
Region-aware Photo Assurance System for Image Authentication

Ke-Han Li1, 4, Chih-Fan Hsu1, Ming-Ching Chang2, Feng-Hao Liu3,
Shao-Yi Chien4, and Wei-Chao Chen1

1Inventec Corporation, 2University at Albany, 3Florida Atlantic University, 4National Taiwan University

Abstract

Zero-knowledge Proof (ZKP) allows active image au-
thentication to prove image integrity after editing without
revealing its source. However, existing ZKP solutions re-
quire impractical execution time, leaving a considerable
gap between theory and practice. To tackle this, we present
a Region-Aware Photo Assurance System based on the na-
ture of image editing with privacy: sensitive information
is usually local and relatively small, and thus by cropping
and/or adding mosaic to these small regions suffices to pro-
tect privacy. Using ZKP for the locally edited region and
digital signature for the others can still ensure the integrity
of an image, with significantly better efficiency. We compre-
hensively analyzed the system’s performance and showed
the advantage of our system compared with the state-of-the-
art ZKP-based method, PhotoProof, with 15x/60x faster on
the KeyGen/Proof operations and 25x lower in the Proof
size. Furthermore, we protect several real-world images se-
lected in the Redaction dataset with our system. Our system
achieves up to 2,700x faster than PhotoProof for a proof
generation. We expect the system can become a practical
system for real-world applications.

1 Introduction
The development of multimedia and social media has

increased the sharing of images and videos [1]. Despite
convenience, digital contents can easily be modified in ma-
licious ways, incurring new challenges of misinformation
and disinformation [21]. Image authentication methods [3]
are developed to verify the origin, integrity, and authenticity
of images. Generally, image authentication methods can be
organized into passive and active methods. Passive meth-
ods [5] detect whether an image has been modified based on
pixel information. However, the passive methods are sophis-
ticated and can not guarantee the authentication results for
unseen manipulation methods.

Image with
Signature

Signature

Hash Merkle Tree

Signature Verify

Hash

Zero-Knowledge Proof
Image Editing

Proof

Edited Image
with Proof

Verify
Pass

Sensitive
Region

Insensitive Region

Producer

Editor

Image UserReported Content

Figure 1: Overview pipeline of our system.

Active image authentication methods can validate the
integrity and the editing history of an image by attaching
meta-data, such as digital signatures. Traditional digital
signature approaches [14] can not fulfill the requirement
for detection modification; thus the authenticity is invalid
after authorized editing. New methods such as semi-fragile
watermarking [15, 19] and perceptual hashing [9, 20] were
developed to extend the image authenticity when the images
are edited by a set of authorized operations. However, these
approaches only allow a limited set of editing functions, such
as rotation for < 5◦ and cropping for < 10% of image size.

The leading-edge cryptography [6, 7, 17] tools have ad-
vanced the research to a new horizon in supporting more
editing functions, where the authentication can be carried
out using accumulators, chameleon hashing, and Zero-
Knowledge Proof (ZKP) [10]. Due to mathematical limita-
tions, cryptography-based methods either suffer from unac-
ceptably long execution time [17] or only support pre-defined
editing functions [6, 7]. These drawbacks and trade-offs
make them impractical in applications.

Our key insight. We aim to mitigate the trade-off be-
tween the execution time and the flexibility of the authorized
editing functions. According to the nature of image editing,

Source Image

Hash
Merkle

Tree
Signature

Verify

Image Editing

Verify
Assurance

True/False

Hash

Hash Merkle Tree

𝑴 = {ℎ0, … , ℎ8}

Sign

Edit-P

Auth

𝑰′

𝒑𝒌

Zero-Knowledge Proof

Tile

Divide
𝑬𝒄

𝑬

𝑬𝒄

𝑬𝒆𝒅𝒊𝒕
𝝅

𝐬𝒌

τ

ℎ𝐼

ℎ𝐼

𝑯𝒎

𝑯𝒏

Merge

𝐼

𝒕𝒊𝒍𝒆_𝒄𝒇𝒈

𝐼

(Algorithm 1)

(Algorithm 2)

