GeneChip™ WT PLUS Reagent Kit
Manual Target Preparation for
GeneChip™ Whole Transcript (WT) Expression Arrays

User Guide

Document Part Number 703174
Publication Number MAN0018137
Revision A.0
The information in this guide is subject to change without notice.

DISCLAIMER: TO THE EXTENT ALLOWED BY LAW, THERMO FISHER SCIENTIFIC INC. AND/OR ITS AFFILIATE(S) WILL NOT BE LIABLE FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING YOUR USE OF IT.

Revision history: Pub. No. MAN0018137

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>
| A.0 | 20 December 2018 | • Initial release in Thermo Fisher Scientific document control system.
• Supersedes legacy Affymetrix publication number 703174.
• Updated to the current document template, with associated updates to trademarks, logos, licensing, and warranty. |

Important Licensing Information: These products may be covered by one or more Limited Use Label Licenses. By use of these products, you accept the terms and conditions of all applicable Limited Use Label Licenses.

TRADEMARKS: All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

©2018 Thermo Fisher Scientific Inc. All rights reserved
Chapter 1 WT PLUS Reagent Kit

Product Information

Purpose of the Product
The WT PLUS Reagent Kit enables you to prepare RNA samples for whole transcriptome expression analysis with GeneChip™ Whole Transcript (WT) Expression Arrays. The kit generates amplified and biotinylated sense-strand DNA targets from total RNA without the need for an up-front selection or enrichment step for mRNA. The kit is optimized for use with GeneChip™ Sense Target (ST) Arrays.

The WT PLUS Reagent Kit uses a reverse transcription priming method that primes the entire length of RNA, including both poly(A) and non-poly(A) mRNA to provide complete and unbiased coverage of the transcriptome. The kit is comprised of reagents and a protocol for preparing hybridization-ready targets from 50 to 500 ng of total RNA (Figure 1.1). WT PLUS Reagent is optimized to work with a wide range of samples including tissues, cells, cell lines, and whole blood. The total RNA samples can be used directly without removal of ribosomal or globin RNA prior to target preparation with WT PLUS Reagent.

Safety

⚠️ WARNING: For research use only. Not recommended or intended for diagnosis of disease in humans or animals. Do not use internally or externally in humans or animals.

⚠️ CAUTION: All chemicals should be considered potentially hazardous. Therefore, we recommend that this product should be handled only by individuals who have been trained in laboratory techniques and used in accordance with the principles of good laboratory practice. Wear suitable protective clothing, such as gloves, a lab coat, and safety glasses. Care should be taken to avoid contact with skin and eyes. In case of contact with skin or eyes, wash immediately with water. See Safety Data Sheet (SDS) for specific advice.
Assay Workflow

Figure 1.1 WT PLUS Amplification and Labeling Process
Kit Contents and Storage

Table 1.1 GeneChip™ WT PLUS Reagent Kit Contents and Storage

<table>
<thead>
<tr>
<th>Component</th>
<th>10-Reaction Kit for manual use (P/N 902280)</th>
<th>30-Reaction Kit for manual use (P/N 902281)</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT Amplification Kit Module 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-Strand Enzyme</td>
<td>11 µL</td>
<td>50 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>First-Strand Buffer</td>
<td>44 µL</td>
<td>160 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Second-Strand Enzyme</td>
<td>22 µL</td>
<td>70 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Second-Strand Buffer</td>
<td>198 µL</td>
<td>600 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>IVT Enzyme</td>
<td>66 µL</td>
<td>210 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>IVT Buffer</td>
<td>264 µL</td>
<td>800 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Control RNA (1 mg/mL HeLa total RNA)</td>
<td>5 µL</td>
<td>5 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>2nd-Cycle Primers</td>
<td>44 µL</td>
<td>180 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>2nd-Cycle ss-cDNA Enzyme</td>
<td>44 µL</td>
<td>140 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>2nd-Cycle ss-cDNA Buffer</td>
<td>88 µL</td>
<td>290 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>RNase H</td>
<td>44 µL</td>
<td>180 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>2 x 1.0 mL</td>
<td>4 x 1.0 mL</td>
<td>any temp</td>
</tr>
<tr>
<td>WT Amplification Kit Module 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purification Beads</td>
<td>2.2 mL</td>
<td>6.6 mL</td>
<td>4°C *</td>
</tr>
<tr>
<td>GeneChip™ Poly-A RNA Control Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly-A Control Stock</td>
<td>16 µL</td>
<td>16 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Poly-A Control Dil Buffer</td>
<td>3.8 mL</td>
<td>3.8 mL</td>
<td>−20°C</td>
</tr>
<tr>
<td>GeneChip™ WT Terminal Labeling Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10X cDNA Fragmentation Buffer</td>
<td>48 µL</td>
<td>213 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>UDG, 10 U/µL</td>
<td>10 µL</td>
<td>49 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>APE 1, 1,000 U/µL</td>
<td>10 µL</td>
<td>49 µL</td>
<td>−20°C</td>
</tr>
</tbody>
</table>
Component

<table>
<thead>
<tr>
<th>Component</th>
<th>10-Reaction Kit for manual use (P/N 902280)</th>
<th>30-Reaction Kit for manual use (P/N 902281)</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X TdT Buffer</td>
<td>120 µL</td>
<td>475 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>dT, 30 U/µL</td>
<td>20 µL</td>
<td>99 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>DNA Labeling Reagent, 5 mM</td>
<td>10 µL</td>
<td>49 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>RNase-free Water</td>
<td>825 µL</td>
<td>2 x 825 µL</td>
<td>any temp *</td>
</tr>
<tr>
<td>GeneChip™ Hybridization Control Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20X Hybridization Controls</td>
<td>450 µL</td>
<td>450 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>3 nM Control Oligo B2</td>
<td>150 µL</td>
<td>150 µL</td>
<td>−20°C</td>
</tr>
</tbody>
</table>

* Do not freeze.

Tubes Organizer
Plastic vinyl template for organization and storage of components in 9 × 9 array, 81-places square wells, 5 1/4 in. x 5 1/4 in (e.g., Nalgene CryoBox P/N 5026-0909, or equivalent).

Required Materials

Instruments

Table 1.2 Instruments Required for Target Preparation

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Stand-96</td>
<td>• Agencourt SPRI™ Plate Super Magnet Plate (Beckman Coulter Genomics, P/N A32782);</td>
</tr>
<tr>
<td></td>
<td>• Ambion Magnetic Stand-96 (Thermo Fisher, P/N AM10027);</td>
</tr>
<tr>
<td></td>
<td>• 96-well Magnetic-Ring Stand (Thermo Fisher, P/N AM10050);</td>
</tr>
<tr>
<td></td>
<td>• or equivalent magnetic stand</td>
</tr>
<tr>
<td>Microcentrifuge</td>
<td>Major Laboratory Supplier</td>
</tr>
<tr>
<td>NanoDrop™ UV-Vis Spectrophotometer</td>
<td>Thermo Fisher Scientific, or equivalent quantitation instrument</td>
</tr>
<tr>
<td>Optional: 2100 Bioanalyzer</td>
<td>Agilent Technologies, Inc., or equivalent DNA and RNA sizing instrument</td>
</tr>
<tr>
<td>Pipette</td>
<td>Major Laboratory Supplier</td>
</tr>
<tr>
<td>Thermal Cycler</td>
<td>Various</td>
</tr>
<tr>
<td>Vortex Mixer</td>
<td>Major Laboratory Supplier</td>
</tr>
<tr>
<td>65°C heat block or oven for incubation of Nuclease-free Water during Purification</td>
<td>Major Laboratory Supplier</td>
</tr>
</tbody>
</table>
Table 1.3 Instruments Required for Array Processing

<table>
<thead>
<tr>
<th>Instruments</th>
<th>Supplier</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeneChip™ System for Cartridge Arrays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeneChip™ Hybridization Oven 645</td>
<td>Thermo Fisher</td>
<td>P/N 00-0331 (110/220V)</td>
</tr>
<tr>
<td>GeneChip™ Fluidics Station 450</td>
<td>Thermo Fisher</td>
<td>P/N 00-0079</td>
</tr>
</tbody>
</table>
| GeneChip™ Scanner 3000 7G | Thermo Fisher | P/N 00-0212 (North America)
| | | P/N 00-0213 (International) |
| GeneChip™ AutoLoader with External Barcode Reader | Thermo Fisher | P/N 00-0090 (GCS 3000 7G S/N 501)
| | | P/N 00-0129 (GCS 3000 7G S/N 502) |
| **GeneAtlas™ System for Array Strips** | | |
| GeneAtlas™ Workstation | Thermo Fisher | P/N 90-0894 |
| GeneAtlas™ Hybridization Station | Thermo Fisher | P/N 00-0380 (115VAC)
| | | P/N 00-0381 (230VAC) |
| GeneAtlas™ Fluidics Station | Thermo Fisher | P/N 00-0377 |
| GeneAtlas™ Imaging Station | Thermo Fisher | P/N 00-0376 |
| GeneAtlas™ Barcode Scanner | Thermo Fisher | P/N 74-0015 |
| **GeneTitan™ System for Array Plates** | | |
| GeneTitan™ MC Instrument, NA/Japan includes 110v UPS | Thermo Fisher | P/N 00-0372 |
| GeneTitan™ MC Instrument, Int'l includes 220v UPS | Thermo Fisher | P/N 00-0373 |
| GeneTitan™ Instrument, NA/Japan includes 110v UPS | Thermo Fisher | P/N 00-0360 |
| GeneTitan™ Instrument, Int'l Includes 220v UPS | Thermo Fisher | P/N 00-0363 |
Reagents and Supplies

Table 1.4 Additional Reagents and Supplies Required

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well round bottom microtiter plate</td>
<td>Costar, P/N 3795 or equivalent</td>
</tr>
<tr>
<td>GeneChip™ Hybridization, Wash, and Stain Kit</td>
<td>Thermo Fisher (P/N 900720, 30 rxns)</td>
</tr>
<tr>
<td>GeneAtlas™ Hybridization, Wash, and Stain Kit for WT Array Strips</td>
<td>Thermo Fisher (P/N 901667, 60 rxns)</td>
</tr>
<tr>
<td>GeneTitan™ Hybridization, Wash and Stain Kit for WT Array Plates</td>
<td>Thermo Fisher (P/N 901622, 96 rxns)</td>
</tr>
<tr>
<td>Nuclease-free aerosol-barrier tips</td>
<td>Major Laboratory Supplier</td>
</tr>
<tr>
<td>Nuclease-free 1.5, and 0.2 mL tubes or plates</td>
<td>Major Laboratory Supplier</td>
</tr>
<tr>
<td>Nuclease-free 15 mL tubes or containers</td>
<td>Major Laboratory Supplier</td>
</tr>
<tr>
<td>Optional: materials for Gel-Shift assay, refer to Appendix A, Gel-Shift Assay</td>
<td></td>
</tr>
<tr>
<td>Optional: RNA 6000 Nano Kit</td>
<td>Agilent Technologies, Inc. P/N 5067-1511; or equivalent DNA and RNA sizing reagents</td>
</tr>
<tr>
<td>Tough-Spots™ Major Laboratory Supplier</td>
<td></td>
</tr>
<tr>
<td>100% Ethanol (Molecular Biology grade or equivalent)</td>
<td>Major Laboratory Supplier*</td>
</tr>
<tr>
<td>Nuclease-free Water (for preparing 80%ethanol wash solution)</td>
<td>Thermo Fisher (P/N 71786) or major laboratory supplier</td>
</tr>
<tr>
<td>Optional: 96-well plate sealing film</td>
<td>Major Laboratory Supplier</td>
</tr>
</tbody>
</table>

* Before handling any chemicals, refer to the MSDS provided by the manufacturer, and observe all relevant precautions.
Chapter 2 Protocol

Procedural Notes

Implement a Plan to Maintain Procedural Consistency

To minimize sample-to-sample variation that is caused by subtle procedural differences in gene expression assays, consider implementing a detailed procedural plan. The plan standardizes the variables in the procedure and should include the:

- Method of RNA isolation
- Amount of input RNA that is used for each tissue type
- RNA purity and integrity
- Equipment Preparation
- Workflow stopping points
- Reagent Preparation

Equipment Preparation

Recommended Thermal Cycler

Make sure that the heated cover of your thermal cycler either tracks the temperature of the thermal cycling block or supports specific temperature programming.

