

HW TIP!

https://www.monash.edu/rlo/ assignment-samples/science/ science-writing-a-lab-report

VON NEUMANN'S MONTE CARLO

HW3 Help: Rand 3D Angles How-To

 I try, but can't always predict the HW questions, so that's what Tuesday morns are foro https://mathworld.wolfram.com/SpherePointPicking.html
o Assuming phi means polar, theta azimuthal

- $X=r \cos (p h i) \sin (t h e t a)$ where phi $[0,2 p i)$ random
- $Y=r \sin (p h i) \sin (t h e t a)$ Naming conventions change!
- $Z=r \cos (t h e t a)$ where theta between [0, pi] radians
o BUT, cosine of theta not theta randomized
- Why? Has to do with uniform solid angle arguments
- Use $\sin ^{\wedge} 2+\cos ^{\wedge} 2=1$ in order to derive sine from cosine
o Elastic collision? (Fixed energy \& angle) What to do: https://en.wikipedia.org/wiki/Elastic collision again is the right answer; you can ignore (complex) and do random angle, half- E
o MFP: diff types of exp. Mine v. 1/MFP (C++ default)
- While loop: do NOT stop at 0, but *>* it! You can use - instead of / Time permitting: the C glossary doc.

Accept-Reject method

(Von Neumann method)
If the $P_{D F}{ }^{*}$ we wish to sample from is bounded both in x and y, then we can use the "Accept-Reject" method to select random numbers from it, as follows:

- Pick x and y uniformly without in the range of the PDF.
- If y is below $\operatorname{PDF}(x)$, then accept x.

The main advantage of this method is its simplicity, and given modern computers, one does not care much about efficiency. However, it requires boundaries!

* PDF = Point Distribution Function

Calculating Pi

Why quarter unit circle? Because then 1D *function* (monotonic too)

This is called the
Hit-and-Miss method
(Yon Neumann method):

- Find min and max in both x and y.
- Generate uniform random numbers (x, y) in these ranges.
- Accept x, if $y<f(x)$.
- Reject x, if $y>f(x)$. $>=$?

It is remarkable accuracy (though not precision) for such a relatively small number of darts throws! (at right)

Monte Carlo Simulation: pi=3.28

Higher Dimensions

- Your homework \#4 will be for 1-D integration (single-valued function of y versus x)
o A circle pi example (completing circle from last slide all the way around) is more 2-D
o We can extend this to 3-D: vol of (unit+) sphere - Bounding cube (or rectangular prism more generally) instead of a bounding box
- Can also be used to find pi, but only if you know spherical volume formula first () And, this is slower
- Download "sphere.cpp" sample code from site
o Very powerful: method will work for any shape - As \#trials goes to inf, though may converge slowly

Contrast: Blast From the Past
o Good old-fashioned Riemann integration

- Left-hand "rule"
- Right-hand
- Midpoint
- Trapezoid
o Simpson's rule

DOWNLOAD "integrator.cpp" from the course website

- 3/8-version, higher-order polynomials
o Adaptive step size
o Taylor, Maclaurin, Laurent, or similar series
- Expand first, then integrate that (easier?)
o What does Mathematica do? Richardson extrapolation compared to Simpsons-like

Integrator dot CPP

- We will pick integrands that canNOT be integrated analytically
- And pick some reasonable finite bounds 'a,' 'b' (no singularities YET)
o We will compare these different methods and pick the fastest + most accurate
- $\mathrm{N}=$? to match online answer(s)?
- Richardson: I accidentally re-derived myself!
- If difference between convergent numerical result from the main part of our code and the right answer (or a pi or 'e' trick) differs by less than $10^{\wedge}-7$, then we can safely call that the analytical answer (???)

HW \#4: Integration. Due Feb. 22

- Integrate the area (should come out to exactly root 2) under the curve $0.5 / x^{\wedge} 1.5$ from 1-2 to find a precise and accurate value as fast as possible
- The analytical answer is $1-1 /$ sqrt(2), so manipulate it
o Use Monte Carlo integration first, but then...
o Check your answer by taking the analytic function
- And integrating that with one (your choice) of the more "regular" methods (e.g. a Riemann sum or Simpson's)
o 2 PLOTS: A v. N or step size. Show convergence
- Answer the question: which method converges faster?
- So, final answer is 1 number this time, and only 2 plots
o Bonus: Come up w/ a better bounding box shape

Backup Slides +Helpful Links

o Can cross-check numerical answers with

- http://www.wolframalpha.com/widget/ widgetPopup.jsp?
p=v\&id=29c546473e1c796d6076bb18901b15e7\&i0= $4133000 \% 20 * \% 20 n \% 5 E-0.491 \& i 1=1 \& i 2=3000000 \& \mathrm{p}$ odSelect=\&showAssumptions=1\&showWarnings=1
o Cross-check the full, analytical answers with Mathematica, or for free with
- http://www.wolframalpha.com/widgets/view.jsp? id=a787670fOf1047d7fbe288763c55ba14
- https://www.wolframalpha.com/calculators/integralcalculator/ (Google: does not have to be Wolfram)

Can X2-check everything analytically (and/or with ~Mathematica online) but not main point.

