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Abstract

We introduce an improved text-to-sketch synthesis
method using two-stage dual augmentation based on the
large-scale pre-trained CLIP and CLIPDraw models. In
the first stage, the input text is fed to CLIPDraw to produce
text augmentation adaptively. In the second stage, attention
mechanisms and structural images with lower strokes are
adopted for image augmentation enhancement. Parameters
of the Bezier drawing curves are optimized using global and
local loss terms. Our method produces visually plausible
drawings with better stroke layouts and improved drawing
details. There is no need for model re-training or parameter
tuning. We further utilize CLIPScore, a reference-free met-
ric, to evaluate the matching of the generated image against
the input text description. Experimental results show that
the proposed method produces improved drawing sketches.

1 Introduction
Text-to-sketch synthesis is a technology that creates

plausible curve-based drawing images from natural lan-
guage inputs; see Fig. 1. Understanding the relationship be-
tween the natural language descriptions and the scene struc-
ture in the generated image is the key, which is relatively
simple for humans but non-trivial for AI algorithms.

In the past few years, a tremendous amount of effort
has enabled computers to generate or synthesize visually-
plausible images based solely on textual descriptions. This
line of work has improved significantly with the advent of
Deep Neural Networks (DNN). The Generative Adversarial
Network (GAN) [7] have boosted several vision-language
tasks including text-to-image generation [31], image-to-
image translation [10], and image style transfer [16]. GAN
consists of two main components, namely the generator and
the discriminator. For text-to-image GAN, the generator
creates images from the text descriptions, and the discrimi-
nator aims to discern generated images from real ones. Re-
cently, diffusion based [9, 17] text-to-image models have
achieved improved results over GAN-based methods.

Training an end-to-end text-to-image generation model
from scratch requires a well-labeled dataset (such as COCO,

Figure 1: Example drawings generated by our method. Improved
Bezier curve-based drawings are produced from the input texts
without the need of training a large model or parameter tuning.

which contains multiple captions for each image) and sig-
nificant computation resources. A recent breakthrough de-
viating from this is to leverage Large Language Models
(LLM), for example the large-scale vision-language pre-
trained models such as CLIP [20]. Such foundation mod-
els are scalable to synthesize arbitrary images not limited
by the domains of the training dataset. CLIPDraw [4] and
StyleCLIPDraw [23] can produce images with wide con-
texts through an evaluation perspective based on CLIP, by
minimizing the semantic gap (or distance) between the text
input and the generated image. Instead of fine-tuning the
weights of the generation model, CLIP-based methods iter-
atively optimize the strokes (from random initialization) to
capture general visual features such as object shapes. Such
stroke-based methods pay more attention to the larger fea-
tures and less to the details; they alleviate the drawing devi-
ation issues of GAN-based methods.

Despite the breakthrough of text-to-sketch methods
based on CLIPDraw, they struggle with the following com-
mon challenges: (1) Only weak (global) image cropping
augmentations are used, which ignores the local object con-
tents; these methods cannot address the difficulty of shallow
solutions in the CLIP optimization [23]. (2) Existing CLIP-
Draw based methods [4, 23] are sensitive to the selected
hyper-parameters, in particular, the number of strokes in the
drawing. (3) Only image augmentation is considered in the
optimization; there is no consideration of text augmenta-
tion, despite the fact that there are often many ways to de-
scribe a scene using natural language. (4) There is no suit-
able metric to evaluate the quality or suitability of the gen-
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Figure 2: The overall architecture of the proposed method. In Stage I, we use CLIPDraw to generate text augmentation. In Stage II, both
the augmented text batch and the augmented image batch are fed into the CLIP encoder to calculate the global and local loss terms, which
are used to optimize the Bezier drawing curve parameters using back-propagation.

erated image that should match the given text description.
Existing works only present visual results without quantita-
tive evaluation.