Program the Thermal Cycler

Set the temperature for the heated lid to or near the required temperature for each step. An alternate protocol may be used for thermal cyclers that lack a programmable heated lid. This is not the preferred method. Yields of cRNA may be greatly reduced if a heated lid is used during the Second-Strand cDNA Synthesis or during the In Vitro Transcription cRNA Synthesis steps. We recommend leaving the heated lid open during Second-Strand cDNA Synthesis. A small amount of condensation will form during the incubation. This is expected, and should not significantly decrease cRNA yields. For In Vitro Transcription cRNA Synthesis, we recommend incubating the reaction in a 40°C hybridization oven if a programmable heated lid thermal cycler is unavailable.

Incubation temperatures and times are critical for effective RNA amplification. Use properly calibrated thermal cyclers and adhere closely to the incubation times.

NOTE: Concentration fluctuations that are caused by condensation can affect yield. Ensure that the heated lid feature of the thermal cycler is working properly.
Table 2.1 Thermal Cycler Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Heated Lid Temp</th>
<th>Alternate Protocol*</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Strand cDNA Synthesis</td>
<td>42°C</td>
<td>105°C</td>
<td>25°C, 60 min</td>
<td>42°C, 60 min</td>
<td>4°C, 2 min</td>
<td></td>
<td>10 µL</td>
</tr>
<tr>
<td>Second-Strand cDNA Synthesis</td>
<td>RT or disable</td>
<td>Lid open</td>
<td>16°C, 60 min</td>
<td>65°C, 10 min</td>
<td>4°C, 2 min</td>
<td></td>
<td>30 µL</td>
</tr>
<tr>
<td>In Vitro Transcription cRNA Synthesis</td>
<td>40°C</td>
<td>40°C oven</td>
<td>40°C, 16 hr</td>
<td></td>
<td>4°C, hold</td>
<td></td>
<td>60 µL</td>
</tr>
<tr>
<td>2nd-Cycle Primers-cRNA Annealing</td>
<td>70°C</td>
<td>105°C</td>
<td>70°C, 5 min</td>
<td>25°C, 5 min</td>
<td>4°C, 2 min</td>
<td></td>
<td>28 µL</td>
</tr>
<tr>
<td>2nd-Cycle ss-cDNA Synthesis</td>
<td>70°C</td>
<td>105°C</td>
<td>25°C, 10 min</td>
<td>42°C, 90 min</td>
<td>70°C, 10 min</td>
<td>4°C, hold</td>
<td>40 µL</td>
</tr>
<tr>
<td>RNA Hydrolysis</td>
<td>70°C</td>
<td>105°C</td>
<td>37°C, 45 min</td>
<td>95°C, 5 min</td>
<td>4°C, hold</td>
<td></td>
<td>44 µL</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>93°C</td>
<td>105°C</td>
<td>37°C, 60 min</td>
<td>93°C, 2 min</td>
<td>4°C, hold</td>
<td></td>
<td>48 µL</td>
</tr>
<tr>
<td>Labeling</td>
<td>70°C</td>
<td>105°C</td>
<td>37°C, 60 min</td>
<td>70°C, 10 min</td>
<td>4°C, hold</td>
<td></td>
<td>60 µL</td>
</tr>
<tr>
<td>Hybridization Control</td>
<td>65°C</td>
<td>105°C</td>
<td>65°C, 5 min</td>
<td></td>
<td></td>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td>Hybridization Cocktail</td>
<td>99°C</td>
<td>105°C</td>
<td>95°C or 99°C, 5 min</td>
<td>45°C, 5 min</td>
<td></td>
<td></td>
<td>Variable</td>
</tr>
</tbody>
</table>

*For thermal cyclers that lack a programmable heated lid.

Reagent Preparation

IMPORTANT: You can freeze and thaw the reagents in the 12 and 30 reaction kits ≤3 times.

Handling kit components as follows:

- **Enzymes:** Mix by gently vortexing the tube followed by a brief centrifuge to collect contents of the tube, then keep on ice.
- **Buffers and Primers:** Thaw on ice, thoroughly vortex to dissolve precipitates followed by a brief centrifuge to collect contents of the tube. If necessary, warm the buffer(s) at ≤37°C for 1 to 2 min, or until the precipitate is fully dissolved, then keep on ice.
- **Purification Beads:** Allow to equilibrate at room temperature before use.
- **Prepare master mixes for each step of the procedure to save time, improve reproducibility, and minimize pipetting error.**
• Prepare Master Mixes as follows:
 - Prepare only the amount needed for all samples in the experiment plus ~5% overage to correct for pipetting losses when preparing the master mixes.
 - Use non-stick nuclease-free tubes to prepare the master mix.
 - Enzyme should be added last and just before adding the master mix to the reaction.
 - Return the components to the recommended storage temperature immediately after use.

Prepare Control RNA

Prepare Control RNA

To verify that the reagents are working as expected, a Control RNA sample (1 mg/mL total RNA from HeLa cells) is included with the kit.

To prepare the Control RNA for positive control reaction:

1. On ice, dispense 2 µL of the Control RNA in 78 µL of Nuclease-free Water for a total volume of 80 µL (25 ng/µL).
2. Follow the *Prepare Total RNA/Poly-A RNA Control Mixture*, but use 2 µL of the diluted Control RNA (50 ng) in the control reaction.

NOTE:
- Measure concentration of HeLa Control RNA using a NanoDrop Spectrophotometer and use the measured concentration for calculation and preparing the 25 ng/µL working stock.
- The positive control reaction should produce >15 µg of cRNA and >5.5 µg of 2nd-cycle ss-cDNA from 50 ng Control RNA.

Prepare Poly-A RNA Controls

NOTE:
- To include premixed controls from the GeneChip™ Poly-A RNA Control Kit, add the reagents to the total RNA samples. Follow the *Prepare Total RNA/Poly-A RNA Control Mixture*. We strongly recommend the use of Poly-A RNA Controls for all reactions that will be hybridized to GeneChip™ arrays.
- If frozen, the Poly-A Control Dil Buffer may take 15 to 20 min to thaw at room temperature.

A supplied set of poly-A RNA controls is designed specifically to provide exogenous positive controls to monitor the entire target preparation. It should be added to the RNA prior to the First-Strand cDNA Synthesis step.

Each eukaryotic GeneChip™ probe array contains probe sets for several *B. subtilis* genes that are absent in eukaryotic samples (*lys, phe, thr, and dap*). These poly-A RNA controls are *in vitro* synthesized, and the polyadenylated transcripts for the *B. subtilis* genes are premixed at staggered concentrations. The concentrated Poly-A Control Stock can be diluted with the Poly-A Control Dil Buffer and spiked directly into RNA samples to achieve the final concentrations (referred to as a ratio of copy number) summarized in Table 2.2.
Table 2.2 Final Concentrations of Poly-A RNA Controls When Added to Total RNA Samples

<table>
<thead>
<tr>
<th>Poly-A RNA Spike</th>
<th>Final Concentration (ratio of copy number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lys</td>
<td>1:100,000</td>
</tr>
<tr>
<td>phe</td>
<td>1:50,000</td>
</tr>
<tr>
<td>thr</td>
<td>1:25,000</td>
</tr>
<tr>
<td>dap</td>
<td>1:6,667</td>
</tr>
</tbody>
</table>

The controls are then amplified and labeled together with the total RNA samples. Examining the hybridization intensities of these controls on GeneChip™ arrays helps to monitor the labeling process independently from the quality of the starting RNA samples.

The Poly-A RNA Control Stock and Poly-A Control Dil Buffer are provided in the GeneChip™ Poly-A RNA Control Kit to prepare the appropriate serial dilutions based on Table 2.3. This is a guideline when 50, 100, 250, or 500 ng of total RNA is used as starting material. For starting sample amounts other than those listed here, calculations are needed in order to perform the appropriate dilutions to arrive at the same proportionate final concentration of the spike-in controls in the samples.

Table 2.3 Serial Dilution of Poly-A RNA Control Stock

<table>
<thead>
<tr>
<th>Total RNA Input Amount</th>
<th>Serial Dilutions</th>
<th>Volume of 4th Dilution to Add to Total RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st Dilution</td>
<td>2nd Dilution</td>
</tr>
<tr>
<td>50 ng</td>
<td>1:20</td>
<td>1:50</td>
</tr>
<tr>
<td>100 ng</td>
<td>1:20</td>
<td>1:50</td>
</tr>
<tr>
<td>250 ng</td>
<td>1:20</td>
<td>1:50</td>
</tr>
<tr>
<td>500 ng</td>
<td>1:20</td>
<td>1:50</td>
</tr>
</tbody>
</table>

IMPORTANT:

- Avoid pipetting solutions less than 2 µL in volume to maintain precision and consistency when preparing the dilutions.
- Use non-stick nuclease-free tubes to prepare all of the dilutions (not included).
- After each step, mix the Poly-A Control dilutions thoroughly by gently vortexing followed by a quick centrifuge to collect contents of the tube.

For example, to prepare the Poly-A RNA dilutions for 100 ng of total RNA:

1. Add 2 µL of the Poly-A Control Stock to 38 µL of Poly-A Control Dil Buffer for the 1st Dilution (1:20).
2. Add 2 µL of the 1st Dilution to 98 µL of Poly-A Control Dil Buffer to prepare the 2nd Dilution (1:50).
3. Add 2 µL of the 2nd Dilution to 98 µL of Poly-A Control Dil Buffer to prepare the 3rd Dilution (1:50).
4. Add 2 µL of the 3rd Dilution to 18 µL of Poly-A Control Dil Buffer to prepare the 4th Dilution (1:10).
5. Add 2 µL of this 4th Dilution to 100 ng of total RNA. The final volume of total RNA with the diluted Poly-A controls should not exceed 5 µL.
Prepare Total RNA

Evaluate RNA Quality

Total RNA samples should be free of genomic DNA and we recommend including a DNase treatment or genomic DNA removal step with the RNA purification method. The contaminating genomic DNA may be amplified along with the RNA, which will lead to inaccurate measurement of whole transcriptome expression. In addition, the contaminating genomic DNA could cause over-estimation of the RNA amount.

