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Abstract. Machine Learning as a Service (MLaaS) is a robust platform
that offers various emerging applications. Despite great convenience, user
privacy has become a paramount concern, as user data may be shared
or stored in outsourced environments. To address this, fully homomor-
phic encryption (FHE) presents a viable solution, yet the practical re-
alization of this theoretical approach has remained a significant chal-
lenge, requiring specific optimization techniques tailored to different ap-
plications. We aim to investigate the opportunity to apply the CKKS-
FHEW /TFHE hybrid approach to NNs, which inherit the advantages
of both approaches. This idea has been implemented in several conven-
tional ML approaches (PEGASUS system presented in IEEE S&P 2021),
such as decision tree evaluation and K-means clustering, and demon-
strated notable efficiency in specific applications. However, its effective-
ness for NNs remains unknown. In this paper, we show that directly
applying the PEGASUS system on encrypted NN inference would result
in a significant accuracy drop, approximately 10% compared to plain-
text inference. After a careful analysis, we propose a novel LUT-aware
fine-tuning method to slightly adjust the NN weights and the functional
bootstrapping for the ReLU function to mitigate the error accumulation
throughout the NN computation. We show that by appropriately fine-
tuning the model, we can largely reduce the accuracy drop, from 7.5%
to 15% compared to the baseline implementation without fine-tuning,
while maintaining comparable efficiency with extensive experiments.

Keywords: Homomorphic encryption - neural network - functional bootstrap-
ping - privacy-preserving machine learning.
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1 Introduction

Machine Learning as a Service (MLaaS) [30] are cloud-based platforms provid-
ing machine learning (ML) models to run services that are available anytime,
anywhere. With the advance of deep learning (DL), neural networks (NN) has
been widely used in various applications, e.g., computer vision [20], speech pro-
cessing [31], and content generation [16]. However, a major concern of MLaa$S is
on the difficulties regarding the security and privacy of user data. The MLaaS
owner could have access to user’s private data without permission. Users may
hesitate to upload private data to the MLaasS platform due to confidentiality [22].
As a result, exploring a secure MLaa$S is an urgent need. Ideally, a secure MLaaS
in practice should provide high inference accuracy, low computational time, and
minimal memory usage, meanwhile protecting the confidentiality of user data.
Secure multiparty computation (SMC) [32,3] is a common solution toward se-
cure MLaaS. SMC is typically associated with higher computational costs, but
provides robust confidentiality protection.

Fully Homomorphic Encryption (FHE) [20] is a promising alternative
that achieves essentially non-interactive SMC, allowing basically minimal partic-
ipation (communication/computation) from the user during the protocol execu-
tion. Particularly, in the FHE pipeline for secure MLaaS, the user first encrypts
the data into ciphertext which is then transmitted to a cloud server. The server
then performs ML inference via homomorphic computation on the ciphertext.
The encrypted result is then sent back to the user, who then decrypts to retrieve
the desired output. The FHE-based NN encrypted inference is potentially attrac-
tive in terms of security and confidentiality, however with a main limitation of
the huge computational burden induced by the FHE calculations.

The FHE-based NN encrypted inference includes three common types of
encrypted computations that are executed sequentially in a NN node, namely
linear operations, activation functions, and bootstrapping.

Linear operations are the inner product calculations between the encrypted
input data array and the plaintext NN weights. There are three popular FHE
schemes used in the encrypted inference: (1) CKKS [7], (2) FHEW [9]/TFHE [7],
and (3) CKKS-FHEW /TFHE Hybrid [25]. The CKKS scheme can easily car-
ryout linear operations due to its ability to support floating-point arithmetic,
while FHEW /TFHE only supports lightweight bit-wise or integer operations.
Note that the integer operations of FHEW /TFHE has lower computational bur-
den over the CKKS floating point calculations.

