}, \mathrm{i}+1$ )
o Read in ' $g$ ' and length from file or set in code
o Provide initial values for theta AND theta'
- Latter can be 0 but former not 0 (unless reverse)
o Maximum time code simulates
o Step size (in seconds) Smaller dt means greater precision.
- Smaller better of course, but code slower
o Damping, etc. terms for some extra pizzazz
o If using angles in degrees, convert to rad!
- The default in the C++ language

Default of radians: like most calculators.
...COntínUed output: screen or file, as usual, as you prefer.

- "for" loop from $t=0$ to maximum time, with a given step size
- So, uses doubles not integers
- OR, "while" loop with code ending based on accuracy or convergence (answer ~unchanging)
- theta" $\mathrm{i}=(-\mathrm{g} / \mathrm{L})^{*} \sin ($ theta_i)
o theta'_f= theta'_i+dt * theta"_i
o theta_f = theta_i + dt * theta'_i

Equations: repeating on the whiteboard.

- theta_i + dt * theta'_f for Cromer
- Obviously, output time and angle (back to ${ }^{\circ}$ )
o theta_i = theta_f and theta'_i = theta'_f


## Can explore, if time permits

- Midpoint, secant instead of tangent,
- Integration methods from last week.


## Applications: The Foucault Pendulum

Definitive proof the Earth rotates with no astro. We are NOT in a perfectly inertial reference frame


Free pendulum will change plane over course of day, and knock down pins for example. Lat-dependent. Modern versions are table-top even

## Homework \#5, due Thurs. 02/29

- Solve the rocket equation instead of pendulum with *2* methods: plain Euler and 1 better. Newton's broader 2nd law: doing on board
- $F=-w$ (but dm/dt $=>a>0$ !)
- $-m(\mathrm{t})^{*} g(\mathrm{t})=\mathrm{m}(\mathrm{t})^{*} a(\mathrm{t})+[\mathrm{dm}(\mathrm{t}) / \mathrm{dt}]^{*} \mathrm{v}(\mathrm{t})$.
- Replace the 'a' \& 'v' with $h$ double-dot and dot..
- Plot F, m, a, g, v, h (starts on surf) vs. t all in $\mathrm{SI}=$ units. In pdf: analyze; draw concl on behavior. Low (Expected shapes?) Time to LEO? Order mag Earth $\underset{\text { impulses }}{\operatorname{imp}}=$ Get real values for ms , imp, thrust but no drag no rotation
o 1st: you have to make sure your time step is small enough program is accurate ( $\sim 0.01-1 \mathrm{~s}$ )
- May need to be so small you need millions of points
- Might need to run program several times, then splice.
o Second-order not first so is tricky, also coupled
- But, at least you can compare results for accuracy to the classical rocket equation (Tsiolkovsky, "ideal")

$$
\Delta v=v_{\mathrm{e}} \ln \frac{m_{0}}{m_{f}}=I_{\text {sp }} g_{0} \ln \frac{m_{0}}{m_{f}} \quad \begin{aligned}
& \text { This is idealized (note the fixed } \mathrm{g} \text { or } \mathrm{g}_{0} \text { ). } \\
& \text { You can look up specific impulse in tables. }
\end{aligned}
$$

where: Use $I_{s p}$, Thrust to find dm/dt (flat). Do e.g. Musk's Falcon Heavy, or Saturn V
$\Delta v$ is delta-v - the maximum change of velocity of the vehicle (with no external forces acting).
$m_{0}$ is the initial total mass, including propellant, also known as wet mass.
$m_{f}$ is the final total mass without propellant, also known as dry mass. source: Wikipedia
$v_{\mathrm{e}}=I_{\text {sp }} g_{0}$ is the effective exhaust velocity, where:
$I_{\mathrm{sp}}$ is the specific impulse in dimension of time.
$g_{0}$ is standard gravity.
In is the natural logarithm function.
o Extra credit: Impress me by adding the drag force of the air (with air density going down!!)

- Go back to your Physics I textbook (hint: F prop to v^2, but also many parameters you must look up)


## your code has to obey the last slide

o Final mass should be the dry mass (initial wet)
0
o Modify my pendulum, or write your own fresh code from scratch (this is entirely your choice)
o Don't assume fixed g (too easy :) $\mathrm{GM}_{\mathrm{E}} /\left(\mathrm{R}_{\mathrm{E}}+\mathrm{h}\right)^{2}$
o Apply common sense: doesn't take < seconds and doesn't take months-yrs.+ to get into orbit
o Never mix units: convert everything you find online into metric, and keep all there ( $m$ in kg )
o Feel free to study the many analytic derivations
o Plot *2* Euler-like methods (e.g., Richardson)