In this paper, we proposed a novel text-to-sketch synthe-
sis approach based on CLIP and CLIPDraw. Our method
considers both global and local patch consistencies while
performing data augmentation for drawing optimization.
Fig. 2 provides an overview. Our method comes with the
following advantages. (1) It does not require any elaborate
design on manually setting a suitable number of strokes for
each text input. (2) In addition to the standard image aug-
mentations, we apply the attention mechanism [11] to en-
hance the image inputs and generation quality. (3) We intro-
duce a text augmentation method in addition to image aug-
mentation in the drawing optimization. The proposed text
augmentation is fully adaptive and has no need for manual
weight tuning. (4) We adopt CLIPScore [8] as a quantita-
tive evaluation metric to show that our produced drawings
better match the text descriptions over CLIPDraw. Figs. 1,
3, and 4 show visual examples generated from our method.

2 Related Work

Text-to-image synthesis has attracted wide research at-
tentions [5, 1]. The first text-to-image approach [22] based
on GAN in 2016 works by replacing the class label with
a text embedding. The GAN discriminator distinguishes
the generated and realistic images and tells apart the mis-
matching text embedding and a real image. StackGAN [33]
and StackGAN++ [34] are introduced to improve the syn-
thetic image resolution using multiple generators. Under a
similar insight, FusedGAN [2] applies two generators that

share a common latent space. PPAN [6] overcomes the need
for multiple generators in using one pyramid generator to
match three independent discriminators.

With the advent of the attention mechanisms, At-
tnGAN [31] can focus on relevant words and generate
images more efficiently. SD-GAN [32] combines GAN
with the Siamese Network and processes the branches with
shared weights. CycleGAN [36] and MirrorGAN [19] use
cycle-consistent adversarial networks, where the genera-
tor optimizes the synthesized features iteratively. DM-
GAN [37] uses dynamic memory networks to achieve
high-resolution generation. StyleGAN [13] and TextStyle-
GAN [27] provide image style transfer to effectively change
the style of the original image. Regarding data augmenta-
tion, C4Synth [12] utilizes multiple descriptions to depict
one image and enhance the semantic information. AVQA-
GAN [18] uses question-answer pairs as text descriptions.
The layout-to-image [28] comes with an insight that local-
ization labels (bounding boxes) are declared to provide po-
sition information to the generator, such that the generator
can produce images with more spatial supervision.

In addition to GAN-based methods, recent text-to-
image generators are based on the large-scale Contrastive
Language-Image Pre-training (CLIP) model [20] and Dif-
fusion Probabilistic Model [9]. CLIP-GEN [29] introduces
a self-supervised text-to-image generator using CLIP to re-
duce the cost of paired text-image data. In [21], a two-stage
model consisting of CLIP and a decoder improves the diver-
sity of visual expression. The DDPM [9] and GLIDE [17]
are based on powerful diffusion models. All these tech-
niques generate photo-realistic images other than a sketch



or drawing. They demand much well-labeled data and a
huge amount of training computation. In contrast, CLIP-
Draw [4] and StyleCLIPDraw [23] are proposed based on
the pre-trained CLIP model, such that plausible, realistic
drawings can be generated. The drawing is based on pa-
rameterizing a set of Bezier curves (with random initializa-
tion) to characterize the colors, opacity, and coordinates of
the drawing strokes. The Bezier curves are then controlled
and optimized via carefully crafted loss terms to iteratively
improve the similarity between the text-image pairs esti-
mated using the CLIP cosine distance. The drawing image
is generated via vector rendering [15] of the resulting Bezier
curves.

Data augmentation has a major impact on Natural Lan-
guage Processing (NLP) and Computer Vision (CV) tasks.
The issue of insufficient training data can be alleviated by
applying random transformations to the data. Basic geo-
metric image augmentation [25] include flipping, rotation,
shearing, cropping, etc. Typical text augmentation [30] in-
cludes text replacement, insertion, swapping, deletion, etc.

Image enhancement has been extensively used in mul-
tiple CV tasks to improve image quality and analysis [24].
Image enhancement can also mitigate the negative impact
of low image quality. Typical image enhancement meth-
ods rely on numerical filters, such as Gaussian [3] filter.
Inspired by [11], we apply the attention mechanism to en-
hance images during drawing generation.