Regarding activation functions, CKKS only supports element-wise polyno-
mial operations, such as multiplication, addition, and rotation, and does not
directly support non-polynomial operators. This is unsuitable for encrypted NN
inference, as CKKS does not support ReLU, which is the commonly used ac-
tivation function in NN models. A possible solution around is to approximate
the activation function using polynomial approximations. Although this alter-
native is simple to implement, it produces deviated results that might affect NN
inference accuracy. It also comes with additional computational overhead.
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Bootstrapping [13,14] is originally designed to reduce the accumulated com-
putation errors of the ciphertext in FHE, which is a crucial operation to ensure
that FHE calculations can be carried out with sufficient computational depth.
However, performing repeated boostrapping operations with common CKKS
implementations [4] can introduce numerical errors and information loss. In
contrast, FHEW /TFHE bootstrapping has no numerical errors. Besides, an ad-
vanced bootstrapping operation, the functional bootstrapping, in FHEW /TFHE
scheme can achieve performing non-polynomial operations, such as ReLU, while
refreshing the ciphertext simultaneously. Generally, an FHEW /TFHE functional
bootstrapping supports more than one bootstrapping iteration. According to the
implementation, the FHEW /TFHE functional bootstrapping can be categorized
into the regular version and the large-precision version. The regular version rep-
resents the original design, while the large version was introduced by [23]. The
regular version contains only one bootstrapping iteration and is efficient com-
pared to the large-precision version [23], which is friendly for NN inference [19,2].
However, it suffers from limited numerical precision. According to the litera-
ture [21,2], regular functional bootstrapping has only been empirically evaluated
on the simple MNIST dataset and has not been generalized to work with more
complex datasets. In practical applications, the message domain of FHE-based
NN inference architecture usually exceeds the input domain typically used in reg-
ular function bootstrapping. The large-precision version is desired for real-world
applications but its computing efficiency should be further improved.

The CKKS-FHEW /TFHE Hybrid scheme [25] inherits the strengths of the
linear operations in CKKS and the benefits of the FHEW/TFHE functional
bootstrapping. For FHE-based NN encrypted inference, the CKKS scheme can
be used for linear operations, while the FHEW /TFHE functional bootstrapping
scheme can be used for non-polynomial activation functions and bootstrapping
without adding large computation overhead for transferring between the CKKS
and FHEW/TFHE ciphertexts. Notably, the PEGASUS system [25] efficiently
bridge these two schemes into a hybrid implementation. PEGASUS first scales
down the CKKS ciphertext/plaintext, making it compatible with the input to the
FHEW /TFHE regular bootstrapping. Then, only one regular functional boot-
strapping is required to complete the pipeline. This would be substantially more
efficient than the approach of large-precision bootstrapping [23], which would re-
quire many more core bootstrapping calls. PEGASUS has demonstrated notable
efficiency in specific applications such as decision tree evaluation and K-means
clustering, yet the work did not conduct experiments in the setting of NN in-
ference [25]. It remains an interesting open question to determine whether the
CKKS-FHEW/TFHE hybrid framework can be effectively extended to cover
NNs. In this paper, we focus on the potential of the CKKS-FHEW /TFHE hy-
brid approach for FHE-based NN encrypted inference.

1.1 Owur Contribution

In this work, we aim to apply the CKKS-FHEW /TFHE hybrid approach to
FHE-based NN encrypted inference. However, certain numerical adjustments on
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Fig. 1. The four-step process in a layer of FHE NN inference.

the model weights and the activation function are required to maintain the infer-
ence accuracy, thereby rendering the entire approach practical and usable. Below,
we provide a more comprehensive explanation of our specific contributions.

First, we implement an FHE inference framework for running neural networks
named CKKS-FHEW /TFHE Hybrid Encrypted Inference Framework, on top of
the PEGASUS, and then notice a significant decrease in accuracy. With a careful
analysis, we identify that the accuracy drop comes from the limited precision
when applying regular functional bootstrapping on large-domain ciphertexts.

Next, we address this issue by proposing a novel LUT-aware model fine-
tuning framework on the machine learning side. The adjustment is specifically
tailored for the above hybrid approach, effectively avoiding the accuracy drop due
to the precision issue while maintaining the efficiency advantage of the approach.

Finally, we conduct a comprehensive experiment to validate our LUT-aware
model fine-tuning framework on a color dataset, CIFAR-10, which is more com-
plex than the MNIST dataset. The experimental results show that our frame-
work increases accuracy from 7.5% to 15% compared to the NN model without
applying our method. Moreover, the fine-tuned NN models achieve accuracy
comparable to the original ones.

We compared our approach to two state-of-the-art implementations, Shift-
accumulation-based LHE- enabled Deep Neural Network (SHE) [24] and Privacy-
Preserving Machine Learning (PPML) [21]. Our fine-tuned model shows compet-
itive accuracy while maintaining high efficiency in time 2,558 s (using 8 threads)
compared to PPML which takes over 3,581 s (using 8 threads) and SHE which
takes more than 347,555 s (using 8 threads).