Improper Integrals: Infinite Series

o Can do infinite sequences or sums, as effectively on your own as with com software - And with complete control and freedom to customize

- Convergence and divergence (not rigorous)
o summer.cpp (get it? Ba dum ching)
- We will explore several different interesting infinite series to find their sums
- Code just uses plain addition (no fancy tricks!!!)
- Exploration: small tweaks will be able to change convergence rate, or even cause divergence!
- Let's apply to physics now, beyond "just math"

The Importance of Infinite Series

o Occur all of the time in physics, including in quantum mechanics, especially in QFT; string theory!

- Though examples still exist in stat mech/therm \& classic mechanics
- Consider bouncing ball problem: infinite on paper! Damped pendulum, coin spin.
- Total gravitational force on an object in universe from all others? BHs in-spiral?
- Astronomy and astrophysics
- Approaching edge of a finite universe in a non-trivial cosmological topology
- Falling into a black hole from outside
o Numerical recipes for integration!

Let's Have Some Fun With This

o Let's explore (seeing what converges fastest or not)

- $1 / n^{\wedge} p$, where p is a positive power that is not necessarily integer. Look for pattern in convergence; n all odd, all even
- $1 / n^{\wedge} n, 1 / n!, 1 / \log (n), 1 / a^{\wedge} n ~ a>1,1 / \exp (n), 1 / \sin (n)$. Which converge and which don't? (Same question for above)
- Same as above but with $(-1)^{\wedge} n$ in numerator instead of 1. - With (-1$)^{\wedge} \mathrm{n}$ is, naturally, known as an alternating series
- Fibonacci sequence: derive the golden ratio (of ~ 1.6)
- Look for integer multiples or fractions of pi or e...
- Can potentially beat Mathematica in finding an analytical solution to a particularly trying (incorrigible) series that breaks our sharp, spear-tip pointed analyses repeatedly, in a non-rigorous (guess-and-check/empirical) way
- Though one that can still lead to some deep physics at some point, potentially. Integer multiples, fractions of π, e (e.g., $\pi^{4} / 512$). Can use loops to automatically scan...

A Different Kind of Force: Casimir

Simulations of Large Hadron Collider and past particle accelerators/colliders

The Casimir Effect

o Can borrow a little energy from vacuum, and it doesn't even have to be a temporary loan (think short distance scales)

- "Virtual" particles have real effects (can carry a force)
o Plates initially uncharged develop calculable electrical potential difference \& then attract each other (diff electric charges, - and + or +/-)
- Very small effect, difficult to measure, but we've done it
$1+2+3+4+\ldots=-1 / 12 ?!$
- Riemann zeta function (but this is only *one* of a great many but, remarkably, consistent ways of "proving" this "fact" to be true
- Analytical continuation (other examples include factorial and gamma function, as well as scale factor vs. time in an empty anti-de Sitter space in cosmology)
- Casimir force: nature knows about the infinite energy and SUBTRACTS it out

Proofs

Via analytic continuation, one can show that

$$
\zeta(-1)=-\frac{1}{12}
$$

$$
\zeta(2 n)=\sum_{k=1}^{\infty} \frac{1}{k^{2 n}}=(-1)^{n+1} \frac{B_{2 n}(2 \pi)^{2 n}}{2(2 n)!}
$$

The first few values are:
. $\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$ (the Basel problem)
. $\zeta(4)=\sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}$
$\zeta(6)=\sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}$

(time permitting)
https://www.youtube.com/ watch?v=00azb7IWzbA

$$
-3 c=1-2+3-4+\cdots=\frac{1}{(1+1)^{2}}=\frac{1}{4}
$$

Dividing both sides by -3 , one gets $c=-1 / 12$.

$$
\begin{aligned}
& \text { thot the way of linding the constant is as follews it? } \\
& \text { Let us tok ethes suie } 1+2+3+4+5+8 \text { c. Leecleidson } \\
& \text { - stant: Then } c=1+2+3+4+\alpha c \\
& \therefore \angle C=4+8+8 c \\
& \therefore-3 c=1-2+3-4+\alpha c=\frac{1}{(1+1))^{2}}=\frac{\sum}{4}
\end{aligned}
$$