3 Method
A main novelty in our text-to-sketch approach is the two-

stage dual augmentation, that we perform both text and
image augmentations based on CLIP and CLIPDraw in two
stages to improve the drawing synthesis process. Fig. 2
shows the overall pipeline. Given a text description as input,
we first use CLIPDraw to generate an initial drawing with
64 strokes with a text embedding, which is then fed to CLIP
to obtain text augmentations. We keep the top 5 augmented
texts and add a prefix “a photo of” to the objects provided in
the augmented texts. The augmented texts and the original
input text constitute our augmented text batch in the Stage
I processing (§ 3.1). We next perform drawing image aug-
mentation and again use CLIP to estimate the similarity of
the resulting drawing and the augmented text batch. Such
curve drawing, augmentation, and parameter optimization
are performed in turns, which iteratively improve the draw-
ing via back-propagation.

For the curve-based image drawing, the number of draw-
ing strokes has a direct and significant impact on the draw-
ing quality. Drawings with high strokes typically have rich,
realistic details. In contrast, drawing with low strokes are
typically salient in the overall structure. We use two set-
tings, and refer to the drawing with 64 Bezier curves to be
low strokes and 256 curves to be high strokes, respectively.

Algorithm 1 The Proposed Text-to-Sketch Algorithm
Input text T ; # Bezier curve strokes: low Nl, high Nh; pre-trained
CLIP, VGG, CLIPDraw.
Begin:
// Stage I: text aug. using the top 5 CLIPDraw text predictions
ICLIPDraw = CLIPDraw (T,Nlow)
Taug
0,...,4 = CLIP.ImgTextFeatureRanking (ICLIPDraw)

T enc
0,...,4 = CLIP.TextEnc (Taug

0,...,4) // Encode aug. texts
// Bezier curve initialization:
C0,...,Nl

, C0,...,Nh
= RandomBezierCurve()

Loverall = 0
// Stage II: image aug. and drawing optimization
while e = 0 to epoch E do

while resolution r ∈ { low/high strokes l, h} do
Bg = ∅ // Global image batch set
Ir = RenderCurvesToImage (C0,...,Nr )
Iaugr = ImageAugmentation (Ir)
// Encode local image batch:
Benc

c = CLIP.ImgEnc(Iaugr )
Lc = − 1

N

∑N

i=1
LCLIP (Benc

c , T enc
0,...,4)) //Eq. 3

Mr = VGG (Ir) // Self-attention map in Eq. 1
Mc

r = GrayscaleToColor (Mr)
Bg .append (Ir,Mc

r )
// Encode global image batch:
Benc

g =CLIP.ImgEnc(Bg)
Lg = −LCLIP (Benc

g , T enc
0,...,4) // Eq. 2

Loverall+ = λgLg + λcLc // Eq. 4
end while
// Back-propagation to optimize drawing curves:
C∗

0,...,Nl
, C∗

0,...,Nh
←Minimize (Loverall)

end while
Output the high-stroke drawing I∗h = Render (C∗

0,...,Nh
)

In the Stage II processing (§ 3.2), the Bezier curve param-
eters in both low and high strokes are iteratively improved.

During the iterative optimization process, the Bezier
drawing parameters are updated based on a set of loss terms
from the CLIP text-image cosine similarity (§ 3.3). The
learning optimization will push the high-stroke images to
show structural details from low-stroke samples, while low-
stroke samples will obtain detailed supervision. As a result,
the randomly initialized Bezier curves will be refined itera-
tively into the final drawing as in Fig. 4. Algorithm 1 shows
the detailed steps of the proposed text-to-sketch algorithm.

3.1 (Stage I) Adaptive Text Augmentation
We aim to develop an automatic, effective text augmen-

tation to improve the CLIP-based text-to-sketch synthesis
capability. Our idea is partly motivated from that CLIP-
Draw drawing can be tuned manually by adding undesired
text descriptions with negative weights [4], which can be
viewed as a kind of passive text augmentation. In our case,
we develop an adaptive text augmentation based on the rel-
evant text embedding ordering provided by the CLIP pre-
trained model. Our method does not require any user inter-
vention and can introduce positive text prompts adaptively
solely based on CLIP.