1.2 Technical Overview

Our proposed CKKS-FHEW /TFHE Hybrid Encrypted Inference framework in-
cludes four-step for each FHE-based NN layer computation, as illustrated in
Fig. 1.

1. CKKS computation scheme is first employed to perform the convolution and
linear operations on the CKKS ciphertexts.

2. The CKKS ciphertext is then converted into multiple large-domain LWE
ciphertexts based on the PEGASUS extraction method.
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Fig. 2. The evaluation of the ReLLU function using regular functional bootstrapping on
large-domain ciphertexts. A step-wise numerical behavior can be observed.

3. Next, regular functional bootstrapping is applied to the converted large-
domain Learning With Errors (LWE) [29] ciphertexts to perform the acti-
vation operation while reducing the numerical errors.

4. Finally, the large-domain LWE ciphertexts are repacked back into the CKKS
ciphertexts for the subsequent layers of operations.

We first naively applied the hybrid approach to several NN models and ob-
served severe accuracy drops on all tested NNs. The drop is caused by the accu-
mulated numerical errors throughout the encrypted NN inference. The numerical
errors are generated by the scale-down process in the PEGASUS framework that
limits the numerical precision when applying regular functional bootstrapping
on the large-domain ciphertexts. More specifically, we let the domain of the mes-
sage be [—B, B) and n be the size of the input domain for the LWE functional
bootstrapping. The LWE ciphertext of the message is scaled down to meet the
requirement of the functional bootstrapping taking a look-up table of size n
which is identical to the size of the input domain. In this case, the LWE func-
tional bootstrapping can be treated as a look-up-table (LUT) operation with n
entries. We note that the LWE functional bootstrapping exhibits a cyclic behav-
ior out of the range [—B, B) because of the modulus operation involved in the
FHE computation. Fig. 2 illustrates an example of the ReLU function evaluated
by the LWE functional bootstrapping with n = 8 in the range [—4,4). Observe
that the ReLU output has step-wise behavior according to the LUT operation.

If the input value range of the LWE functional bootstrapping does not align
with the predefined input domain of the LWE functional bootstrapping, either
the input domain of the functional bootstrapping can not fulfill the range of
the input values or a few LUT entries are utilized. The left-hand-side figure in
Fig. 3 illustrates the example that the predefined input domain of the LWE
functional bootstrapping [—4,4) is larger than the input value range [—0.3,1.7).
Only three LUT entries are used to map the input value z to the output y. The
range mismatching generates a large numerical error when applying functional
bootstrapping and then eventually affects the NN model accuracy.
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Fig. 3. An example of range alignment, where the input range [—0.3,1.7) (left, orange)
is mapped to [—4,4) (right) to improve precision. It is evident that the aligned function
ReLU' utilizes a greater number of look-up table entries. Noted that the blue lines
indicate the target functions and the red lines are the look-up tables according to the
functional bootstrapping behavior.

We design a LUT-aware model fine-tuning framework to align the range of
the input value with the message domain of the ciphertext. The mismatch can be
mitigated by aligning the input value with the LUT entry as the right-hand-side
figure in Fig. 3. More specifically, we first estimate the input range by analyzing
the observed feature maps generated during the inference of plain training data
on the trained model. This estimation can be used to define the range of input
values. Next, we align the range with the message domain. This alignment en-
sures that the input values are precisely mapped to the LUT entry. The numerical
optimization process greatly utilizes the data and enhances the final accuracy of
the FHE NN inference. Note that the alignment process is a preprocess of our
model fine-tuning framework. The alignment includes linearly transforming pre-
trained NN model weights and updating the activation functions of the model.
According to our design, we largely improve the accuracy of the model while
maintaining the inference efficiency thanks to the better numerical alignment to
the regular functional bootstrapping.

