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Introduction

Gauss’ Law can be used as an alternative procedure for calculating
electric fields.

It is convenient for calculating the electric field of highly symmetric
charge distributions.

Gauss’ Law is important in understanding and verifying the properties of
conductors in electrostatic equilibrium.

To use Gauss’ Law, you must understand the concept of electric flux.



Electric Flux

Electric flux is the product of the magnitude
of the electric field and the surface area, A,
perpendicular to the field.

Units: N-m2/C
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The electric flux can be thought of as
how much field is going through a
surface at any time.

Analogy: how much air is going through a
window

Area = A

i
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Electric Flux - Non 1 surface

The electric flux is proportional to the

number of electric field lines The number of field lines that
penetrating some surface. go through the area A, is the
The field lines may make some angle 0 same as the number that go
with the perpendicular to the surface. through area A.

Then|®: = EA cos 6

Normal

A ;7
. . ] e \‘“fj‘ / 6
The flux is a maximum when the surface is \\\ \%\\‘\
perpendicular to the field. ~— "
=6=0° . U \\\‘\;\\
The flux is zero when the surface is ~-10 \\\A\ .
parallel to the field. / R, E
E e — 900 A \\\\
1 e

If the field varies over the surface, ® = EA cos 0 is valid for only a small element
of the area. 4



Electric flux for solid object

In the more general case, look at a small
area element. The electric field makes an angle

6, with the vector AKZ-, defined as

A(I)E — EZAAZCOSQZ =Lk - AAZ being normal to the surface

element.

(dot product)

When the size of the elements is infinitely
small (so it approaches zero) you can rewrite
as:

~ =4 * | (surface integral
Oy = / E-dA | gral)

The surface integral means the integral must be evaluated over the surface
in question.

In general, the value of the flux will depend both on the field pattern and on the
surface. 5



Scalar Product (or dot product)

Starts with two vectors and gives a scalar that is independent
of coordinate system.

7 deb=abcosg

S

i b= azby + ayb, + a.b, = abcose

A dot product gives a scalar = only a magnitude



Scalar Product

Component of b
along direction of
ais bcos ¢

= proje&ction of b on a

b
Component of

along direction of

—b-qa bis a cos ¢

= projection ofaon b
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Electric Flux - / e

Closed Surface/ -
3 -

—_

The vectors AA point in different
directions.

= At each point, they are
perpendicular to the surface.

= By convention, they point
outward.

= These are normal vectors to
the surface: they give you the
orientation of the surface

= They give you the sign of the flux

A
The electric The electric The electric
flux through flux through flux through
this area this area this area
element is element is element is

Begative. ZEro. positive.



Electric Flux - Closed Surface

The electric The electric The electric
flux through flux through flux through
this area this area this area
element is element is element is
negative. ZErTo. positive.

© Cengage Learning. All Rights Reserved.

At (1), the field lines are crossing the surface from the inside to the outside; 0 < 90e,
® is positive.

At (2), the field lines graze surface; 6 =900, ® =0

At (3), the field lines are crossing the surface from the outside to the inside;180° > 0

> 900, ® is negative. .



Electric Flux - Closed Surface

The net flux through the surface is proportional to the net number of lines
leaving the surface.

= This net number of lines is the number of lines leaving the surface minus
the number entering the surface.

= The integral is over a closed surface (that's what the circle around the
integral means)

= E, is the component of the field perpendicular to the surface

Remember: If E and dA are perpendicular, the flux is 0
which is the same as saying if E is parallel to the surface, the flux is O.

10



Example: Flux through a cube

Use the geometry to find which
surfaces are parallel or .
perpendicular to the field lines. dAg ®

v

The field lines pass through two
surfaces perpendicularly (1 and 2)
and are parallel to the other four
surfaces (3,4,5,6).

For faces 3,4,5,6 : flux =0

For face 2:
® = FdAcos(0) = Bl = E¢?

For face 1:

® = FdAcos(180) = —EWl = —E{?

Therefore, ®net= 0

11



Example Problem 1

What 1s a flux capacitor?
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What is a flux capacitor?


Example Problem 1: Solution

A fictional, paradoxical device!
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A fictional, paradoxical device!