RNA quality affects how efficiently an RNA sample is amplified using this kit. High-quality RNA is free of contaminating proteins, DNA, phenol, ethanol, and salts. To evaluate RNA quality, determine its A260/A280 ratio. RNA of acceptable quality is in the range of 1.7 to 2.1.

Evaluate RNA Integrity

The integrity of the RNA sample, or the proportion that is full length, is an important component of RNA quality. Reverse transcribing partially-degraded mRNA may generate cDNA that lacks parts of the coding region.

Two methods to evaluate RNA integrity are:

- Microfluidic analysis, using the Agilent 2100 Bioanalyzer with an RNA LabChip Kit or equivalent instrument.
- Denaturing agarose gel electrophoresis.

With microfluidic analysis, you use the RNA Integrity Number (RIN) to evaluate RNA integrity. For more information on how to calculate RIN, go to www.genomics.agilent.com

With denaturing agarose gel electrophoresis and nucleic acid staining, you separate and make visible the 28S and 18S rRNA bands. The mRNA is likely to be full length if the:

- 28S and 18S rRNA bands are resolved into two discrete bands that have no significant smearing below each band.
- 28S rRNA band intensity is approximately twice that of the 18S rRNA band.
Determine RNA Quantity

Consider both the type and amount of sample RNA that are available when planning your experiment. Because mRNA content varies significantly with tissue type, determine the total RNA input empirically for each tissue type or experimental condition. The recommended total RNA inputs in Table 2.4 are based on total RNA from HeLa cells. Use these values as reference points for determining your optimal RNA input.

NOTE: Avoid pipetting solutions less than 2 µL in volume to maintain precision and consistency. High-concentration RNA samples should be pre-diluted with Nuclease-free Water before adding to first-strand cDNA synthesis reaction.

Table 2.4 Input RNA Limits

<table>
<thead>
<tr>
<th>RNA Input</th>
<th>Total RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended</td>
<td>100 ng</td>
</tr>
<tr>
<td>Minimum</td>
<td>50 ng</td>
</tr>
<tr>
<td>Maximum</td>
<td>500 ng</td>
</tr>
</tbody>
</table>

Prepare Total RNA/Poly-A RNA Control Mixture

Prepare total RNA according to your laboratory’s procedure. A maximum of 5 µL total RNA can be added to first-strand synthesis reaction. If you are adding Poly-A Spike Controls to your RNA, the volume of RNA must be 3 µL or less (Table 2.5). See Prepare Poly-A RNA Controls for more information. For example, when performing the Control RNA reaction, combine 2 µL of RNA (25 ng/µL), 2 µL of diluted Poly-A Spike Controls, and 1 µL of Nuclease-free Water.

NOTE: If you are adding Poly-A Spike Controls to your RNA, the volume of RNA must be 3 µL or less. If necessary, use a SpeedVac or ethanol precipitation to concentrate the RNA samples.

Table 2.5 Total RNA/Poly-A RNA Control Mixture

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total RNA Sample (50-500 ng)</td>
<td>variable</td>
</tr>
<tr>
<td>Diluted Poly-A RNA Controls (4th Dilution)</td>
<td>2 µL</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>variable</td>
</tr>
<tr>
<td>Total Volume</td>
<td>5 µL</td>
</tr>
</tbody>
</table>
Synthesize First-Strand cDNA

In this reverse transcription procedure, total RNA is primed with primers containing a T7 promoter sequence. The reaction synthesizes single-stranded cDNA with T7 promoter sequence at the 5' end.

NOTE: Avoid pipetting solutions less than 2 µL in volume to maintain precision and consistency. High-concentration RNA samples should be pre-diluted with Nuclease-free Water before adding to first-strand cDNA synthesis reaction.

1. Prepare First-Strand Master Mix.
 a. On ice, prepare the First-Strand Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the total RNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Strand Buffer</td>
<td>4 µL</td>
</tr>
<tr>
<td>First-Strand Enzyme</td>
<td>1 µL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>5 µL</td>
</tr>
</tbody>
</table>

 b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube. Proceed immediately to the next step.

 c. On ice, transfer 5 µL of the First-Strand Master Mix to each tube or well.

2. Add total RNA to each First-Strand Master Mix aliquot.
 a. On ice, add 5 µL of the total RNA (Table 2.5) to each (5 µL) tube or well containing the First-Strand Master Mix for a final reaction volume of 10 µL. See Prepare Total RNA/Poly-A RNA Control Mixture for more information.

 b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.

3. Incubate for 1 hr at 25°C, then for 1 hr at 42°C, then for at least 2 min at 4°C.
 a. Incubate the first-strand synthesis reaction in a thermal cycler using the First-Strand cDNA Synthesis program that is shown in Table 2.1.

 b. Immediately after the incubation, centrifuge briefly to collect the first-strand cDNA at the bottom of the tube or well.

 c. Place the sample on ice for 2 min to cool the plastic, then proceed immediately to Synthesize Second-Strand cDNA.

IMPORTANT: Transferring Second-Strand Master Mix to hot plastics may significantly reduce cRNA yields. Holding the First-Strand cDNA Synthesis reaction at 4°C for longer than 10 min may significantly reduce cRNA yields.

TIP: When there is approximately 15 min left on the thermal cycler you may start reagent preparation for Second-Strand cDNA Synthesis.
Synthesize Second-Strand cDNA

In this procedure, single-stranded cDNA is converted to double-stranded cDNA, which acts as a template for *in vitro* transcription. The reaction uses DNA polymerase and RNase H to simultaneously degrade the RNA and synthesize second-strand cDNA.

IMPORTANT: Pre-cool thermal cycler block to 16°C.

1. Prepare Second-Strand Master Mix.
 a. On ice, prepare the Second-Strand Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the first-strand cDNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

 Table 2.7 Second-Strand Master Mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-Strand Buffer</td>
<td>18 µL</td>
</tr>
<tr>
<td>Second-Strand Enzyme</td>
<td>2 µL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>20 µL</td>
</tr>
</tbody>
</table>

 b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube and proceed immediately to the next step.

 c. On ice, transfer 20 µL of the Second-Strand Master Mix to each (10 µL) first-strand cDNA sample for a final reaction volume of 30 µL.

 d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.

2. Incubate for 1 hr at 16°C, then for 10 min at 65°C, then for at least 2 min at 4°C.
 a. Incubate the second-strand synthesis reaction in a thermal cycler using the Second-Strand cDNA Synthesis program that is shown in Table 2.1.

 IMPORTANT: Disable the heated lid of the thermal cycler or keep the lid off during the Second-Strand cDNA Synthesis.

 b. Immediately after the incubation, centrifuge briefly to collect the second-strand cDNA at the bottom of the tube or well.

 c. Place the sample on ice, then proceed immediately to Synthesize cRNA by *In Vitro* Transcription.

 TIP: When there is approximately 15 min left on the thermal cycler you may start reagent preparation for *In Vitro* Transcription.
Synthesize cRNA by *In Vitro* Transcription

In this procedure, antisense RNA (complementary RNA or cRNA) is synthesized and amplified by *in vitro* transcription (IVT) of the second-stranded cDNA template using T7 RNA polymerase. This method of RNA sample preparation is based on the original T7 *in vitro* transcription technology known as the Eberwine or RT-IVT method (Van Gelder et al., 1990).

IMPORTANT:
- Transfer the second-strand cDNA samples to room temperature for >5 min while preparing IVT Master Mix.
- After the IVT Buffer is thawed completely, leave the IVT Buffer at room temperature for >10 min before preparing the IVT Master Mix.

1. Prepare IVT Master Mix.

NOTE: This step is performed at room temperature.

a. At room temperature, prepare the IVT Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the second-strand cDNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVT Buffer</td>
<td>24 µL</td>
</tr>
<tr>
<td>IVT Enzyme</td>
<td>6 µL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>30 µL</td>
</tr>
</tbody>
</table>

b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube, then proceed immediately to the next step.

c. At room temperature, transfer 30 µL of the IVT Master Mix to each (30 µL) second-strand cDNA sample for a final reaction volume of 60 µL.

d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.

2. Incubate for 16 hr at 40°C, then at 4°C.

a. Incubate the IVT reaction in a thermal cycler using the In Vitro Transcription cRNA Synthesis program that is shown in Table 2.1.

b. After the incubation, centrifuge briefly to collect the cRNA at the bottom of the tube or well.

c. Place the reaction on ice, then proceed to Purify cRNA, or immediately freeze the samples at ~20°C for storage.

TIP: STOPPING POINT. The cRNA samples can be stored overnight at ~20°C.
Purify cRNA

In this procedure, enzymes, salts, inorganic phosphates, and unincorporated nucleotides are removed to prepare the cRNA for 2nd-cycle single-stranded cDNA synthesis.

Beginning the cRNA Purification

IMPORTANT:

- Preheat the Nuclease-free Water in a heat block or thermal cycler to 65°C for at least 10 min.
- Mix the Purification Beads thoroughly by vortexing before use to ensure that they are fully dispersed. Transfer the appropriate amount of Purification Beads to a nuclease-free tube or container, and allow the Purification Beads to equilibrate at room temperature. For each reaction, 100 µL plus ~10% overage will be needed.
- Prepare fresh dilutions of 80% ethanol wash solution each time from 100% ethanol (Molecular Biology Grade or equivalent) and Nuclease-free Water in a nuclease-free tube or container. For each reaction, 600 µL plus ~10% overage will be needed.
- Transfer the cRNA sample to room temperature while preparing the Purification Beads.

NOTE:

- Occasionally, the bead/sample mixture may be brownish in color and not completely clear when placed on magnet. In those situations, switch to a different position of magnet on the magnetic stand, a new magnetic stand, or spin out pellets.
- This entire procedure is performed at room temperature.

1. Bind cRNA to Purification Beads.
 a. Mix the Purification Beads container by vortexing to resuspend the magnetic particles that may have settled.
 b. Add 100 µL of the Purification Beads to each (60 µL) cRNA sample, mix by pipetting up and down, and transfer to a well of a U-bottom plate.

 TIP:
 - Any unused wells should be covered with a plate sealer so that the plate can safely be reused.
 - Use multichannel pipette when processing multiple samples.
 c. Mix well by pipetting up and down 10 times.
 d. Incubate for 10 min. The cRNA in the sample binds to the Purification Beads during this incubation.
 e. Move the plate to a magnetic stand to capture the Purification Beads. When capture is complete (after ~5 min), the mixture is transparent, and the Purification Beads form pellets against the magnets in the magnetic stand. The exact capture time depends on the magnetic stand that you use, and the amount of cRNA generated by \textit{in vitro} transcription.
 f. Carefully aspirate and discard the supernatant without disturbing the Purification Beads. Keep the plate on the magnetic stand.