We conducted experimental evaluations by solving the image classification
problem with convolutional neural networks (CNNs) on the CIFAR-10 dataset.
Given the substantial time cost associated with FHE NN inference, we made
the decision to train smaller-scale plain models. To achieve this, we employed
knowledge distillation from a ResNet-20 model with an impressive accuracy of
92% to distill knowledge to our small models. Our experimental results provide
strong validation of the effectiveness of our approach. Initially, our plain models
achieved an impressive inference accuracy of 80%. However, when we performed
FHE NN inference without LUT-aware fine-tuning, we observed a significant
decline in accuracy ranging from 7.5% to 17.5%. Fortunately, by incorporating
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LUT-aware fine-tuning into our encrypted inference process, we were able to
overcome this challenge. The application of LUT-aware fine-tuning consistently
yielded accuracy levels that were comparable to the plain models. This outcome
underscores the robustness and reliability of our approach in maintaining high
accuracy during encrypted inference.

2 Preliminaries

Our framework is built on both CKKS [6] and FHEW/TFHE [10,8] schemes.
Next, we define the settings and notations used in our work.

CKKS Encryption. CKKS supports arithmetic operations on floating-point
vectors. During the encryption process, it first encodes a message m, which is
a vector of float numbers, into a plaintext polynomial. Denote the encoding
operation as Ecd(-), which encrypts the plaintext polynomial to a ciphertext.
Denote the encrypting operation as Enc(-). We use the notation of CKKS(m) to
denote Enc(Ecd(m)) with m € R".

CKKS supports the evaluation of CKKS CKKS.eval(f,-). The inputs are a
plaintext function f and the arguments of f placed after f, such as message m
or ciphertext ctx € CKKS(m). The operation is conducting the function with
these arguments in CKKS and returns ctx € CKKS(f(+)). For example, we let
ctx € CKKS(m), CKKS.eval(+, ctx, v) returns ctx’ € CKKS(m + v).

LWE and Regular Functional Bootstrapping. LWE encrypts a plaintext,
which is the encoding of a scalar m € R, to a ciphertext. Let LWE([m]) denote
the LWE encryption of m € R, and let [-] denote the rounding and encod-
ing function. LWE possesses two commonly used implementations, FHEW and
TFHE. Compared to FHEW, TFHE is faster in evaluating bootstrapping and
requires a smaller bootstrapping key. Both implementations support bit-wise op-
erations on LWE ciphertexts, which represent encrypted binary data m € {0, 1}.
FHEW and TFHE enable support for the NAND operation on LWE ciphertext,
allowing them to support any circuit based on the completeness of the NAND
circuit. Moreover, they also provide support for regular functional bootstrapping.

Regular functional bootstrapping is a type of bootstrapping used to reduce

error accumulation in HE operations. It involves constructing a lookup table for a
specific function, enabling efficient computation of results. While it requires fewer
bootstrapping iterations and less computation, it is effective only for supporting
small message domain. If the requirement is to support large domain messages,
it results in significant computational overhead.
PEGASUS CKKS-FHEW Conversion. CKKS demonstrates remarkable ef-
ficiency in vector operations, while FHEW exhibits exceptional efficiency in non-
polynomial functions such as ReLU, using functional bootstrapping operations.
If we can switch between CKKS and FHEW efficiently, it is suitable for perform-
ing private and encrypted inference for MLaaS. Lu et al. [25] proposed PEGA-
SUS, a framework that efficiently converts packed CKKS ciphertext and FHEW
ciphertexts without decryption. The conversion involves these operations.
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e Extract pegasus.extract(ctx): Given a ciphertext ctx € CKKS(m) with m €
R™, the operation involves transforming CKKS encryption into LWE encryp-
tion and return a set of {ctx;} € LWE([m;|) with m; € m and 0 < i < n.

e Repack pegasus.repack({ctx; Yo<i<n): Given a set {ctx;}o<icn with ctx; €
LWE([m;]) with m; € m, the operation involves repacking a set of LWE
ciphertexts into a single CKKS ciphertext and return ctx € CKKS(m).

PEGASUS Large-domain Functional Bootstrapping. The regular func-
tional bootstrapping method can only be applied to LWE ciphertexts with a mes-
sage domain limited to the size of the look-up table, typically around 2!° [27].
However, when dealing with LWE ciphertexts converted from CKKS cipher-
texts, a larger message domain is usually required. To address this specific is-
sue, PEGASUS introduces a groundbreaking technique known as large-domain
functional bootstrapping. This technique involves scaling down the input cipher-
text to a smaller message domain during the conversion from CKKS to FHEW,
enabling the extension of regular functional bootstrapping to support a larger
message domain. However, this expansion comes at the cost of reduced precision.
Additionally, Liu et al. [23] proposed a method that utilizes digit decomposition
to divide a large message into multiple smaller chunks and performs functional
bootstrapping on each chunk individually. This approach preserves the precision
of the input message but requires multiple bootstrapping iterations. Therefore,
considering computational efficiency, this approach is not adopted.

e Look-up table evaluation pegasus.eval(f, ctx) : Given a plaintext f and a
ctx € LWE([m]), the operation returns ctx’ € LWE([ f(m)]) with error.