Example Problem 2

Does flux have any other meaning?
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Does flux have any other meaning?


Example Problem 2: Solution

Yes! Particles, radiation, dark matter; also liquids like water

15
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Example Problem 3

4. Consider a closed triangular box resting within a hori-

zontal electric field of magnitude E = 7.80 X 10* N/C
as shown 1n Figure P24.4. Calculate the electric flux
through (a) the verucal rectangular surface, (b) the
slanted surface, and (¢) the entire surface of the box.

——d

.-

J3().() cm

l(l()un

R o

Figure P24.4
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Example Problem 3: Solution

(@) For the vertical rectangular surface, the area (shown as A" in ANS

FIG. P24.4) is . /’1

A’=(10.0 cm)(30.0 cm) =300 cm? = 0.030 0 m”

Since the electric field is perpendicular to the surface and is
directed inward, 6 =180° and

®, , =EA’cosO 10.0 cm
@, , =(7.80x10* N/C)(0.030 0 m*)cos180°

®, , =|-234kN-m*/C

(b) To find the area A of the slanted surface, we note that the side for
which dimensions are not given has length (10.0 cm) =w cos 60.0°,
so that

10.0 cm
cos60.0°

A=(30.0 cm)(w)=(30.0 cm)( ) =600 cm”

=0.060 0 m*
The flux through this surface is then
@, ,=EAcos6=(7.80x10*)(A)cos60.0°
=(7.80x10* N/C)(0.060 0 m*)cos60.0°

=| +2.34 kN-m?* /C

17




Example Problem 3: Solution

(c) The bottom and the two triangular sides all lie parallel to E, so
®,. =0 for each of these. Thus,

@, o =—234kN-m?/C+234kN-m?/C+0+0+0=]0

18



Example Problem 4

E A uniformlv charged imsulating rod
10 of length 14.0 ¢m is bent into the
shape of a semicircle as shown in Fig-

ure P23.45. The rod has a total charge

of —7.50 pC. Find (a) the magnitude
and (b) the direction of the electric
hield at O, the center of the semicircle.

19
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Example Problem 4: Solution

Due to symmetry, Ey = JdEy =0, and 7

E = —JdE sin 6 = —kej i sinQ where dq = Ads = Ard0 ; the ﬂ
r

component E_is negative because charge g =—7.50 uC, K
causing the net electric field to be directed to the left.
o - - ANS. FIG.
E, =——=[sin0df = - == (- cosh)[} = - = P23.45
r r r

0

where A = % and r = L . Thus,

T

- 2k|qm _2(899x10° N-m*/C*)(7.50x107° C)x

: I? (0.140 m)’
E =-216x10" N/C

(a) magnitude E=|2.16x10" N/C

(b) |[to the left

20



Electric field equations for
simple objects

Point charge (charge = q)

Conducting sphere (charge — Q)

Uniformly charged insulating
sphere (charge = Q, radius =r,)

Infinite line charge (linear
charge density = 1)

Infinite flat plane (surface
charge density = o)

—

I

5 =
TEm — 7 (at distance r from q)
- ]
E= Thm = 7 (outside, distance r from
07" center)
= 0 (inside)
E = 1 — 7 (outside, distance r from
LEOEE cenicy)
i | T 4 :
E = -7 (inside, distance r from
ameo 1 center)
— 1 /L
E = — 7 (distance r from line)
27[80 r
E—=—"7
— sl
280

From: a student’s guide to Maxwell’s equations



(Gauss’s law

Gauss’s law is an expression of the
general relationship between the
net electric flux through a closed
surface and the charge enclosed
by the surface.

dxq

= The closed surface is often called
a gaussian surface.

Gauss'’s law is of fundamental
importance in the study of electric
fields.