Producer

Editor

Image User

Role

𝒑𝒌

𝐼0 𝐼1 𝐼2

𝐼3 𝐼4

𝐼6 𝐼7 𝐼8

𝐼5

Tiled Image Image
Tiling

Figure 2: The authentication framework of our Region-Aware Photo Assurance system.

several global editing functions (such as mirroring, rotation,
and color adjustments) are usually reversible and content
privacy is not an issue. So these global edits can be au-
thenticated using efficient signature-based methods. On the
other hand, some local editing functions (such as mosaic,
cropping, masking) are usually used to protect small local
regions, or sensitive regions, where the privacy of the source
image should be preserved [18] after editing. As the sensi-
tive regions are usually small (average 17.6% of an image
according to the dataset of [18]), we only need to apply so-
phisticated authentication tools (e.g., ZKP) on the sensitive
regions. This can significantly improve the efficiency com-
pared to prior work (e.g., PhotoProof [17] where ZKP is
applied to the entire image). See Figures 1 for the overview
of our authentication pipeline.

We propose a region-aware photo assurance system
that can generate image authentication and verify the in-
tegrity of an image, for a wide range of editing operations.
We separate the image into two parts, namely the edited and
non-edited tiles. For the edited tiles, the idea of digital signa-
ture and Zero-knowledge Proof are combined to protect the
source image and support flexible editing functions. For the
non-edited tiles, the digital signature is suitable to maintain
execution efficiency and protect region authenticity. We im-
plemented our system based on the following cryptography
tools: (1) Digital Signature [14], (2) a ZKP implementation
(zk-SNARKs) [12], (3) Poseidon hash [11] (a ZKP-friendly
hash), and (4) Merkle tree [4]. The system supports several
editing functions, including mosaic, collage, blur, cropping,
and resizing, and has the potential to cover more functions.

We compare our system with several existing image au-
thentication methods to show the proposed system inherits
the advantage of the ZKP-based method and largely im-
proves the system’s efficiency. Compared with the existing
state-of-the-art ZKP-based methods, PhotoProof, our system
achieves 15×/60× faster on the KeyGen/Proof operations
and 25× lower memory cost. We further investigate the
hyper-parameters of our system and show the existence of
the optimal setting. Based on the optimal setting, our system

achieves significant performance advantages (up to 2700×)
on the real-world privacy image dataset, Redaction, com-
pared with PhotoProof. We expect our system can become a
practical system for real-world applications.

2 Related Work
We organize the image authentication methods into three

categories: Machine Learning (ML) based, Computer Vision
(CV) based, and Cryptography (Crypto) based methods.
ML-based methods. As image tampering technologies con-
tinue to improve, an amateur in many cases cannot distin-
guish whether an image has been tampered. Oftentimes,
ML algorithms can still detect the tampered regions using
meticulous cues. Cozzolino and Verdoliva [8] propose a
method called Noiseprint that outputs a heatmap of pos-
sible manipulations. Based on the Siamese network that
extracts fingerprints of the camera model, Noiseprint sig-
nificantly suppresses the image content and only highlights
the manipulation artifacts. In [2], a Conditional Generative
Adversarial Network (cGAN) is used to localize tampered
regions in an image. The generator estimates a forgery mask
that approximates the true mask, while the discriminator
discerns whether the masked region is forged or pristine.
Although the ML-based methods show promising results,
these methods usually cannot be generalized to cases that
are not covered in the training set.
CV-based methods contain two sub-types based on percep-
tual hashing [9, 20] and semi-fragile watermarking [15, 19].
Both approaches are effective in ensuring the integrity and
originality of images. Perceptual hashing uses the percep-
tual hash to represent an image. Generally, the hash is a
local-sensitive hash that similar images usually have a high
probability to be categorized into the same hash bucket. This
technique is highly suitable for image applications, such as
image identification, tamper detection, and content-based im-
age retrieval. Digital watermark methods embed a specially
designed pattern into an image to verify image ownership.
Because a slight modification usually damages the water-
mark, it is usually used to detect the modified region in an

Table 1: Comparison between existing authentication methods and our system.