2. Wash the Purification Beads.
a. While on the magnetic stand, add 200 µL of 80% ethanol wash solution to each well and incubate for 30 sec.

b. Slowly aspirate and discard the 80% ethanol wash solution without disturbing the Purification Beads.

c. Repeat Step A and Step B twice for a total of 3 washes with 200 µL of 80% ethanol wash solution. Completely remove the final wash solution.

3. Elute cRNA.
 a. Remove the plate from the magnetic stand. Add to each sample 27 µL of the preheated (65°C) Nuclease-free Water and incubate for 1 min.
 b. Mix well by pipetting up and down 10 times.
 c. Move the plate to the magnetic stand for ~5 min to capture the Purification Beads.
 d. Transfer the supernatant, which contains the eluted cRNA, to a nuclease-free tube.
 e. Place the purified cRNA samples on ice, then proceed to Assess cRNA Yield and Size Distribution, or immediately freeze the samples at –20°C for storage.

NOTE:
- Minimal bead carryover will not inhibit subsequent enzymatic reactions.
- It may be difficult to resuspend magnetic particles and aspirate purified cRNA when the cRNA is very concentrated. To elute the sample with high concentration cRNA, add an additional 10-30 µL of the preheated Nuclease-free Water to the well, incubate for 1 min, and proceed to Step 3B.

TIP: STOPPING POINT. The purified cRNA samples can be stored overnight at –20°C. For long-term storage, store samples at –80°C and keep the number of freeze-thaw cycles to 3 or less to ensure cRNA integrity.
Assess cRNA Yield and Size Distribution

Expected cRNA Yield

The cRNA yield depends on the amount and quality of non-rRNA in the input total RNA. Because the proportion of non-rRNA in total RNA is affected by factors such as the health of the organism and the organ from which it is isolated, cRNA yield from equal amounts of total RNA may vary considerably.

During development of this kit, using a wide variety of tissue types, 50 ng of input total RNA yielded 15 to 40 µg of cRNA. For most tissue types, the recommended 100 ng of input total RNA should provide >20 µg of cRNA.

Determine cRNA Yield by UV Absorbance

Determine the concentration of a cRNA solution by measuring its absorbance at 260 nm. Use Nuclease-free Water as blank. We recommend using NanoDrop Spectrophotometers for convenience. No dilutions or cuvettes are needed; just use 1.5 µL of the cRNA sample directly. Samples with cRNA concentrations greater than 3,000 ng/µL should be diluted with Nuclease-free Water before measurement and reaction setup. Use the diluted cRNA as the input to prepare 15 µg cRNA in 2nd cycle cDNA synthesis reaction.

Alternatively, determine the cRNA concentration by diluting an aliquot of the preparation in Nuclease-free Water and reading the absorbance in a traditional spectrophotometer at 260 nm. Calculate the concentration in µg/mL using the equation shown below (1 A260 = 40 µg RNA/mL).

\[A_{260} \times \text{dilution factor} \times 40 = \mu g \text{ RNA/mL} \]

(Optional) Expected cRNA Size Distribution

The expected cRNA profile is a distribution of sizes from 50 to 4500 nt with most of the cRNA sizes in the 200 to 2000 nt range. The distribution is quite jagged and does not resemble the profile observed when using a traditional dT-based amplification kit such as 3’ IVT Express kit. This step is optional.

Determine cRNA size distribution using a Bioanalyzer.

We recommend analyzing cRNA size distribution using an Agilent 2100 Bioanalyzer, a RNA 6000 Nano Kit (PN5067-1511), and mRNA Nano Series II assay. If there is sufficient yield, then load approximately 300 ng of cRNA per well on the Bioanalyzer. If there is insufficient yield, then use as little as 200 ng of cRNA per well. To analyze cRNA size using a Bioanalyzer, follow the manufacturer’s instructions.

TIP: STOPPING POINT. The purified cRNA samples can be stored overnight at –20°C.
Synthesize 2nd-Cycle Single-Stranded cDNA

In this procedure, sense-strand cDNA is synthesized by the reverse transcription of cRNA using 2nd-Cycle Primers. The sense-strand cDNA contains dUTP at a fixed ratio relative to dTTP. 15 µg of cRNA is required for 2nd-cycle single-stranded cDNA synthesis.

1. Prepare 15 µg of cRNA.

 On ice, prepare 625 ng/µL cRNA. This is equal to 15 µg cRNA in a volume of 24 µL. If necessary, use Nuclease-free Water to bring the cRNA sample to 24 µL.

 NOTE: High-concentration cRNA samples (>3000 ng/µL) should be diluted with Nuclease-free Water before measurement and reaction setup. Use the diluted cRNA as the input to prepare 15 µg of cRNA.

2. Prepare cRNA and 2nd-Cycle Primers Mix.

 a. On ice, combine:

 - 24 µL of cRNA (15 µg)
 - 4 µL of 2nd-Cycle Primers

 b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube, then proceed immediately to the next step.

3. Incubate for 5 min at 70°C, then 5 min at 25°C, then 2 min at 4°C.

 a. Incubate the cRNA/Primers mix in a thermal cycler using the 2nd-Cycle Primers-cRNA Annealing program that is shown in Table 2.1.

 b. Immediately after the incubation, centrifuge briefly to collect the cRNA/Primers mix at the bottom of the tube or well.

 c. Place the mix on ice, then proceed immediately to the next step.

 a. On ice, prepare the 2nd-Cycle ss-cDNA Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the cRNA/Primers samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

 Table 2.9 2nd-Cycle ss-cDNA Master Mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd-Cycle ss-cDNA Buffer</td>
<td>8 µL</td>
</tr>
<tr>
<td>2nd-Cycle ss-cDNA Enzyme</td>
<td>4 µL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>12 µL</td>
</tr>
</tbody>
</table>

 b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube and proceed immediately to the next step.

 c. On ice, transfer 12 µL of the 2nd-Cycle ss-cDNA Master Mix to each (28 µL) cRNA/2nd-Cycle Primers sample for a final reaction volume of 40 µL.

 d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.

5. Incubate for 10 min at 25°C, then 90 min at 42°C, then 10 min at 70°C, then for at least 2 min at 4°C.

 a. Incubate the 2nd-cycle synthesis reaction in a thermal cycler using the 2nd-Cycle ss-cDNA Synthesis program that is shown in Table 2.1.

 b. Immediately after the incubation, centrifuge briefly to collect the 2nd-cycle ss-cDNA at the bottom of the tube or well.

 c. Place the sample on ice and proceed immediately to Hydrolyze RNA Using RNase H.
Hydrolyze RNA Using RNase H

In this procedure, RNase H hydrolyzes the cRNA template leaving single-stranded cDNA.

1. Add RNase H to each 2nd-cycle ss-cDNA sample.
 a. On ice, add 4 µL of the RNase H to each (40 µL) 2nd-cycle ss-cDNA sample for a final reaction volume of 44 µL.
 b. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.

2. Incubate for 45 min at 37°C, then for 5 min at 95°C, then for at least 2 min at 4°C.
 a. Incubate the RNA hydrolysis reaction in a thermal cycler using the RNA Hydrolysis program that is shown in Table 2.1.
 b. Immediately after the incubation, centrifuge briefly to collect the hydrolyzed 2nd-cycle ss-cDNA at the bottom of the tube or well.
 c. Place the samples on ice and proceed immediately to the next step.

3. Add Nuclease-free Water to each hydrolyzed 2nd-cycle ss-cDNA sample.
 a. On ice, add 11 µL of the Nuclease-free Water to each (44 µL) hydrolyzed 2nd-cycle ss-cDNA sample for a final reaction volume of 55 µL.
 b. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the reaction at the bottom of the tube or well.
 c. Place the sample on ice, then proceed to Purify 2nd-Cycle Single-Stranded cDNA, or immediately freeze the samples at –20°C for storage.

TIP: STOPPING POINT. The hydrolyzed ss-cDNA samples can be stored overnight at –20°C.
Purify 2nd-Cycle Single-Stranded cDNA

After hydrolysis, the 2nd-cycle single-stranded cDNA is purified to remove enzymes, salts, and unincorporated dNTPs. This step prepares the cDNA for fragmentation and labeling.

Beginning the Single-Stranded cDNA Purification

IMPORTANT:

- Preheat the Nuclease-free Water in a heat block or thermal cycler to 65°C for at least 10 min.
- Mix the Purification Beads thoroughly by vortexing before use to ensure that they are fully dispersed. Transfer the appropriate amount of Purification Beads to a nuclease-free tube or container, and allow the Purification Beads to equilibrate at room temperature. For each reaction, 100 µL plus ~10% overage will be needed.
- Prepare fresh dilutions of 80% ethanol wash solution each time from 100% ethanol (Molecular Biology Grade or equivalent) and Nuclease-free Water in a nuclease-free tube or container. For each reaction, 600 µL plus ~10% overage will be needed.
- Transfer the cDNA sample to room temperature while preparing the Purification Beads

NOTE:

- Occasionally, the bead/sample mixture may be brownish in color and not completely clear when placed on magnet. In those situations, switch to a different position of magnet on the magnetic stand, a new magnetic stand, or spin out pellets.
- This entire procedure is performed at room temperature.

1. Bind ss-cDNA to Purification Beads.
 a. Mix the Purification Beads container by vortexing to resuspend the magnetic particles that may have settled.
 b. Add 100 µL of Purification Beads to each (55 µL) 2nd-cycle ss-cDNA sample, mix by pipetting up and down, and transfer to a well of a U-bottom plate.

 TIP:
 - Any unused wells should be covered with a plate sealer so that the plate can safely be reused.
 - Use multichannel pipette when processing multiple samples.

 c. Add 150 µL of 100% ethanol to each (155 µL) ss-cDNA/Beads sample. Mix well by pipetting up and down 10 times.
 d. Incubate for 20 min. The ss-cDNA in the sample binds to the Purification Beads during this incubation.
 e. Move the plate to a magnetic stand to capture the Purification Beads. When capture is complete (after ~5 min), the mixture is transparent, and the Purification Beads form pellets against the magnets in the magnetic stand. The exact capture time depends on the magnetic stand that you use, and the amount of ss-cDNA generated by 2nd-Cycle ss-cDNA Synthesis.
 f. Carefully aspirate and discard the supernatant without disturbing the Purification Beads. Keep the plate on the magnetic stand.
2. Wash the Purification Beads.
 a. While on the magnetic stand, add 200 µL of 80% ethanol wash solution to each well and incubate for 30 sec.
 b. Slowly aspirate and discard the 80% ethanol wash solution without disturbing the Purification Beads.
 c. Repeat Step A and Step B twice for a total of 3 washes with 200 µL of 80% ethanol wash solution. Completely remove the final wash solution.
 d. Air-dry on the magnetic stand for 5 min until no liquid is visible, yet the pellet appears shiny. Additional time may be required. Do not over-dry the beads as this will reduce the elution efficiency. The bead surface will appear dull, and may have surface cracks when it is over-dry.