PEGASUS evaluation. PEGASUS employs a fine-grained look-up table ap-
proximation for evaluating non-polynomial functions such as sigmoid and ReL.U.
Inputs of the evaluation is a plaintext function f and a ciphertext ctx € CKKS(m)
and output is ctx € CKKS(f(m)) with error. The evaluation involves three
steps. First, as functional bootstrapping is faster under the FHEW scheme than
CKKS, PEGASUS extracts a CKKS ciphertext ctx to a set FHEW ciphertext
{ctx;} € pegasus.extract(ctx). Second, it evaluates the look-up table 7 accord-
ing to f on each {ctx;} and gets a set {ctx;} € pegasus.eval(f,ctx;). Finally, it
repacks {ctx;} to ctx € pegasus.repack({ctx;}).

3 Methodology

We propose the LUT-aware model fine-tuning framework to mitigate the impact
caused by the limited precision of regular functional bootstrapping. Recall our
CKKS/FHEW-TFHE Hybrid Secure DNN implementation, we next describe
the mathematical formulation of the four-step process in § 1.2:

e The Convolution Layer CKKS.eval(fconv,{ctxo, ctx1,...}) performs the
convolution operation with the input feature map that is encrypted in mul-
tiple CKKS ciphertexts: fconv(x) = W(x) + b. The calculation is carried
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Algorithm 1: Secure inference on layer ¢ of LUT-aware fine-tuned
model.
input : the encrypted feature maps ctx,, € {CKKS(m;)}o<i<ng,
the folded convolution operation fconv},
the aligned activation function facr
output: ctXpack € {CKKS(mi)}0§i<npack

1 ctXconv = CKKS.eval(foonv', ctxn,) ; // ctXconv € {CKKS(m;) }o<i<neon
2 CtXext = pegasus.extract(ctXcony) ; // ctXex € {LWE(m;) }o<icnes
3 ctxa = pegasus.eval(fact’, CtXext) ; // ctXaer € {LWE(m;) }o<i<noe
4 ctXpack = pegasus.repack(ctXact) ; // ctXpack € {CKKS(m;) fo<i<n o
5 Output ctxpack

out in the encrypted domain, and a list of CKKS ciphertexts {ctxg, ctx}, ...}
are produced as the output.

e The Extraction pegasus.extract({ctxo,ctxy,...}): takes a list of CKKS ci-
phertexts as input and extracts each CKKS ciphertext to gather the resulting
LWE ciphertexts. The output is these gathered LWE ciphertexts.

e The Activation Layer pegasus.eval(fact, {ctxtVE, ctxtVE ..}) evaluates
the activation function fact on each input LWE ciphertext. The output
is a list of the resulting LWE ciphertexts.

e The Repacking pegasus.repack({ctx5"VE ctx{"E ...}) step repacks the mul-
tiple LWE ciphertexts into several CKKS ciphertexts, where each CKKS

ciphertext encrypts a specific number of values (message).

To overcome the mismatch issue introduced in § 1.2, we propose the pre-
cise alignment of the input range with the message domain. To achieve this
alignment, we employ a fine-tuning approach that focuses on optimizing the
convolution operations and the activation functions. Through fine-tuning, we
can effectively align the input range with the desired message domain, ensuring
optimal precision and accuracy in our computations.

3.1 LUT-aware Model Fine-tuning

Our Look-Up Table (LUT) aware model fine-tuning involves two main steps.

Step 1. Update the model weights fcony'(x) = IE?\}Ib’B)(fCONV(X)): We
apply a linear map to the input to ensure that the input interval is aligned
with the message domain. This linear map function can be incorporated into the
convolution weights and bias, thereby avoiding any additional computational
costs or memory usage. The incorporation details will be introduced in § 3.3.
Function féi/’[b’B) linearly map the input x € R™, z; € [a, b) to the range [— B, B).