Technique Type Primitive Supported
Editing

Negl. Error
Probability

Performance
Size Overhead Efficiency

Digital Signature Active CP × ✓ O(1) O(N)
[8] [2] Passive ML limited × – –

[15] [19] Active SW limited × O(N) O(N)
[9] [20] Active PH limited × O(N) O(N)

VILS [6] Active CP predefined ✓ O(1) O(K)
PhotoProof [17] Active CP any ✓ O(1) O(N logN)

Photo Assurance (Ours) Active CP any ✓ O(1) O(M logM)

Primitive can be Cryptography Proofs (CP), Semi-fragile Watermarking (SW), Perceptual Hash (PH), or Machine Learning (ML). N:
image size (pixels); M: editing region (pixels); K: number of predefined operations.

image, which is widely used to track copyright infringement
and authenticate banknotes. However, the digital watermark
cannot distinguish the intention of the modification no matter
whether it is malicious or authorized.
Crypto-based methods operate based on cryptography
tools for image authentication, thus they are strict and do
not tolerate any image modification. The digital signature
scheme [14] is commonly used, where the signature is pro-
tected by rigorous mathematical theories. An authentication
tag is generated by signing the hash values through a pre-
generated private key. The image-tag pair is transmitted
to the image users for authenticating the image through a
pre-generated public key. It is not possible to manipulate an
image without invalidating the corresponding tag. However,
this naive signature-based approach does not work for the
authentication of images after authorized edits. To this end,
advanced cryptographic primitives, such as Zero-Knowledge
Proof, bilinear-paring, and accumulators are developed.

PhotoProof [17] is an active image authentication method
based on the concepts of Zero-knowledge Proof (ZKP) and
digital signature. This method achieves security and privacy
guarantees for general image editing, where the verification
can perform directly on the edited image, while not revealing
information of the source image. However, it suffers from
unacceptable execution time and memory usage. PhotoProof
takes about 360 seconds to generate a proof for an 128×128
image, and the public key used to generate the proof is as
large as 2 GB. This disadvantage is due to that the entire
image is hashed completely in the ZKP implementation,
which is very inefficient. Several approaches [6, 7] trade the
editing flexibility for higher system efficiency, in that only a
small set of pre-defined editing operations are allowed.

In this paper, we mitigate the trade-off of the ZKP-based
methods with a region-aware design. The experiments show
that our method is practical for real-world usage.

3 Cryptography Tools
We describe the cryptographic tools used in our system.

Generally, a secure signature scheme should provide exis-
tential unforgeability against adaptive chosen-message at-
tacks, based on the standard definition of [14]. A signature
scheme generally contains three algorithms:

• (pk,sk) ← KeyGen(1λ). KeyGen(·) is a polynomial-
time algorithm that takes a security parameter as input
and outputs a secret/public key pair (sk,pk).

• τ ← Sign(sk,x). Sign(·) takes a secret key sk and a mes-
sage x as input and outputs a tag τ .

• accept/re ject← Verify(pk,τ,x). Verify(·) takes a pub-
lic key pk, a message x and a signature τ as input, and
returns a verified result of accept or reject (accept implies
that the message-tag pair is valid).

Non-interactive Zero Knowledge Proof (ZKP) is a pro-
tocol that one party (prover) can prove the truthness of a
predefined statement to another party (verifier), while avoid-
ing conveying any additional information apart from the fact.
Requirements that need to be satisfied by any ZKP are:
1. Completeness: As long as both the prover and verifier

behave honestly, ZKP works for “true proofs”.
2. Soundness: The prover shall not be able to generate

“false proofs” without the knowledge of the witness.
3. Zero-knowledge: No knowledge about the prover is

revealed to the verifier other than the knowledge of proof
being true or false.
We use a standard Merkle tree scheme Merkle :=

{Path,Hash}, where Hash compresses the input into a short
digest called root. Given the input data, the root, and a lo-
cation index i, Path outputs a path (of the logarithmic size
of the data), proving the consistency of the data at location
i. Anyone holding the root can verify efficiently the validity
of the consistency claim from Path. A simple Merkle tree
scheme follows from any collision-resistant hash functions.