3. Elute ss-cDNA.
 a. Remove the plate from the magnetic stand. Add to each sample 30 µL of the preheated (65°C) Nuclease-free Water and incubate for 1 min.
 b. Mix well by pipetting up and down 10 times.
 c. Move the plate to the magnetic stand for ~5 min to capture the Purification Beads.
 d. Transfer the supernatant, which contains the eluted ss-cDNA, to a nuclease-free tube.
 e. Place the purified ss-cDNA samples on ice, then proceed to Assess Single-Stranded cDNA Yield and Size Distribution, or immediately freeze the samples at –20°C for storage.

 NOTE: Minimal bead carryover will not inhibit subsequent enzymatic reactions.

 TIP: STOPPING POINT. The purified ss-cDNA samples can be stored overnight at –20°C. For long-term storage at –20°C, we recommend not to proceed to the fragmentation and labeling reaction and store the samples as ss-cDNA.

Assess Single-Stranded cDNA Yield and Size Distribution

Expected Single-Stranded cDNA Yield

During development of this kit, using a wide variety of tissue types, 15 µg of input cRNA yielded 5.5 to 15 µg of ss-cDNA. For most tissue types, the recommended 15 µg of input cRNA should yield >5.5 µg of ss-cDNA.

Determine Single-Stranded DNA Yield by UV Absorbance

Determine the concentration of a ss-cDNA solution by measuring its absorbance at 260 nm. Use Nuclease-free Water as blank. We recommend using NanoDrop Spectrophotometers for convenience. No dilutions or cuvettes are needed; just use 1.5 µL of the cDNA sample directly.

Alternatively, determine the ss-cDNA concentration by diluting an aliquot of the preparation in Nuclease-free Water and reading the absorbance in a traditional spectrophotometer at 260 nm. Calculate the concentration in µg/mL using the equation below (1 A260 = 33 µg DNA/mL).

A260 × dilution factor × 33 = µg DNA/mL

 NOTE: The equation above applies only to single-stranded cDNA.
(Optional) Expected Single-Stranded cDNA Size Distribution

The expected cDNA profile does not resemble the cRNA profile. The median cDNA size is approximately 400 nt. This step is optional.

Determine Single-Stranded cDNA Size Distribution Using a Bioanalyzer

We recommend analyzing cDNA size distribution using an Agilent 2100 Bioanalyzer, a RNA 6000 Nano Kit (PN5067-1511), and mRNA Nano Series II assay. If there is sufficient yield, load approximately 250 ng of cDNA per well. If there is insufficient yield, then use as little as 200 ng of cDNA per well. To analyze cDNA size using a bioanalyzer, follow the manufacturer’s instructions.

TIP: STOPPING POINT. The purified ss-cDNA samples can be stored overnight at –20°C. For long-term storage at –20°C, we recommend not to proceed to the fragmentation and labeling reaction and store the samples as ss-cDNA.

Fragment and Label Single-Stranded cDNA

In this procedure, the purified, sense-strand cDNA is fragmented by uracil-DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE 1) at the unnatural dUTP residues and breaks the DNA strand. The fragmented cDNA is labeled by terminal deoxynucleotidyl transferase (TdT) using the proprietary DNA Labeling Reagent that is covalently linked to biotin. 5.5 µg of single-stranded cDNA is required for fragmentation and labeling.

1. Prepare 5.5 µg of ss-cDNA.
 On ice, prepare 176 ng/µL ss-cDNA. This is equal to 5.5 µg ss-cDNA in a volume of 31.2 µL. If necessary, use Nuclease-free Water to bring the ss-cDNA sample to 31.2 µL.

2. Prepare Fragmentation Master Mix.
 a. On ice, prepare the Fragmentation Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the ss-cDNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclease-free Water</td>
<td>10 µL</td>
</tr>
<tr>
<td>10X cDNA Fragmentation Buffer</td>
<td>4.8 µL</td>
</tr>
<tr>
<td>UDG, 10 U/µL</td>
<td>1 µL</td>
</tr>
<tr>
<td>APE 1, 1,000 U/µL</td>
<td>1 µL</td>
</tr>
<tr>
<td>Total Volume</td>
<td>16.8 µL</td>
</tr>
</tbody>
</table>

b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube, then proceed immediately to the next step.

c. On ice, transfer 16.8 µL of the Fragmentation Master Mix to each (31.2 µL) purified ss-cDNA sample for a final reaction volume of 48 µL.

d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.
3. Incubate for 1 hr at 37°C, then for 2 min at 93°C, then for at least 2 min at 4°C.
 a. Incubate the fragmentation reaction in a thermal cycler using the Fragmentation program that is shown in Table 2.1.
 b. Immediately after the incubation, centrifuge briefly to collect the fragmented ss-cDNA at the bottom of the tube or well.
 c. Place the sample on ice, then proceed immediately to the next step.
4. (Optional) The fragmented ss-cDNA sample can be used for size analysis using a Bioanalyzer. Please see the Reagent Kit Guide that comes with the RNA 6000 Nano LabChip Kit for detailed instructions. The range in peak size of the fragmented samples should be approximately 40 to 70 nt.
5. On ice, transfer 45 µL of the fragmented ss-cDNA sample to each tube or well.
6. Prepare Labeling Master Mix.
 a. On ice, prepare the Labeling Master Mix in a nuclease-free tube. Combine the components in the sequence shown in the table below. Prepare the master mix for all the fragmented ss-cDNA samples in the experiment. Include ~5% excess volume to correct for pipetting losses.

<table>
<thead>
<tr>
<th>Table 2.11 Labeling Master Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>5X TdT Buffer</td>
</tr>
<tr>
<td>DNA Labeling Reagent, 5 mM</td>
</tr>
<tr>
<td>TdT, 30 U/µL</td>
</tr>
<tr>
<td>Total Volume</td>
</tr>
</tbody>
</table>

 b. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the mix at the bottom of the tube, then proceed immediately to the next step.
 c. On ice, transfer 15 µL of the Labeling Master Mix to each (45 µL) fragmented ss-cDNA sample for a final reaction volume of 60 µL.
 d. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.
7. Incubate for 1 hr at 37°C, then for 10 min at 70°C, then for at least 2 min at 4°C.
 a. Incubate the labeling reaction in a thermal cycler using the Labeling program that is shown in Table 2.1.
 b. Immediately after the incubation, centrifuge briefly to collect the fragmented and labeled ss-cDNA at the bottom of the tube or well.
 c. Place the sample on ice, then proceed to Chapter 3, WT Array Hybridization, or immediately freeze the samples at –20°C for storage.
8. (Optional) Remove 2 µL of each fragmented and labeled ss-cDNA sample for Gel-shift analysis as described in Appendix A, Gel-Shift Assay to assess the fragmentation and labeling efficiency.

TIP: STOPPING POINT. The fragmented and labeled ss-cDNA samples can be stored overnight at –20°C. For long-term storage at –20°C, we recommend to store the samples as unfragmented and unlabeled ss-cDNA.
Chapter 3 WT Array Hybridization

Cartridge Array Hybridization on the GeneChip™ Instrument

This section provides instruction for setting up hybridizations for cartridge arrays.

Prepare Ovens, Arrays, and Sample Registration Files

1. Turn Hybridization Oven on, set the temperature to 45°C and set the RPM to 60. Turn the rotation on and allow the oven to preheat.
2. Equilibrate the arrays to room temperature immediately before use. Label the array with the name of the sample that will be hybridized.
3. Register the sample and array information into AGCC.

Target Hybridization Setup for Cartridge Arrays

Reagents and Materials Required

- GeneChip™ Hybridization, Wash and Stain Kit. (Not supplied) For ordering information please refer to Table 1.4 or visit website.
 - Pre-Hybridization Mix
 - 2X Hybridization Mix
 - DMSO
 - Nuclease-free Water
 - Stain Cocktail 1
 - Stain Cocktail 2
 - Array Holding Buffer
 - Wash Buffer A
 - Wash Buffer B
- GeneChip™ Hybridization Control Kit
 - 20X Eukaryotic Hybridization Controls (bioB, bioC, bioD, cre)
 - Control Oligonucleotide B2 (3 nM)
- WT Cartridge Array(s). (Not supplied)
Procedure

1. Prepare Hybridization Master Mix.
 a. At room temperature, thaw the components listed in Table 3.1.

 NOTE: DMSO will solidify when stored at 2-8°C. Ensure that the reagent is completely thawed before use. We recommend to store DMSO at room temperature after the first use.

 b. Heat the 20X Hybridization Controls for 5 min at 65°C in a thermal cycler using the Hybridization Control program that is shown in Table 2.1.

 c. At room temperature, prepare the Hybridization Master Mix in a nuclease-free tube. Combine the appropriate amount of components in the sequence shown in the table below. Prepare the master mix for all the fragmented and biotin-labeled ss-cDNA samples in the experiment. Include ~10% overage to correct for pipetting losses.

 Table 3.1 Hybridization Master Mix for a Single Reaction

<table>
<thead>
<tr>
<th>Component</th>
<th>49 or 64-Format</th>
<th>100 or 81/4-Format</th>
<th>169 or 400-Format</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmented and Labeled ss-DNA</td>
<td>5.2 µg</td>
<td>3.5 µg</td>
<td>2.3 µg</td>
<td>23 ng/µL</td>
</tr>
<tr>
<td>Control Oligo B2 (3 nM)</td>
<td>3.7 µL</td>
<td>2.5 µL</td>
<td>1.7 µL</td>
<td>50 pM</td>
</tr>
<tr>
<td>20X Hybridization Controls (bioB, bioC, bioD, cre)</td>
<td>11 µL</td>
<td>7.5 µL</td>
<td>5 µL</td>
<td>1.5, 5, 25, and 100 pM respectively</td>
</tr>
<tr>
<td>2X Hybridization Mix</td>
<td>110 µL</td>
<td>75 µL</td>
<td>50 µL</td>
<td>1X</td>
</tr>
<tr>
<td>DMSO</td>
<td>15.4 µL</td>
<td>10.5 µL</td>
<td>7 µL</td>
<td>7%</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>19.9 µL</td>
<td>13.5 µL</td>
<td>9.3 µL</td>
<td></td>
</tr>
<tr>
<td>Total Volume</td>
<td>160 µL</td>
<td>109 µL</td>
<td>73 µL</td>
<td></td>
</tr>
</tbody>
</table>

 * Please refer to specific probe array package insert for information on array format.

 d. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the mix and proceed immediately to the next step.

2. Prepare Hybridization Cocktail.
 a. At room temperature, add the appropriate amount of Hybridization Master Mix to each fragmented and biotin-labeled ss-cDNA sample to prepare Hybridization Cocktail.