—1
Step 2. Update the activation functions fACT/ = facT © ]-"I(J'f\}[b’B) : We

update all the activation functions with inverse linear mapping functions such
that fACT'(f]E‘fV’[b’B)(m)) = fact(z). The modification ensures that the new acti-
vation functions produce identical results when applied to the linearly mapped
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inputs, which greatly reduces the error caused by the limited precision of the
regular functional bootstrapping.

Noted that the fine-tunings are performed on the plain neural network mod-
els, before we turn them into the encrypted inference version. Algorithm 1 de-
scribes the encrypted inference calculation steps.

3.2 Estimate the Numerical Ranges of the Input for Activation
Functions

Recall that aligning the input value range with the message domain [—B, B)
enhances the utilization of LUT entries. The range of the activation function
inputs, denoted as [a;, b;) for each layer 7, plays a crucial role in aligning them
with the desired interval [—B, B). These parameters determine the valid range
of inputs for the activation functions. If the input values fall outside the range
[ai, b;), applying the activation function with an inverse linear mapping will result
in a significant mismatch or error in the output. On the other hand, if the range
[ai, b;) is too large, only a small portion of the precision within that interval will
be effectively utilized. Hence, determining the appropriate range of activation
function inputs is essential to ensure accurate and efficient computation while
maximizing the utility of precision.

Since the inputs to the activation functions are encrypted, also the ranges of
activation inputs are not predetermined and vary based on the input values fed
into the neural network. We assume that the training/testing distribution are
similar. Therefore, to estimate these input ranges, we conduct inference on the
trained model using plain (non-encrypted) data from the training set. During
this process, we observe and record the minimum and maximum input values,
denoted as a; and b; respectively, that occur at the activation function of each
layer i. By performing inference on the plain trained model with training data,
we are able to capture the dynamic input ranges that are possibly encountered
during actual usage. These minimum and maximum values provide insights into
the range of values the activation inputs can take, allowing us to align the input
ranges with proper parameters a; and b;.

3.3 Incorporate the Linear Mapping into Model Weights

In Step 1, inspired by batch normalization folding [17], we also incorporated the
linear mapping function into the convolution layers to migrate the additional
multiplication depth and computational cost caused by linear mapping function.
Specifically, we fold the linear map ]-"]E?v’[b’B) into convolution layer fconv.

In addition, due to the independence of the computation of each output
channel in the convolution operation, it is viable to estimate the ranges for
all output channels and perform activation function evaluation using the corre-

sponding look-up table. Fig. 4 illustrates that the ranges [a;, b;),0 < i < 8, vary
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Fig. 4. Visualization of the output ranges [a;,b;) of each convolution channel from
layer O of the D5L1 model.

Table 1. Crypto parameters used in PEGé\S_[/J S in our experiments. We follow the nota-
tions of [25]. RLWE is CKKS encryption. RLWE and RGSW are encryption schemes used
in TFHE/FHEW conversion and look-up table evaluation. ns denote the ring dimen-
sions, ¢s and ) denote the modulus and os denote the noise parameters. Descriptions
of these symbols can be found in the Preliminaries of the PEGASUS paper [25].

Encryption Parameters

}i\v_v/Eﬂyqo(’) n = 2117 go =~ 2457 Oks = 2107 Bks = 277 dks =7
RGSW™7 (-)  n=2"%q¢ ~2% x q,q0 = 2%, o1ur = 2"°
RIWE™C () 7 =2'0 ¢ ~ 2% 0ors = 3.19,10g Q = 689

across different output channels. Suppose all channels are appropriately linearly
mapped to the functional bootstrapping input domain with their own ranges. In
that case, the look-up table evaluation can be performed with the same level of
resolution for all channels.

4 Experiments

We conducted extensive experiments to evaluate the effectiveness of our fine-
tuning scheme using real neural network models on the CIFAR-10 dataset.
Through the implementation and testing of our approach, we assess the en-
crypted ML model performance and compare it with two state-of-the-art im-
plementations, namely SHE [24] and PPML [21]. These comparisons provided
valuable insights into the strengths and advantages of our method.

In our experiments, we utilized a server equipped with an Ubuntu 20.04.6
LTS operating system. The server featured 8 cores of an AMD EPYC 7763 64-
Core Processor, providing 16 threads and 126GB memory. We evaluated the
proposed model fine-tuning and then compare the model performance against
other methods in terms of the image classification accuracy and the computa-
tional speed.