4 Photo Assurance System

Our photo assurance system aims for three key advan-
tages in design: (1) We allow the editor to prove the editing
operations on an authenticated sensitive region without re-
vealing it. (2) We allow the user to verify the editor’s proof.
(3) The system should run efficiently for both proving and
verifying schemes. We construct our region-aware image
authentication method based on digital signatures, ZKP, and
Merkle tree. The digital signature is used to authenticate the
source image. We combine the digital signature and ZKP to
achieve (1) and (2). To achieve (3), we tile the source image

Algorithm 1: Auth
Input:

Private key sk, original image I, tile config T
Output:

The image-tag pair (I,τ)
1 Follow the T to tile I into i0, i1, ..., it−1
2 H = {Hash(ik) | k ∈ {0,1, ..., t−1}}
3 hI ←Merkle.Hash(H)
4 τ ← Sig.Sign(sk,hI)
5 return (I,τ)

and only use ZKP to authenticate the edited tiles1 because of
the long authentication time of ZKP. Furthermore, we use the
Merkle tree to jointly combine the hashes of the edited tiles
E and non-edited tiles Ec to support the digital signature,
which can directly verify the entire image with only a single
hash. This design significantly reduces the communication
overhead for hash transmission.

Fig. 2 shows our authentication framework. The frame-
work includes three heterogeneous roles, namely, image
producer, image editor, and image user. In the beginning,
the producer tiles the source image I according to a tiling
configuration T (with vertical and horizontal tile sizes) and
generates a hash set M (which contains a hash per image tile
Ii). Then, the producer uses the Merkle tree to concatenate
these hashes to generate a single image hash hI . Image pro-
ducer signs hI with private key sk and outputs a signature as
the authentication tag τ . The editor builds a Merkle tree in
ZKP and merges the hashes of the non-edited tiles Hn and
edited tiles Hm again to prove the integrity of the input image
using τ . Besides, the editor edits several image tiles E with
certain local editing functions to protect the signed sensitive
regions and then merges the edited tiles Eedit with the non-
edited tiles. After verifying the hashes and editing the image
with ZKP, the editor generates a ZKP proof π (named photo
assurance) to jointly authenticate the integrity of the source
image and the performed editing function. With the edited
image I′ and photo assurance π , users can directly verify
I′ and the editing operations with π by running the ZKP
verification algorithm without knowing the source image I.
Detailed Algorithms. Our scheme includes five proba-
bilistic polynomial time algorithms (Setup, KeyGen, Auth,
Edit-P, Verify). Setup, KeyGen, and Verify have similar
structures as the standard digital signature and ZKP. Due to
the space limits, we only detail Auth and Edit-P. Generally,
our system uses the following building blocks:

• Sig := {KeyGen,Sign,Verify} is a signature scheme.
• Π := {Setup,Prove,Verify} is a non-interactive ZKP

scheme for general Non-deterministic Polynomial-time

1We use the edited tile here because the sensitive regions will be divided
by several image tiles and not all sensitive regions will be edited.

Algorithm 2: Edit-P
Input:

Public key pk, the image-tag pair (I,τ), the set of
edited tiles E, a tile config T , a ZKP proving and
verification key Pub, an editing function f

Output:
The edited image I′, the Photo Assurance π

1 I = E ∪Ec

2 Hn = {H(in) | n ∈ Ec}
3 The following operations are in ZKP (e.g., Circom).
4 Hm = {H(im) | m ∈ E}
5 H = Hn∪Hm
6 hI ←Merkle.Hash(H)
7 if Sig.Verify(pk,(hI ,τ)) ̸= 1 then
8 return reject;
9 I′ = f (I)

10 Take out crs f from Pub
11 Run the zero-proof π = Π.Prove(crs f , I, f , pk)
12 return (I′,π)

(NP) languages.
• Merkle := {Path,Hash} is a Merkle tree scheme.

A photo assurance scheme with respect to the func-
tion class F consists of the following algorithms. In
Setup(1λ ,F), for every function f ∈ F , the algo-
rithm runs Π.crs f ← Π.Setup(1λ ,L f) of the following
NP language L f : {(pk,y) : ∃(x,τ) such that f (x) = y and
Sig.Verify(pk,x,τ) = 1}. Define Pub = {Π.crs f } f∈F and
publish Pub as public information. In KeyGen(1λ), the algo-
rithm sets (pk,sk) := (Sig.pk,Sig.sk)← Sig.KeyGen(1λ).