 Table 3.2 Hybridization Cocktail for a Single Array

<table>
<thead>
<tr>
<th>Component</th>
<th>49 or 64-Format</th>
<th>100 or 81/4-Format</th>
<th>169 or 400-Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridization Master Mix</td>
<td>160 µL</td>
<td>109 µL</td>
<td>73 µL</td>
</tr>
<tr>
<td>Fragmented and labeled ss-cDNA</td>
<td>~60 µL* (5.2 µg)</td>
<td>41 µL (3.5 µg)</td>
<td>27 µL (2.3 µg)</td>
</tr>
<tr>
<td>Total Volume</td>
<td>220 µL</td>
<td>150 µL</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

 * This volume is 58 µL if a portion of the sample was set aside for gel-shift analysis.

 b. Mix thoroughly by gently vortexing. Centrifuge briefly to collect contents of the tube and proceed immediately to the next step.

 c. Incubate the hybridization cocktail reaction for 5 min at 99°C (tubes) or 95°C (plates), then for 5 min at 45°C in a thermal cycler using the Hybridization Cocktail program that is shown in Table 2.1.

 d. After the incubation, centrifuge briefly to collect contents of the tube and proceed immediately to the next step.

3. Inject and hybridize array.
Figure 3.1 GeneChip™ Cartridge Array

NOTE: It is necessary to use two pipette tips when filling the probe array cartridge: one for filling and the second to allow venting of air from the hybridization chamber.

a. Insert a pipette tip into the upper right septum to allow for venting.

b. Inject the appropriate amount (see Table 3.3) of the specific sample into the array through one of the septa (see Figure 3.1 for location of the septa on the array).

Table 3.3 Probe Array Cartridge Volumes for Hybridization Cocktail

<table>
<thead>
<tr>
<th>Format</th>
<th>Volume to Load on Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 or 64-Format</td>
<td>200 µL</td>
</tr>
<tr>
<td>100 or 81/4-Format</td>
<td>130 µL</td>
</tr>
<tr>
<td>169 or 400-Format</td>
<td>80 µL</td>
</tr>
</tbody>
</table>

c. Remove the pipette tip from the upper right septum of the array. Cover both septa with 1/2” Tough-Spots to minimize evaporation and/or prevent leaks.

d. Place the arrays into hybridization oven trays. Load the trays into the hybridization oven.

NOTE: Ensure that the bubble inside the hybridization chamber floats freely upon rotation to allow the hybridization cocktail to make contact with all portions of the array.

e. Incubate with rotation at 60 rpm for 16 hr at 45°C.

NOTE: During the latter part of the 16-hr hybridization prepare reagents for the washing and staining steps required immediately after completion of hybridization.
Wash and Stain

1. Remove the arrays from the oven. Remove the Tough-Spots from the arrays.

2. Extract the hybridization cocktail mix from each array. (Optional) Transfer it to a new tube or well of a 96-well plate in order to save the hybridization cocktail mix. Store on ice during the procedure, or at –20°C for long-term storage.

3. Fill each array completely with Wash Buffer A.

4. Allow the arrays to equilibrate to room temperature before washing and staining.

 NOTE: Arrays can be stored in the Wash Buffer A at 4°C for up to 3 hr before proceeding with washing and staining. Equilibrate arrays to room temperature before washing and staining.

5. Place vials into sample holders on the fluidics station:
 a. Place one (amber) vial containing 600 µL Stain Cocktail 1 in sample holder 1.
 b. Place one (clear) vial containing 600 µL Stain Cocktail 2 in sample holder 2.
 c. Place one (clear) vial containing 800 µL Array Holding Buffer in sample holder 3.

6. Wash the arrays according to array type and components used for Hybridization, Wash and Stain. For HWS kits the protocols are:

 Table 3.4 Fluidics Protocol

<table>
<thead>
<tr>
<th></th>
<th>49 or 64-Format</th>
<th>100 or 81/4-Format</th>
<th>169 or 400-Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidics Protocol</td>
<td>FS450_0001</td>
<td>FS450_0002</td>
<td>FS450_0007</td>
</tr>
</tbody>
</table>

7. Check for air bubbles. If there are air bubbles, manually fill the array with Array Holding Buffer. If there are no air bubbles, cover both septa with 3/8” Tough-Spots. Inspect the array glass surface for dust and/or other particulates and, if necessary, carefully wipe the surface with a clean lab wipe before scanning.

Scan

The instructions for using the scanner and scanning arrays can be found in the *GeneChip™ Command Console™ User Guide* (Pub. No. 702569).
Array Strip Hybridization on the GeneAtlas™ Instrument

This section outlines the basic steps involved in hybridizing array strip(s) on the GeneAtlas™ System. The two major steps involved in array strip hybridization are:

- Target Hybridization Setup for Array Strips
- GeneAtlas™ Software Setup

NOTE: If you are using a hybridization-ready sample, or re-hybridizing previously made hybridization cocktail, continue the protocol from Step 5.

IMPORTANT: Before preparing hybridization ready samples, register samples as described in GeneAtlas™ Software Setup.

Refer to GeneAtlas™ System User Guide (Pub. No. 08-0306) for further detail.

Target Hybridization Setup for Array Strips

Reagents and Materials Required

- GeneAtlas Hybridization, Wash and Stain Kit for WT Array Strips. (Not supplied) For ordering information please refer to Table 1.4 or visit our website.
 - 5X WT Hyb Add 1
 - 15X WT Hyb Add 4
 - 2.5X WT Hyb Add 6
 - Stain Cocktail 1
 - Stain Cocktail 2
 - Array Holding Buffer
 - Wash Buffer A
 - Wash Buffer B
- GeneChip™ Hybridization Control Kit
 - 20X Eukaryotic Hybridization Controls (bioB, bioC, bioD, cre)
 - Control Oligonucleotide B2 (3 nM)
- Array Strip and consumables (Not supplied)
 - WT Array Strip(s)
 - 1 hybridization tray per array strip
Procedure

NOTE: The "WT Hyb Add" reagent names were created to match the order in which reagents are added. For example, WT Hyb Add 1 is the first component added during preparation of the Hybridization Mix. WT Hyb Add 2, 3, and 5 are not used and are not part of the Hybridization Module.

1. In preparation of the hybridization step, prepare the following:
 a. Pull the array strip from storage at 4°C so that it can begin to equilibrate to room temperature.
 b. Gather one (1) hybridization tray per array strip.
 c. Set the temperature of the GeneAtlas Hybridization Station to 48°C. Press the Start button.

2. In preparation of the hybridization master mix, prepare the following:
 a. Warm the following vials to room temperature on the bench:
 • 5X WT Hyb Add 1
 • 15X WT Hyb Add 4
 • 2.5X WT Hyb Add 6
 b. Vortex and centrifuge briefly (~5 sec) to collect contents of the tube.
 c. Remove the following tubes from the GeneChip Hybridization Control Kit and thaw at room temperature:
 • Control Oligonucleotide B2 (3 nM)
 • 20X Eukaryotic Hybridization Controls
 d. Vortex and centrifuge briefly (~5 sec) to collect contents of the tube.
 e. Keep the tubes of Control Oligonucleotide B2 (3 nM) and 20X Eukaryotic Hybridization Controls on ice.

3. Prepare the Hybridization Master Mix & Cocktail.
 a. Heat the 20X Hybridization Controls for 5 min at 65°C in a thermal cycler using the Hybridization Control program that is shown in Table 2.1.
 b. At room temperature, prepare the Hybridization Master Mix in a nuclease-free tube. Combine the appropriate amount of components in the sequence shown in the table below. Prepare the master mix for all the fragmented and biotin-labeled ss-cDNA samples in the experiment.

 NOTE: The 5X WT Hyb Add 1 solution is very viscous; pipet slowly to ensure addition of the correct volume. Mix well. Vortex and centrifuge briefly (~5 sec) to collect liquid at the bottom of the tube.

Table 3.5 Hybridization Master Mix

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Array</th>
<th>Volume for Four Arrays (Includes 10% Overage)</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X WT Hyb Add 1</td>
<td>30 µL</td>
<td>132 µL</td>
<td>1X</td>
</tr>
<tr>
<td>Control Oligonucleotide B2 (3 nM)</td>
<td>1.5 µL</td>
<td>6.6 µL</td>
<td>30 pM</td>
</tr>
<tr>
<td>20X Hybridization Controls (bioB, bioC, bioD, cre)</td>
<td>7.5 µL</td>
<td>33 µL</td>
<td>1.5, 5, 25 and 100 pM, respectively</td>
</tr>
<tr>
<td>15X WT Add 4</td>
<td>10 µL</td>
<td>44 µL</td>
<td>1X</td>
</tr>
<tr>
<td>Total Volume</td>
<td>49 µL</td>
<td>215.6 µL</td>
<td></td>
</tr>
</tbody>
</table>
c. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the mix and proceed immediately to the next step.

a. At room temperature, prepare the Hybridization Cocktail in the order as shown in Table 3.6 for all samples.

Table 3.6 Hybridization Cocktail for a Single Array

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for One Array</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridization Master Mix</td>
<td>49 µL</td>
<td></td>
</tr>
<tr>
<td>Fragmented and labeled ss-cDNA</td>
<td>41 µL</td>
<td>23 ng/µL</td>
</tr>
<tr>
<td>2.5X WT Hyb Add 6</td>
<td>60 µL</td>
<td>1X</td>
</tr>
<tr>
<td>Total Volume</td>
<td>150 µL</td>
<td></td>
</tr>
</tbody>
</table>

b. If you are using a plate; seal, vortex, and centrifuge briefly (~5 sec) to collect liquid at the bottom of the well. If you are using tubes; vortex and centrifuge briefly (~5 sec) to collect contents of the tube.

c. Incubate the hybridization cocktail reaction for 5 min at 99°C (tubes) or 95°C (plates), then for 5 min at 45°C in a thermal cycler using the Hybridization Cocktail program that is shown in Table 2.1.

d. After the incubation, centrifuge briefly to collect contents of the tube or well and proceed immediately to the next step.

5. Array Strip Sample Hybridization.

a. Apply 120 µL of hybridization cocktail to the middle of the appropriate wells of a new clean hybridization tray (see Figure 3.2).

IMPORTANT: Do not add more than 120 µL of hybridization cocktail to the wells as that could result in cross-contamination of the samples.

Figure 3.2 Location of the sample wells on the hybridization tray

b. Carefully remove the array strip and protective cover from its foil pouch and place on bench (Figure 3.3).

IMPORTANT: Leave array strip in protective cover.
c. Place the array strip into the hybridization tray containing the hybridization cocktail samples (Figure 3.4). Refer to Figure 3.5 for proper orientation of the array strip in the hybridization tray.

Figure 3.4 Placing the array strip into the hybridization tray

Figure 3.5 Proper Orientation of the Array Strip in the Hybridization Tray

d. Optional: the remainder of the hybridization cocktail Master Mix can be stored at –20°C to supplement Hybridization Cocktail volume should a rehybridization be necessary.