22
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Karl Friedrich Gauss
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(Gauss’s law

A positive point charge, q, is located at the

center of a sphere of radius r When the charge is at the center
P ' of the sphere, the electric field is

everywhere normal to the surface

The magnitude of the electric field everywhere " . magnitude.

on the surface of the sphere is
E=k.q/r?
Spherical
The field lines are directed radially outward gaussian
and are perpendicular to the surface at every  surface

point. \ )/

r 7/
The area of a sphere is Agpnere = 41712 //
The electric flux is: :g’
@Ez%ﬁ-dﬁz%EndA
S S
de = ELA (I)E _ 47Tkeq _4Y | |

£ « k,=8.9876 x 109 N-m2/C2 = 1/(4me,)

23



(Gauss’s Law

This 1s our first Maxwell’s
equation.

= Q is the net charge inside the surface.
= E is the total electric field and may have contributions from charges both inside
and outside of the surface.

The net flux through any closed surface surrounding a point charge, q, is
given by q/¢, and is independent of the shape of that surface.

If there is no charge within the closed surface, there is no flux.

Although Gauss’s law can, in theory, be solved to find E for any charge configuration, in

practice it is limited to symmetric situations.
24



Gaussian Surface

A closed surface where you can apply Gauss’s law.

The net electric flux 1s the
same through all surfaces.

The charge is inside the surface.

The shape of the surface doesn’t matter.

The net flux through any closed surface
surrounding a point charge q is given by g/e,

25



Gaussian Surface

The number of field lines
entering the surface equals the
number leaving the surface.

The charge is outside the closed
surface with an arbitrary shape.

/ Any field line entering the surface
' leaves at another point.

;

x e -

The electric flux through a closed
surface that surrounds no charge is

‘\\ Zero.

e~

3
q

20



Flux due to several charges

Since the electric field due to many charges is the vector sum
of the electric fields produced by the individual charges, the
flux through any closed surface can be expressed as

Remember the dot product is distributive

27



Applying Gauss’s law

To use Gauss’s law, you want to choose a gaussian surface over which
the surface integral can be simplified and the electric field
determined.

Take advantage of symmetry.

Remember, the gaussian surface is a surface you choose, it does not
have to coincide with a real surface.

Try to choose a surface that satisfies one or more of these conditions:
= The value of the electric field can be argued from symmetry to be constant
over the surface.
= The dot product of E and dA can be expressed as a simple algebraic
product EdJA because E and dA are parallel.
= The dot product is O because E and dA are perpendicular.
= The field is zero over the portion of the surface.

If the charge distribution does not have sufficient symmetry such that a
gaussian surface that satisfies these conditions can be found, Gauss’ law
is not useful for determining the eleggric field for that charge distribution.



Electric field of a sphere

On the outside of a conducting or insulating sphere (without Gaus’s law)

2
=1
¥ b - .
Fcl’r points outside the sphere, Select a sphere as the gaussian surface.
a large, spherical gaussian Forr>a: _
surface 1s drawn concentric (with Gaus’s law)

with the sphere.

/v @E:%E.M:j:{EndAzqem
S S €0

The area of a sphere is Agppere = 41712

Gaussian
sphere 29




Electric field of a sphere

On the inside of an insulating sphere (this is what we did before without Gaus’s law)

The sphere has total charge Q.
q is the charge in the inside volume.

AKin to selecting a sphere as the gaussian surface at r. (with Gaus’s law)

— — enc Ql"3
q)E:]{E'dA:%EndA:q Qenc=_3
S S €0 r

3

1
EA — qenC E — anC — Qr

€ drriey 1y 4mrie

30




E field due to spherically symmetric
charge distribution - Summary

Inside the sphere, E varies linearly
with r

sE—-0Qasr—0

The field outside the sphere is
equivalent to that of a point
charge located at the center of
the sphere.

31



Electric field on an Infinite line charge

= _ dq . gj I o (Without Gaus’s law)
= K ef r—2 ' -
OIE:'Lcd_q_ ty =J”‘£j :/016(,0:9'
ASYS
X
400 a4 G- (o5& = = \

Ey = ke —, =—. \Qrad
00 fraas g +o
- - _— g//
o€ f P

o0
Ey = kea AL
-0 kQ."'-mL

R i
= ‘(QCL > Efo\L\l QL-I-QT']_&

w0 )
e = k‘:a'>'/fob 7)@1—»0})%’

We will go back to this next week.

There are many ways to solve an E&M
problem.

