LECTURE 03: RANDOM NUMBER PRODUCTION
Introductory Basics, First Examples

- https://www.albany.edu/physics/phy577/randomNumbers.cpp (wrapping it up)
 - On board: how to generate any random number from uniform 0-1, and any shape of Gaussian
 - https://cplusplus.com/reference/random/ Beware of integers versus floating point numbers, and of unphysical solutions (negatives, some things that can’t be zero, fractional?)
What is the Drake Equation?

https://www.seti.org/sites/default/files/inline-images/drake-equation-1600px.jpg

Multiple Ns: can mean multiple galaxies in universe, or multiple versions of OUR galaxy.

\[N = R_* \times f_p \times n_e \times f_e \times f_i \times f_c \times L \]

- \(R_* \): The number of technologically advanced civilizations in the Milky Way galaxy
- \(f_p \): The rate of formation of stars in the galaxy
- \(n_e \): The fraction of those stars with planetary systems
- \(f_e \): The number of planets, per solar system, with an environment suitable for life
- \(f_i \): The fraction of life-bearing planets on which life actually appears
- \(f_c \): The fraction of civilizations that develop a technology that releases detectable signs of their existence into space
- \(L \): The length of time such civilizations release detectable signals into space

Note that there is a lot less BS in this formula these days.

If \(N \) is large: Fermi Paradox then. Where is everyone??

Life in Space?? the code can be done in only < 50 lines!

- Study the Drake Equation from astronomy (HW)
- You will make ~decent guesses as to mean and width and shape for a statistical distribution for each of the parameters within the equation and justify your choices (good references do exist)
 - possible “shapes” include Gaussian, skew, truncated Gaussian, Poisson, exponential, power, flat (uniform), and constant. There are NO “perfect” answers!
- You’ll make a histogram of the probability density of results after $O(100,000)$ runs of code
 - Determine the min, max, mean, median, mode (peak), RMS, width (quote the variance), skewness
- Validation of your result - is the shape of it right?
Why Now?

- One reason we are doing this is because of the 2004 naval Nimitz incident (in addition: I often teach the introductory astronomy course here :)
 - https://www.nytimes.com/2017/12/16/us/politics/pentagon-program-ufo-harry-reid.html (there were other incidents)

- I should also mention the crazy story of a 5-year-old FOIA request to the DIA about crashed UFO parts
Some Checking

- The Drake equation is quite old (1961)
- Some formulae, more modern, slightly more complicated, which do take more variables into account, do exist
The 3-Door Monty Hall Problem!

- Also known as the gameshow host paradox
 - Who’s already heard of this, knows the solution?
- https://www.youtube.com/watch?v=LeV0I3jrP30
 - Writing python code from scratch in video
- Let’s play it out on the board together first
 - Then
 https://www.albany.edu/physics/phy577/MontyHall.cpp
Just like my Monty Hall example:

- A similar but different puzzle with a non-intuitive answer. The Boy vs. Girl Paradox
- For background, explanatory reading see
 - https://jakubmarian.com/the-day-of-the-week-boy-or-girl-paradox-explained/
 - https://www.jesperjuul.net/ludologist/2010/06/08/tuesday-changes-everything-a-mathematical-puzzle/
- 1/3 and 13/27 probability cases
 - Convergence to ½ with addition of more information
For HW #2 (2024) due Th Feb. 8th

- “Solve” the Drake Equation (1 plot). # of civs
- Bonus: Modify eq. to make “better” -w/ ref(s)