CAUTION: Be very careful not to scratch/damage the array surface.
TIP: To avoid any possible mix-ups, the hybridization tray and array strip should be labeled on the white label if more than 1 array strip is processed overnight.

e. Bring the hybridization tray to just above eye level and look at the underside of the hybridization tray to check for bubbles.

CAUTION: Be careful not to tip the hybridization tray to avoid spilling.

IMPORTANT: Insertion of the array strip and air bubble removal should be performed quickly to avoid drying of the array surface.

f. If an air bubble is observed, separate the array strip from the hybridization tray and remove air bubbles. Place array strip back into hybridization tray and recheck for air bubbles.

g. Open a Hybridization Station clamp by applying pressure to the top of the clamp while gently squeezing inward. While squeezing lift the clamp to open (Figure 3.6).

WARNING: Do not force the GeneAtlas Hybridization clamps up. To open, press down on the top of the clamp and simultaneously slightly lift the protruding lever to unlock. The clamp should open effortlessly. Refer to Figure 3.6.

IMPORTANT: The hybridization temperature for WT GeneAtlas Array Strips is 48°C.

Figure 3.6 Opening the clamps on the GeneAtlas™ Hybridization Station

h. Place the hybridization tray with the array strip into a clamp inside the Hybridization Station and close the clamp as shown in Figure 3.7.

GeneAtlas™ Software Setup

Prior to setting up the target hybridization and processing the Strips on the GeneAtlas System, each array strip must be registered and hybridizations setup in the GeneAtlas Software.

- Sample Registration: Sample registration enters array strip data into the GeneAtlas Software and saves and stores the Sample File on your computer. The array strip barcode is scanned, or entered, and a Sample Name is input for each of the four samples on the array strip. Additional information includes Probe Array Type and Probe Array position.

- Hybridization Software Setup: During the Hybridization Software Setup the array strip to be processed is scanned, and the GeneAtlas Hybridization Station is identified with hybridization time and temperature settings determined from installed library files.

For additional information, refer to *GeneAtlas™ System User Guide* (Pub. No. 08-0306).

Sample Registration

The following information provides general instructions for registering Array Strips in the GeneAtlas Software. For detailed information on Sample Registration, importing data from Excel and information on the wash, stain and scan steps, please refer to the *GeneAtlas™ System User’s Guide* (P/N 08-0246).

1. Click **Start** → **Programs** → **Affymetrix** → **GeneAtlas** to launch the GeneAtlas Software.

2. Click the **Registration** tab. Figure 3.8 appears.

Figure 3.8 Registration Tab of GeneAtlas™ Software

3. Click the + **Strip** button.
4. Enter or scan the array strip **Bar Code** and enter a **Strip Name**, then click **Add**.

The array strip is added and appears in the Registration window (Figure 3.10)

5. Under the **Sample File Name** column, click in the box and enter a sample name and press **Enter**.

Enter a unique name for each of the four samples on the array strip.

6. When complete click the **Save and Proceed** button: „Save and Proceed” .

The Save dialog box appears (Figure 3.11).

![Add Strip Window](image1)

Figure 3.9 Add Strip Window

The Add Strip Window appears (Figure 3.9).

Figure 3.10 Array Strip added to Registration window

![Registration window](image2)

Figure 3.11 Save Dialog

![Save Dialog](image3)
7. In the Save dialog box, click to select a folder in which to save your data. Click OK. Your files are saved to the selected folder and a confirmation message appears (Figure 3.12).

Figure 3.12

8. Click OK to register additional array strips, or click Go to Hybridization.

NOTE: You may enter a total of four array strips during the registration process. To add additional strips please repeat Step 3 through Step 8.

Hybridization Software Setup

All Array Strips to be processed must first be registered prior to setting up the hybridizations in the GeneAtlas Software. Refer to Sample Registration for instruction on registering array strips.

IMPORTANT: When hybridizing more than one array strip per day, it is recommended to keep the hybridization time consistent. Setup hybridizations for one array strip at a time, staggered by 1.5 hours so that washing and staining can occur immediately after completion of hybridization for each array strip the next day. Recommended hybridization time is 20 ±1 hour.

Figure 3.13 Hybridization window
2. Click the + Strip button: + Strip.

The Add Strip Window appears (Figure 3.14).

Figure 3.14

3. Scan or enter the Bar Code (required) of the array strip you registered.

 The Strip Name field is automatically populated.

4. With the hybridization tray and array strip already in the GeneAtlas Hybridization Station, click Start in Figure 3.15.

Figure 3.15

Figure 3.16 Hybridization Countdown
NOTE: The software displays the hybridization time countdown. This time is displayed with a white background (Figure 3.16). When the countdown has completed the display turns yellow and the time begins to count up.

Figure 3.17 Hybridization Count up

5. When hybridization has completed, click the **Stop** button in the upper right corner. A confirmation message box appears (Figure 3.18).

Figure 3.18 Confirmation Message

6. Click **Yes** to complete hybridization.

7. It is important to remove the hybridization tray from the Hybridization Station after the timer has completed the countdown as the Hybridization Station does not shut down when the hybridization is complete.

8. Save the remaining hybridization cocktail in –20°C for future use.

Array Plate Hybridization on the GeneTitan™ Instrument

This chapter outlines the basic steps involved in hybridizing array plate(s) on the GeneTitan™ Instrument. The two major steps involved in array plate hybridization are:

- Target Hybridization Setup for Array Plates
- Processing WT Array Plates on the GeneTitan™ Instrument

Target Hybridization Setup for Array Plates

Reagents and Materials Required

- GeneTitan™ Hybridization, Wash and Stain Kit for WT Array Plates. (Not supplied) For ordering information please refer to Table 1.4 or visit our website.
 - 5X WT Hyb Add 1
 - 15X WT Hyb Add 4
 - 2.5X WT Hyb Add 6
 - Stain Cocktail 1 & 3
 - Stain Cocktail 2
 - Array Holding Buffer
 - Wash Buffer A
 - Wash Buffer B
- GeneChip™ Hybridization Control Kit
 - 20X Eukaryotic Hybridization Controls \((bioB, bioC, bioD, cre)\)
 - Control Oligonucleotide B2 (3 nM)
- Array Plate and consumables (Not supplied)
 - WT Array Plate(s)

Procedure

NOTE: The “WT Hyb Add” reagent names were created to match the order in which reagents are added. For example, WT Hyb Add 4 is the fourth component added during preparation of the Hybridization Mix. WT Hyb Add 2, 3 and 5 are not used and are not part of the Hybridization Module.

1. In preparation of the hybridization step, prepare the following:
 a. Warm the following vials to room temperature on the bench:
 - 5X WT Hyb Add 1
 - 15X WT Hyb Add 4
 - 2.5X WT Hyb Add 6
 b. Vortex and centrifuge briefly (~5 sec) to collect contents of the tube.
 c. Remove the following tubes from the GeneChip Hybridization Control Kit and thaw at room temperature:
 - Control Oligonucleotide B2 (3 nM)
 - 20X Eukaryotic Hybridization Controls
 d. Vortex and centrifuge briefly (~5 sec) to collect liquid at the bottom of the tube.
e. Keep the tubes of Control Oligonucleotide B2 (3 nM) and the tube of 20X Eukaryotic Hybridization Controls on ice.

2. Prepare the WT Hybridization Master Mix & Cocktail.

a. Heat the 20X Hybridization Controls for 5 min at 65°C in a thermal cycler using the Hybridization Control program that is shown in Table 2.1.

b. At room temperature, prepare the Hybridization Master Mix in a nuclease-free tube. Combine the appropriate amount of components in the sequence shown in the table below. Prepare the master mix for all the fragmented and biotin-labeled ss-cDNA samples in the experiment.

NOTE: The 5X WT Hyb Add 1 solution is very viscous; pipet slowly to ensure addition of the correct volume. Mix well. Vortex and centrifuge briefly (~5 sec) to collect liquid at the contents of the tube.

<table>
<thead>
<tr>
<th>Table 3.7 Hybridization Master Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>5X WT Hyb Add 1</td>
</tr>
<tr>
<td>Control Oligo B2 (3 nM)</td>
</tr>
<tr>
<td>20X Eukaryotic Hybridization Controls (bioB, bioC, bioD, cre)</td>
</tr>
<tr>
<td>15X WT Hyb Add 4</td>
</tr>
<tr>
<td>Total Volume</td>
</tr>
</tbody>
</table>

* Includes ~10% overage to cover pipetting error.

c. Mix thoroughly by gently vortexing. Centrifuge briefly to collect the mix and proceed immediately to the next step.

a. At room temperature, prepare the Hybridization Cocktail in the order as shown in Table 3.8 for all samples.

<table>
<thead>
<tr>
<th>Table 3.8 Hybridization Cocktail for a Single Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>Hybridization Master Mix</td>
</tr>
<tr>
<td>Fragmented and labeled ss-cDNA</td>
</tr>
<tr>
<td>2.5X WT Hyb Add 6</td>
</tr>
<tr>
<td>Total Volume</td>
</tr>
</tbody>
</table>

b. If you are using a plate; seal, vortex, and centrifuge briefly (~5 sec) to collect liquid at the bottom of the well. If you are using 1.5 mL tubes; vortex and centrifuge briefly (~5 sec) to collect contents of the tube.

c. Incubate the hybridization cocktail reaction for 5 min at 99°C (tubes) or 95°C (plates), then for 5 min at 45°C in a thermal cycler using the Hybridization Cocktail program that is shown in Table 2.1.
d. After the incubation, centrifuge briefly to collect contents of the tube or well and proceed immediately to the next step.

e. Place 90 µL of the centrifuged supernatant hybridization cocktail as indicated into the appropriate well of the hybridization tray.

4. Proceed to Hybridization Setup.

Hybridization Setup

This section describes the GeneTitan Setup protocol for WT Array Plates. The reagent consumption per process on the GeneTitan™ Instrument for processing WT Array Plates is shown in Table 3.10.

Table 3.9 The Minimum Volumes of Buffer and Rinse Required to Process on the GeneTitan Instrument

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>Amount Required for One Array Plate</th>
<th>Minimum Level in Bottle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinse</td>
<td>300 mL</td>
<td>450 mL</td>
</tr>
<tr>
<td>Wash A</td>
<td>~920 mL</td>
<td>1,040 mL +</td>
</tr>
<tr>
<td>Wash B</td>
<td>300 mL</td>
<td>450 mL</td>
</tr>
</tbody>
</table>

Table 3.10 Volumes Required to Process WT Array Plates per Run

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Amount Required for One Array Plate</th>
<th>Number of Plates that can be Processed using the GeneTitan Hybridization, Wash and Stain Kit for WT Array Plates (P/N 901622)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>16-Format</td>
</tr>
<tr>
<td>Wash A</td>
<td>~920 mL</td>
<td>1</td>
</tr>
<tr>
<td>Wash B</td>
<td>300 mL</td>
<td>1</td>
</tr>
<tr>
<td>Stain 1 and 3</td>
<td>105 µL/well</td>
<td>6</td>
</tr>
<tr>
<td>Stain 2</td>
<td>105 µL/well</td>
<td>6</td>
</tr>
<tr>
<td>Array Holding Buffer</td>
<td>150 µL/well</td>
<td>6</td>
</tr>
</tbody>
</table>

IMPORTANT: The instrument must have a minimum of 450 mL of Wash B in the Wash B reservoir of the instrument for each WT Array Plate prior to starting Hyb, Wash, Stain and Scan process. The waste bottle should be empty.