12 T. L. Liu et al.

Table 2. Experimental results for various model structures, where D denotes network
depth and L denotes the number of FC layers. See texts for explanation.

Model \ D5L1 \ D8L1 \ D11L1 \ D7L3
2 x 2 Conv, 8, /2|5 x5 Conv, 8 /2| 5 x5 Conv, 8 |5x5 Conv, 8, /2
ReLU ReLU ReLU ReLU
2 x 2 Conv, 16, /2| 3 x 3 Conv, 8 3 x 3 Conv, 8 3 x 3 Conv, 16
ReLU ReLU ReLU ReLU
2 x 2 Conv, 16, /2| 3 x 3 Conv, 16 3 x 3 Conv, 8 3 x 3 Conv, 16
ReLU ReLU ReLU ReLU
2 x 2 Conv, 16, /2| 3 x 3 Conv, 16 | 3 x 3 Conv, 16 | 3 x 3 Conv, 16
Structure ReLU ReLU ReLU ReLU
Linear, 64, 10 3x 3 Conv, 16 | 3 x 3 Conv, 16 |Linear, 1024, 256
ReLU ReLU ReLU
3 x 3 Conv, 16 |3 x 3 Conv, 16, /2| Linear, 256, 256
ReLU ReLU ReLU
3 x 3 Conv, 16 | 3 x 3 Conv, 16 | Linear, 256, 10
ReLU ReLU
Linear, 64, 10 3 x 3 Conv, 16
ReLU
3 x 3 Conv, 16
ReLU
3 x 3 Conv, 16
ReLU
Linear, 16, 10
Plain DNN Acc. | 60% \ 72.5% \ 77.5% \ 80%
Svef;‘fUDTlfwﬁr‘f 47.5% 55% 62.5% 72.5%
Secure DNN Acc.
w/ LUT-Aware 57.5% 70% 75% 80%
(Ours)
Total Time | 881 s | 2,092s | 9,458 | 25585

To ensure sufficient security for data encryption, we set the crypto parameters
of PEGASUS to be at least 119-bit security. Table 1 shows detailed parameters
used in our implementation.

4.1 Performance

In our experiments, the accuracy obtained from the original plaintext NN in-
ference is treated as an upper bound of those obtained from the encrypted NN
that are under evaluation. We evaluated four CNN models with varying archi-
tectures and network depths. Let D denote the network depth and L denote
the number of fully connected (FC) layers in the network. Specifically, we have
evaluated the networks of D5L1, D8L1, D11L1, D7L3. Table 2 presents the
results, including the hyper-parameters, obtained accuracy, and computational
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time. ‘Plain DNN Acc’ shows the obtained accuracy from the given plain model.
‘Secure DNN Acc. wo LUT-Aware’ shows the accuracy of models prior to ap-
plying LUT-aware model fine-tuning. ‘Secure DNN Acc. w/ LUT-Aware’ shows
the accuracy after fine-tuning. ‘k x k Conv, ¢, /s’ denotes a convolution layer
with kernel size k X k, output channel ¢ and stride s. ‘Linear, d;, d,’ indicates a
fully connected layer with input dimension d; and output dimension d,. Results
in Table 2 indicate that our models after fine-tuning outperforms the original
PEGASUS-based secure DNN models by 7.5% to 15% of accuracy. The D7L3
architecture achieved the best accuracy and execution time. Specifically, our
D7L3 model finished the encrypted DNN classification of a CIFAR-10 image in
43 minutes using only 8 threads of CPU and < 50 GB of runtime memory.
Regardless of the model architecture or depth, our method consistently achieves

accuracy scores that are comparable to the target performance of “Secure DNN
Acc. wo LUT-Aware”. These findings showcase the effectiveness of our approach
in maintaining high accuracy while ensuring the security of the inference process.

4.2 Comparison with Two State-of-the-art Methods

We performed a comparative analysis between our method and two state-of-
the-art implementations that support Fully Homomorphic Encryption (FHE)-
based Deep Neural Network (DNN) inference, namely, Shift-accumulation-based
LHE-enabled Deep Neural Network (SHE) [24] and Privacy-Preserving Ma-
chine Learning (PPML) [21]. SHE employed the FHEW /TFHE Bitwise scheme,
whereas PPML utilized the CKKS scheme. Our secure D7L3 model after fune-
tuning has almost no loss in accuracy compared to the plain DNN inference, as
shown in Table 2. In comparison, our other models yield about 2.5% loss.