In Algorithm 1 (Auth), the original image is tiled into
several sub-image Ik according to the tile configuration T .
We calculate the hash value hk of each image tile Ik and run
Merkle.Hash() to obtain the hash hI of the original image.
Finally, the image producer generates the image-tag pair (I,τ)
and sends it to the image editor. In Algorithm 2 (Edit-P),
the hash computation of the image tiles of non-editing area
is offloaded outside the ZKP. In ZKP, the editor calculates
the hash of only the edited image tiles and uses Hn and Hm
as the inputs to Merkle.Hash(H) to calculate the hash hI of
the source image and verify the tag τ of the source image
from the image producer. In Verify, given the input of public
parameter Pub, public key pk, function f ∈F , and a pair
of image and assurance (I′,π), the image verifier (user) take
out crs f from Pub and runs the Π.Verify(crs f , I′,π,pk) to
verify the assurance sent by image editor.

5 Experiment Results

Experimental Settings. We implement our system with
two javascript ZKP packages: Circom [16] and snarkjs [12].
Circom is a domain-specific language that defines arithmetic

1e6

Image Size: 256x256 Image Size: 512x512

Figure 3: Performance trade-off between the tile and the
edited sizes. The number of R1CS constraints is positively
correlated to the execution time.

Table 2: Performance Breakdown on Different Image Sizes.
R.-A., Sig., and Mkl represent Region-Aware, Signature, and
Merkle Tree, respectively.

R.-A. Size Edit Sig. Hash Mkl R1CS (M)

No

32x32 6% 40% 54% - 0.29
64x64 8% 12% 79% - 0.16

128x128 8% 4% 88% - 0.57
256x256 9% 1% 90% - 2.23

Yes

32x32 7% 52% 18% 23% 0.42
64x64 11% 19% 28% 43% 0.11

128x128 20% 9% 51% 20% 0.25
256x256 26% 3% 65% 6% 0.77

circuits to generate the circuit for ZKP and compiles an edit-
ing function to a Rank-1 Constraint System (R1CS). The
snarkjs package is a JavaScript-based zk-SNARK implemen-
tation that carries out the process of generating and verifying
the proof. We adopt the Edwards-Curve Digital Signature
Algorithm [13] as the digital signature scheme because it is
efficient and extensible. To improve hashing efficiency, we
adopt a ZKP-friendly hash, POSEIDON [11], for both the
digital signature and ZKP schemes.

For the hardware specification, we implement the image
editor on a Macbook Air laptop (Core M1, 16GB RAM) with
the snarkjs package. We implement the user on a desktop (In-
tel i7-6700K @4.0GHz CPU, 16 GB RAM), and the Trust-
setup server on a workstation (Intel i9-9820X @3.3GHz
CPU, 128 GB RAM) with Circom and snarkjs for support-
ing image editors to generate crs f . For secure transmission,
we adopt the Secure File Transfer Protocol (SFTP). We im-
plemented five common image editing functions including
mosaic, collage, color adjustment, cropping, and blur. We
omit the function details due to space limitations.
Performance Analysis. The performance bottleneck of our
system is the ZKP scheme. We use the number of R1CS con-
straints as an indicator to evaluate the system performance,
as the number and the execution time are highly correlated.
We analyze the performance impact of the five ZK modules:
region merging, signature verification, image editing, Merkle
tree, and hashing. The time for region merging can be ne-

Table 3: Performance for protecting Redaction images. The
time represents the proof time. The privacy attributes of
No.1-5 are the face, driving license, address, birthday, and
credit card, respectively. (∗approximate value)

No. Image Size
(pixels)

Edit Region
(pixels)

[17]’s
Time∗

Our
Time Opt.