They are not all equal (this is the hard way).
Remember: no net field component
along x because each Ex cancels out.



Electric field on an infinite line charge

e Select a gaussian surface as a cylinder with radius of r and a length of .

e E is constant in magnitude and perpendicular to the surface at every
point on the curved part of the surface.
Gaussian

+
e Use Gauss’s law to find the field. surface . |

>
@E:%E-M:%Enm:qem g F
S S A

AL

€0

E X 2nrl = denc _

(with Gaus’s law) |

The field through the ends of the cylinder
is 0 since the field is parallel to these
surfaces (which is the same conclusion as
saying Ex cancel out).




Field due to a plane of charge

E must be perpendicular to the plane and must have the same magnitude at all
points equidistant from the plane.

Choose a small cylinder whose axis is perpendicular to the plane for the
gaussian surface.

E is parallel to the curved surface and there is no contribution to the surface
area from this curved part of the cylinder.

The flux through each end of the cylinder is EA and so the total flux is 2EA.

@E:%E-M:%Enm:qem
S S €0

The total charge in the surface is q=0A. e
Applying Gauss’s law: S A
X
5
X
X
X
X
Note, this does not depend on . s
Therefore, the field is uniform T

Gaussian
surface

everywhere.
34



Properties of conductors

When there is no net motion of charge within a conductor, the conductor is
said to be in electrostatic equilibrium.

The electric field is zero everywhere inside the conductor.
- Whether the conductor is solid or hollow

If the conductor is isolated and carries a charge, the charge resides on its
surface.

The electric field at a point just outside a charged conductor is
perpendicular to the surface and has a magnitude of a/g,

- o iIs the surface charge density at that point.

On an irregularly shaped conductor, the surface charge density is greatest
at locations where the radius of curvature is the smallest.

35



E field inside conductor =0

Remember a conductor contains electrons that can move freely.
Take a conductor, before the external field is applied, free electrons are
uniformly distributed throughout the conductor (therefore there is no net field, if

there was a field, the electrons would move).

Place the conductor in an electric field: the charges rearrange themselves and
follow the electric field lines. They move as far apart as they can from each
other, which means they settle on the surface.

“The charges move in a conductor so as to kill the external field.”

Metal sphere is After a few
Initially: introduced: nanoseconds:
_> |

E-field |

Inside e/

—> -
External E-field External E-field External E-field
36




Field’s magnitude and
direction for conductors

Choose a cylinder as the gaussian surface.

The field must be perpendicular to the surface. The flux through the
= If there were a parallel component to E gaussian surface is EA.
charges would experience a force and
accelerate along the surface and it would not 5
be in equilibrium. wr
R\ -
_|_

The net flux through the gaussian surface is y
through only the flat face outside the conductor. A N
= The field here is perpendicular to the surface.

_|_
_I_
Applying Gauss’s law: ++ 1
_|_
_|_

37



Sphere and shell example

A charged sphere with charge Q is surrounded by a conducting shell with
total charge -2Q.
Find the electric field in regions 1, 2, 3, and 4.

_2Q
=t g Jenc
D :%E-dAsz{EndA:
s S 0 @

Region 1: gaussian surface dotted yellow
(see slide 29). Charge enclosed is Q.

E, =k, gsr (for r <a) Insulating sphere
a

Ei1=0 conducting sphere

Region 2: gaussian surface is dashed blue.
Charge enclosed is Q (see slide 29)

E2=keg2 (fora<r<b)
r

38



Sphere and shell example

A charged sphere with charge Q is surrounded by a conducting shell with

charge -2Q.
Find the electric field in regions 1, 2, 3, and 4.