Processing WT Array Plates on the GeneTitan™ Instrument

1. Use the anti-static gun on the wells of the stain tray labeled GeneTitan Stain Tray P/N 501025.

 a. Place a stain tray on the table top.

 b. Hold the Zerostat 3 anti-static gun within 12” (30.5 cm) of the surface or object to be treated. Squeeze the trigger slowly for about two seconds, to emit a stream of positive ionized air over the surface of the object. As the trigger is slowly released, a negative flow of air ions is produced resulting in static neutralization.

 c. Repeat this procedure at several points across the surface of the stain tray.

2. Aliquot 105 µL of the Stain 1 into the GeneTitan Stain Tray.
3. Use the anti-static gun on the stain tray cover.

a. Place a stain tray cover on the table top with the flat surface facing upward.

b. Hold the Zerostat 3 anti-static gun within 12” (30.5 cm) of the surface or object to be treated. Squeeze the trigger slowly for about two seconds, to emit a stream of positive ionized air over the surface of the object. As the trigger is slowly released, a negative flow of air ions is produced resulting in static neutralization.

c. Repeat this procedure at several points across the surface, covering the entire stain tray cover.

4. After removing the static electricity, place the cover on top Stain Tray 1.

5. After repeating Step 1, aliquot 105 µL of the Stain 2 into the GeneTitan Stain Tray.

6. After repeating Step 3, place cover on top of Stain Tray 2.

7. After repeating Step 1, aliquot 105 µL of the Stain 3 into the GeneTitan Stain Tray.

8. After repeating Step 3, place cover on top of Stain Tray 3.

9. Aliquot 150 µL of the Array Holding Buffer into the GeneTitan Scan Tray identified with the label HT Scan Tray P/N 500860 on the tray.

10. Use the fourth scan tray cover provided with the GeneTitan Consumable Upgrade kit to cover the Scan Tray.

11. Load all the consumables including the HT Array Plate into the GeneTitan Instrument as per instructions provided in the GeneTitan™ Instrument User Guide for Expression Arrays Plates (P/N 702933).

 ! IMPORTANT: It is important not to bump the trays while loading them into the GeneTitan Instrument. Droplets of the stain going onto the lid may result in a wicking action and the instrument gripper may be unable to remove the lids properly.

 The remaining hybridization ready sample can be stored at –20°C after the Biorad Hardshell Plate using Aluminum Foil.
Appendix A Gel-Shift Assay

The efficiency of the labeling procedure can be assessed using the following procedure. This quality control protocol prevents hybridizing poorly labeled target onto the probe array. The addition of biotin residues is monitored in a gel-shift assay, where the fragments are incubated with avidin prior to electrophoresis. The nucleic acids are then detected by staining. The procedure takes approximately 90 min to complete.

Table A.1 Additional Reagents Required

<table>
<thead>
<tr>
<th>Item</th>
<th>Supplier</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCell SureLock™ Mini-Cell*</td>
<td>Thermo Fisher</td>
<td>EI0001</td>
</tr>
<tr>
<td>4-20% TBE Gel1.0 mm, 12 well*</td>
<td>Thermo Fisher</td>
<td>EC62252BOX</td>
</tr>
<tr>
<td>Novex™ Hi-Density TBE Sample Buffer (5X)</td>
<td>Thermo Fisher</td>
<td>LC6678</td>
</tr>
<tr>
<td>TBE Buffer, 5X Solution</td>
<td>Thermo Fisher</td>
<td>75891</td>
</tr>
<tr>
<td>SYBR™ Gold Nucleic Acid Gel Stain</td>
<td>Thermo Fisher</td>
<td>S11494</td>
</tr>
<tr>
<td>10 bp DNA ladder and 100 bp DNA ladder</td>
<td>Thermo Fisher</td>
<td>10821-015 and 15628-019</td>
</tr>
<tr>
<td>NeutrAvidin Protein</td>
<td>Thermo Scientific</td>
<td>31000</td>
</tr>
<tr>
<td>PBS, pH 7.2</td>
<td>Thermo Fisher</td>
<td>20012-027</td>
</tr>
</tbody>
</table>

*Or equivalent.

NOTE: Place a 4% to 20% TBE gel into the gel holder and add 1X TBE Buffer to the gel system and equilibrate to room temperature.

1. Prepare NeutrAvidin and biotin-labeled cDNA sample mix.
 a. On ice, prepare a NeutrAvidin solution of 2 mg/mL in PBS.
 b. For each sample to be tested, prepare 2 aliquots of 1 µL fragmented and biotin-labeled ss-cDNA sample in a tube or well.
 c. Heat the samples for 2 min at 70°C. Centrifuge briefly to collect the reaction at the bottom of the tube or well, then proceed immediately to the next step.
 d. At room temperature, add 5 µL of the 2 mg/mL NeutrAvidin solution to one tube or well and add 5 µL of PBS to the other tube or well.
 e. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect contents of the tube, and incubate for 5 min at room temperature.

2. Separate the fragmented and labeled ss-cDNA by size and stain.
 a. Prepare 10 bp and 100 bp DNA ladders by combining 1 µL of ladder and 7 µL of Nuclease-free Water.
 b. At room temperature, add loading dye to all samples and DNA ladders to a final concentration of 1X loading dye.
 c. Mix thoroughly by gently vortexing the tube. Centrifuge briefly to collect contents of the tube, and proceed immediately to the next step.
 d. Carefully load samples and ladders on gel. Each well can hold a maximum of 20 µL.
 e. Run the gel at 150 volts until the front dye almost reaches the bottom, approximately 1 hr.
f. While the gel is running, prepare 100 mL of a 1X solution of SYBR Gold for staining. SYBR Gold may be diluted in 1X TBE running buffer or water.

NOTE: SYBR Gold is light sensitive. Therefore, use caution and shield the staining solution from light. Prepare a new batch of stain at least once a week.

g. After the gel is complete, break open cartridge and stain the gel in 1X SYBR Gold for 10 min at room temperature.

3. Place the gel on a UV light box and image using the appropriate filter for SYBR Gold.

4. The absence of a shift pattern indicates poor biotin labeling. The problem should be addressed before proceeding to the hybridization step.
Appendix B Troubleshooting and References

Table B.1 Troubleshooting Possible Problems

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The positive control sample and your total RNA sample yield low levels of amplified cRNA product or low levels of appropriately sized cRNA product.</td>
<td>Incubation temperatures are incorrect or inaccurate.</td>
<td>Calibrate your thermal cycler.</td>
</tr>
<tr>
<td></td>
<td>Condensation formed in the tubes during the incubations.</td>
<td>Check that the heated lid is working correctly and is set to the appropriate temperature.</td>
</tr>
<tr>
<td></td>
<td>cRNA purification is not performed properly.</td>
<td>Perform the purification as described in this user guide.</td>
</tr>
<tr>
<td></td>
<td>Pipettes, tubes, and/or equipment are contaminated with nucleases.</td>
<td>Remove RNases and DNases from surfaces using RNase decontamination solution.</td>
</tr>
<tr>
<td>The positive control sample produces expected results, but your total RNA sample results in low levels of amplified cRNA/cDNA product.</td>
<td>The input total RNA concentration is lower than expected.</td>
<td>Repeat the A260 reading of your RNA sample.</td>
</tr>
<tr>
<td></td>
<td>Use 100 to 200 ng of total RNA in the First-Strand cDNA Synthesis procedure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Your input RNA contains contaminating DNA, protein, phenol, ethanol, or salts, causing inefficient reverse transcription.</td>
<td>Phenol extract and ethanol precipitate your total RNA.</td>
</tr>
<tr>
<td>The positive control sample produces expected results but your total RNA sample results in low levels of appropriately sized cRNA/cDNA product.</td>
<td>The total RNA integrity is partially degraded, thereby generating short cDNA fragments.</td>
<td>Assess the integrity of your total RNA sample by determining the size of the 18S and 28S rRNA bands and the relative abundance of 28S to 18S rRNA. Refer to Evaluate RNA Integrity.</td>
</tr>
<tr>
<td></td>
<td>The mRNA content of your total RNA sample is lower than expected.</td>
<td>Verify the mRNA content of your total RNA.</td>
</tr>
<tr>
<td></td>
<td>Note: In healthy cells, mRNA constitutes 1 to 10% of total cellular RNA (Johnson, 1974; Sambrook and Russel, 2001).</td>
<td></td>
</tr>
</tbody>
</table>

References

Appendix C Revision History

Table C.1 Revision History

<table>
<thead>
<tr>
<th>Description</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update information for 30-Reaction Kit</td>
<td>Kit Contents and Storage.</td>
</tr>
<tr>
<td>Change volume of Nuclease-free Water to 1.0 mL</td>
<td>Kit Contents and Storage.</td>
</tr>
<tr>
<td>Nuclease-free Water (for preparing 80% ethanol wash solution) is added</td>
<td>Additional Reagents and Supplies Required (Table 1.4)</td>
</tr>
<tr>
<td>Specify dilution requirement for high concentration RNA samples.</td>
<td>Determine RNA Quantity and Synthesize First-Strand cDNA.</td>
</tr>
<tr>
<td>Specify long-term storage for STOPPING POINT</td>
<td>Chapter 2, Protocol</td>
</tr>
<tr>
<td>Specify cRNA dilution requirement for concentration measurement and reaction set-up</td>
<td>Assess cRNA Yield and Size Distribution and Synthesize 2nd-Cycle Single-Stranded cDNA.</td>
</tr>
<tr>
<td>Specify freeze and thaw times for the reagents in the 12 and 30 reaction kits.</td>
<td>Reagent Preparation.</td>
</tr>
<tr>
<td>Specify genomic DNA removal recommendation from total RNA samples.</td>
<td>Evaluate RNA Quality.</td>
</tr>
<tr>
<td>Add suggestion to measure concentration of HeLa Control RNA before use.</td>
<td>Prepare Control RNA.</td>
</tr>
</tbody>
</table>
Documentation and support

Obtaining support

Technical support For the latest services and support information for all locations, visit www.thermofisher.com.

At the website, you can:

- Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities
- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support (thermofisher.com/support)
- Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents
- Obtain information about customer training
- Download software updates and patches

Safety Data Sheets (SDS) Safety Data Sheets (SDSs) are available at thermofisher.com/support.

Limited product warranty Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale found on Life Technologies’ website at www.thermofisher.com/us/en/home/global/terms-and-conditions.html. If you have any questions, please contact Life Technologies at www.thermofisher.com/support.