01 900×674 62,050 (10%) 188 m 58.5 s 180×
02 500×333 754 (0.4%) 51 m 1.75 s 1,740×
03 1,024×683 8,292 (1.2%) 217 m 9.9 s 1,320×
04 2,100×1,394 1,822 (0.06%) 911 m 20.4 s 2,700×
05 1,024×633 17,118 (2.6%) 201 m 17.9 s 660×

glected because the process does not increase the number
of R1CS. The time for signature verification is essentially a
constant of the security parameter, as in the hash-and-sign
paradigm, signature verification of a message can be done
by verifying a short hash.

To show the effectiveness of region-aware design, we
analyzed both non-region-aware and region-aware ZKP cir-
cuits. Table 2 shows the performance breakdowns. In the
non-region-aware experiment, we can see the difference in
time proportion of editing the image, generating a digital sig-
nature, performing image hashing, and building the Merkle
Tree. The hashing gradually dominates the execution time
compared with editing and signature when image size in-
creases. With the region-aware design, the effort for hashing
decreases. Then, the total number of R1CS constraints de-
creases even if the system includes an additional process
for building the Murkle tree. The results demonstrate the
effectiveness of our region-aware design. Table 4 shows
the performance comparison with existing state-of-the-art
approaches [6, 7, 17]. The approaches of [6, 7] adopt accu-
mulator and bi-linear pairing methods, however with limited
support of editing operations. Thus, this method is less prac-
tical, despite that this method runs faster than PhotoProof. In
theory, PhotoProof and our system can support an unlimited
number of editing functions. Our system achieves 15×/60×
faster computation time in KeyGen/Proof and 25× lower
Proof size when compared with PhotoProof.

To test the performance of our system on real-world im-
age editing scenarios that involves privacy protection, we
conducted experiments on the Redaction dataset [18]. The
dataset categorizes the sensitive information of the images
into 68 attributes. Overall, the average size of the sensitive
region is about 17.6% of the total image pixels. The statistic
coincides with our assumption that sensitive regions only
take a small portion of the source image. Table 3 reports
the execution time of our system on five randomly selected
images edited by image mosaic. Compared with Photo-
Proof [17], our performance improve significantly, ranging
from 180× to 2,700× faster. The execution time depends
on the size of the source image and the number of edited
tiles. This result shows that our region-aware design and
system implementation is effective and can greatly speed up

Table 4: Performance comparison of the proposed system with existing methods. The number of possible editing represents
the number of supported editing functions. The setting of the editing area in the experiment is 64×64 pixels.

Scheme Image Size
(pixels)

of Possible
Editing

Number of
Gates

Time Cost in Seconds (s) Memory Cost (KB)
KeyGen Proof Verify Key Size Proof Size

[7] 128×128 1000 – ≈ 1 0.33 0.025 13 ≤ 2
VILS [6] 128×128 1000 – ≈ 1 0.35 0.018 15 ≤ 2

PhotoProof [17] 128×128 Unlimited 12,531,999 ≈367 306 0.5 2.6×106 2.67
Photo Assurance (Ours) 128×128 Unlimited 200,594 ≈ 26 5.45 0.5 1.1×105 0.8

photo assurance in real use cases.
Trade-off in our system involves several factors: the im-
age tile size, image editing, Merkle tree construction, and
hashing. The time for the construction of the Merkle tree
is proportional to the number of leaves (tiles) in the tree.
While the tile size increases, the number of leaves decreases,
which reduces the time for building the tree. The time for
hashing the whole image is positively correlated to image
tile size. The tile size also greatly affects the R1CS size for
generating the photo assurance π in the ZKP implementation.
Therefore, selecting a proper tile size is critical for reducing
execution time. Fig. 3 shows the impact of the R1CS size
under different edited regions and image sizes. The best
tile size for a 256×256 image is 20×20, and for 512×512
image it is 45×45, for all edit sizes. Based on the best tile
size, we investigate the performance impact caused by the
sizes of the edited region and the image. In general, the hash
computation is the performance bottleneck in our system,
as the hashing time is much larger than the time needed for
building the Murkle tree.

6 Conclusion

We present Region-Aware Photo Assurance, an efficient
active image authentication system based on ZKP and cryp-
tographic tools. In our system, the image editor can create
proofs of editing operations and publish the edited images
for open authentication. Any image user can verify the
edited image using the proof. We mitigated the trade-off
between the flexibility of the editing function and execution
efficiency. We demonstrated the practicality of our method
with extensive experiments. Future work includes extend-
ing our framework to additional multimedia types, therefore
contributing a step toward trustworthy media content and
media forensics.