— i Qan _2Q
Op=¢ F-dA= ¢ F,dA =
S S €0
Reqion 3: Charge enclosed in this region is @

0. @

E,=0 (forb<r<c)

Region 4: gaussian surface is dashed
green. Charge enclosed is Q - 2Q = -Q

pA- Y p_ —¢
€0 4rieg
\J
E, =-k « (for r > c)

e .2
r
39



Example Problem 5

What else was Gauss known for?
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Example Problem 5: Solution

The Gaussian distribution: the bell curve, or “normal” distribution

41
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Example Problem 6

Calculus review: what 1s the power rule for integration?
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Example Problem 6: Solution

| x*ndx =[x n+1)/ (n+1) ]+ C (where n # -1)
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 ∫ x^n dx = [ x^(n+1) / (n+1) ] + C (where n ≠ -1)�


Example Problem 7

L. A cylindrical shell of radius 7.00 cm and length 2.40 m
has its charge uniformly distributed on its curved sur-
face. The magnitude of the electric field at a point
19.0 em radially outward from 1ts axis (measured [from
the midpoint of the shell) 1s 36.0 kKN/C. Find (a) the
net charge on the shell and (b) the electric field at a
point 4.00 c¢m from the axis, measured radially out-

ward from the midpoint ol the shell.
L — '2— YN




Example Problem 7 : solution

(a) The electric field is given by

_2kA 2k, (Q/ 1)
r r

see slide 33

E

Solving for the charge Q gives

Er¢ (3.60x10* N/C)(0.190 m)(2.40 m)

sz—ke_ 2(8.99x10° N-m*/C) )

Q=+9.13x107 C=[+913 nC

(b) Since the charge is uniformly distributed on the surface of the
cylindrical shell, a gaussian surface in the shape of a cylinder of

4.00 cm in radius encloses no charge, and E=| 0 |.

45
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| Two infinite, nonconducting sheets

Example Problem 8

of charge are parallel to cach other
as shown in Figure P24.56. The
sheet on the left has a uniform sur-
face charge density o, and the one
on the right has a uniform charge
density —o. Calculate the electric = 05
field at points (a) to the leftof, (b) n —
between, and (c) to the rlgh.t of the Figure P24.56
two sheets. (d) What If? Find the
electric lields in all three regions il both sheets have
positive uniform surface charge densities of value o.

46
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Example Problem 8 : solution

Consider the field due to a single sheet and let
E, and E_represent the fields due to the @
positive and negative sheets. The field at

any distance from each sheet has a magnitude
given by the textbook equation

g
)
‘E+‘ = ‘E_‘ = 5 see slide 34 ] |
€
(a) To the left of the positive sheet, E_ is & -
directed toward the left and E toward il | e—
S E— —> — >
the right and the net field over this + ~
regionis E=|0 |. . . i
5 E=0 || E= = | |E=0
(b) In the region between the sheets, E, % -
and E are both directed toward the + -
right and the net field is + =
+ J—

E=| 2 tothe right
&, 47 ANS. FIG. P24.56(a-c)




Example Problem 8 : solution

(c) To the right of the negative sheet, E, N S -
and E_are again oppositely directed and T
E=|0 | o

E=2 |HE=0[*E=2

(d) Now, both sheets are positively =0 . 4 €0

charged. We find that

(1) To the left of both sheets,
both fields are directed
toward the left:

ANS. FIG. P24.56(d)

E=|22 tothe left
So

(2) Between the sheets, the fields cancel because they are

opposite to each other: E=| 0 |.

(3) To the right of both sheets, both fields are directed
toward the right:

E=| 22 to the right
€0

48




Example Problem 9

58

An insulating solid sphere of radims « has a uniform vol-
ume charge densitv and carries a total positive charge
(). A spherical gaussian surface of radius r, which shares
a common center with the msulaung sphere, 1s inflated
starting from r = (. (a) Find an expression for the elec-
tric tlux passing through the surtace of the gaussian
sphere as a funcuon of rtor << a. (b) Find an expression
for the electric flux for r = a. (¢) Plot the flux versus »

49
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Example Problem 9 : solution

4
The charge density is determined by Q = 577: a’p . Solving gives

3 0
— Q3 p = -
41 a V

Jo,

(@) The flux is that created by the enclosed charge within radius r:

o - Tn _ dnr’p _ 4Amr’3Q | Qr
e, 3¢, 3¢4nd’ |e,a
(b) @&, = Eg . Note that the answers to parts (a) and (b) agree at r = a.
0

(c) ANS. FIG. P24.58(c) plots the flux vs. r.

()] I

2 Ol

€

0 0 t r

a

ANS. FIG. P24.58(c) *°