We next compare the execution time with SHE and PPML. We report the
computational time required for the D7L3 model that are implemented on SHE
and PPML and compare with our approach. It is stated in the SHE [24] paper
that the level-TFHE inference scheme has the ability to perform homomorphic
AND operations up to a depth of 32K in LHE mode, all without requiring boot-
strapping. However, it is important to note that this claim overlooks a signifi-
cant detail. The computation relies on a specific branching program structure [3],
which is noticeably absent in the computation structure presented in [24]. There-
fore, it is crucial to reassess and possibly reconsider their claims regarding the
utilization of level-TFHE.

Compare the execution time with SHE [24]. We next report the runtime
for executing a DNN using the FHEW /TFHE Bitwise scheme [27], employing
the same security level as our approach. It should be noted that a logical opera-
tion takes 75 ms when executed on a single thread. Based on this, the estimation
indicates that an 8-bit addition operation would take approximately 0.3744 sec-
onds (8 thread), while an 8-bit ReLU computation would take around 0.126
seconds (8 thread). The multiplication operation time of SHE-DNN is incred-
ibly fast when compared to the time needed for addition and ReLU. In fact,
it’s so efficient that it can practically be disregarded. We estimate that running
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the SHE-DNN technology on the D7L3 architecture with an 8-bit model would
require at least 347,555 seconds, including 346,672 seconds for 925,942 addition
instructions and 883 seconds for 7,008 ReLU operations.Our approach requires
less time to execute the D7L3 model compared to the SHE-DNN method.

Compare the execution time with PPML [21]. PPML adopts the CKKS
scheme, in which bootstrapping and ReLU are performance bottlenecks. We
estimate that the total execution time for a single bootstrap operation in the
PPML method with 8 threads is 0.231 seconds, whereas performing a single
ReLU operation takes 0.28 seconds. D7L3 consists of 7,008 ReLU operations
and bootstrappings. Therefore, we estimate that executing the D7L3 model in
PPML will take at least 3,581 seconds. Our method is slightly faster than that.

5 Other Related Works

Secure Multiparty Computation (SMC) methods achieve data confiden-
tiality by using cryptography tools, where the security level can be evaluated with
mathematical derivations. Generally, SMC methods can be categorized into in-
teractive schemes [32,15,18] and non-interactive schemes [2]. Interactive schemes
require the active participation of all involved parties during the computation.
Participants must possess sufficient computation power and a reliable network
to maintain their online presence and manage the communication overheads. In
contrast, non-interactive SMC implementation, such as the Homomorphic En-
cryption (HE), can perform the entire NN encrypted inference locally, without
the need of communication nor client participation during the encrypted com-
putation. The DNN inference method using the FHEW /TFHE scheme in [2]
belongs to this category. It achieves 96% accuracy on the MNIST dataset. How-
ever, direct adaptation of the method to CIFAR-10 and other complex datasets
is not yet investigated.

Differential Privacy (DP) is a mainstream method for privacy protec-
tion, which achieves data anonymization by introducing noise to the data or
the model [12]. DP methods are primarily used to avoid the leakage of personal
information in a dataset [1,28]. In practical, DP methods need to select suitable
parameters according to the characteristic of a problem. However, no general
method exists to define the parameter to achieve privacy-preserving [11].

6 Conclusion

We presented a encrypted ML inference approach leveraging the CKKS-FHEW
/ TFHE hybrid crypto system based on the PEGASUS implementation. We
showed that direct incorporation of PEGASUS would result in a 10% accuracy
drop, when compared with plain text inference. We then proposed a LUT-aware
model fine-tuning framework that significantly improves the accuracy by 7.5% to
15% accuracy over the original FHE inference without fine-tuning. We compared
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our method with two state-of-the-art implementations, namely PPML and SHE,
and demonstrated competitive performance of ours in accuracy and efficiency.

Future work includes further explorations of design and methods that can

effectively address the computational overhead associated with the encrypted
FHE NN inference. Furthermore, how best to facilitate a feasible and scalable
deployment of secure ML applications continues to be an active area of research.
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