References

[1] S. Bakhshi, D. Shamma, and E. Gilbert. Faces engage us: Pho-
tos with faces attract more likes and comments on Instagram.
In CHI’14, page 965–974, 2014.

[2] E. Bartusiak, S. Yarlagadda, D. Güera, P. Bestagini, S. Tubaro,
F. Zhu, and E. Delp. Splicing detection and localization in
satellite imagery using conditional gans. In MIPR, pages
91–96, 2019.

[3] S. Battiato, O. Giudice, and A. Paratore. Multimedia forensics:
discovering the history of multimedia contents. In CompSys-
Tech, pages 5–16, 2016.

[4] G. Becker. Merkle signature schemes, Merkle trees and their
cryptanalysis. Ruhr-Universität Bochum, 12:19, 2008.

[5] K. Bhagtani, A. Yadav, E. Bartusiak, Z. Xiang, R. Shao,
S. Baireddy, and E. Delp. An overview of recent work in
media forensics: Methods and threats. arXiv, 2022.

[6] H. Chen, X. Huang, J. Ning, F. Zhang, and C. Lin. VILS: A
verifiable image licensing system. IEEE TIFS, 17:1420–1434,
2022.

[7] H. Chen, X. Huang, W. Wu, and Y. Mu. Efficient and secure
image authentication with robustness and versatility. Science
China Information Sciences, 63(12):1–18, 2020.

[8] D. Cozzolino and L. Verdoliva. Noiseprint: a CNN-based
camera model fingerprint. IEEE TIFS, 15:144–159, 2019.

[9] R. Davarzani, S. Mozaffari, and K. Yaghmaie. Perceptual
image hashing using center-symmetric local binary patterns.
Multimedia Tools and Applications, 75(8):4639–4667, 2016.

[10] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of
identity. Journal of cryptology, 1(2):77–94, 1988.

[11] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and
M. Schofnegger. POSEIDON: A new hash function for zero-
knowledge proof systems. In USENIX Security, pages 519–
535, 2021.

[12] Iden3. SNARKJS: Javascript implementation of zk-SNARKs.
https://github.com/iden3/snarkjs, 2022.

[13] S. Josefsson and I. Liusvaara. Edwards-curve digital signature
algorithm (EdDSA). Technical report, 2017.

[14] R. Kaur and A. Kaur. Digital signature. In IEEE ICCS, pages
295–301, 2012.

[15] C.-Y. Lin and S.-F. Chang. Semifragile watermarking for
authenticating jpeg visual content. 3971:140–151, 2000.

[16] J. Muñoz-Tapia, M. Belles, M. Isabel, A. Rubio, and
J. Baylina. CIRCOM: A robust and scalable language for
building complex zero-knowledge circuits. 2022.

[17] A. Naveh and E. Tromer. PhotoProof: Cryptographic image
authentication for any set of permissible transformations. In
IEEE S&P 2023, pages 255–271, 2016.

[18] T. Orekondy, M. Fritz, and B. Schiele. Connecting pixels to
privacy and utility: Automatic redaction of private information
in images. In IEEE CVPR, pages 8466–8475, 2018.

[19] R. Sun, H. Sun, and T. Yao. A SVD-and quantization based
semi-fragile watermarking technique for image authentication.
In ICICSP, volume 2, pages 1592–1595, 2002.

[20] Z. Tang, X. Zhang, X. Li, and S. Zhang. Robust image hashing
with ring partition and invariant vector distance. IEEE TIFS,
11(1):200–214, 2015.

[21] L. Wu, F. Morstatter, K. Carley, and H. Liu. Misinformation
in social media: Definition, manipulation, and detection. ACM
SIGKDD Explorations Newsletter, 21(2):80–90, 2019.

https://github.com/iden3/snarkjs

	Introduction
	Related Work
	Cryptography Tools
	Photo Assurance System
	Experiment Results
	Conclusion