Starting with the input text description, CLIPDraw is



used to produce an initial drawing with low 64 strokes, such
that less computation is required. Then, the drawing im-
ages are generated with top text predictions from CLIP. We
view these top CLIP text predictions as extensions (or aug-
mentation) of the input text, as the generated images are
most likely related to these predictions ranked by CLIP.
We add the prefix “a photo of” (which is the primary and
frequently-used text prefix in CLIP) to each top-ranked pre-
dicted text and form the text augmentation.

3.2 (Stage II) Image Augmentation/Enhancement

For each rendering image generated from the Bezier
drawing curves, we randomly crop the image into n patches.
We then apply random perspective augmentation for each
patch. Such mild augmentation is proven to be effective in
CLIPDraw [4] with improved drawing quality. Next, we
feed the augmented patches to the image encoder and text
augmentation to the text encoder for local loss computation.
For the global perspective, we first feed the global images
as inputs to a VGG16 [26] backbone to calculate global spa-
tial attention maps. It is shown in [11] that feeding a global
spatial attention map to networks can enhance the quality of
the generated images. Since most drawing contains a single
main object thus the scene is not complex, a straightforward
spatial self-attention [35] is sufficient. The attention map
Matt calculation is based on the following spatial average
pooling:

Matt =

∑c
i=0 Fi

c
, (1)

where F ⊆ RH×W×C is a feature map from the last con-
volutional layer of VGG16, H and W are the height and
width of the feature map, C is channel number. By averag-
ing pixels from different channels at the same location, the
self-attention map Matt can express spatial information of
the feature map very efficiently. We input the global atten-
tion maps as well as entire images to the image encoder and
text augmentation to the text encoder for global loss com-
putation, which are detailed in § 3.3.

3.3 Loss Functions

We consider two overall loss terms: (1) cosine similarity
between the global images and texts in a global perspec-
tive and (2) cosine similarity between the cropped patches
from the image augmentation and the corresponding texts in
a local perspective. Denote the augmented input text batch
as T and the rendered image batch as B. Let Bg and Bc

represent the global and local image batches, respectively.
Denote the total number of patches as N , and let Bi

c de-
note the ith local patch. Let E denote the CLIP embedding
function, and LCLIP denote the original CLIP cosine simi-
larity distance. The goal of the proposed method is to mini-
mize the overall loss Loverall. Note that the CLIP similarity
LCLIP increases during optimization; thus, we multiply −1

to LCLIP . The global loss Lg and local loss Lc are defined
as:

Lg = −LCLIP (E(Bg), E(T )) , (2)

Lc = − 1

N

N∑
i=1

LCLIP

(
E(Bi

c), E(T )
)
. (3)

The overall loss Loverall is the combination of the local and
global losses, which is minimized for the drawing optimiza-
tion:

Loverall = λgLg + λcLc, (4)

where the weighting parameters λg and λc default to 1.

4 Experimental Results
Our method takes an input text string and produces an

output sketch in about 5 minutes for each run. No training
or validation datasets are used, and no hyperparameter tun-
ing is required. This makes our method very suitable for
taking arbitrary descriptive texts as input and producing a
satisfactory, meaningful drawing; see Fig. 3 for examples.

4.1 Implementation Details
VGG16 is used as the feature extractor for spatial

attention calculation. We only use the feature maps
from the last convolutional layer to generate the self-
attention map and resize it to 224 × 224, which is
the same size as the rendered image. For image aug-
mentation, we use the cropping parameter (0.2, 0.9) for
RandomResizedCrop from torchvision.transforms,
and the perspective augmentation of RandomPerspective
with (fill = 1, p = 1, distortion scale = 0.5). Both
cropping and distortion produce 8 augmented instances for
subsequent use. For adaptive text augmentation in Stage I
(§ 3.1), we select the top 5 predictions from CLIP, excluding
the keywords in the original text. We add the commonly-
used prefix of “a photo of” from CLIP as additional key-
words for augmentation. Each text augmentation batch con-
tains 5 sentences.

For Bezier drawing curves, we use 64 and 256 strokes
for low-stroke and high-stroke curves, respectively. There
is no need to fine-tune the number of strokes for each text
to obtain the desired image. We use CLIP to generate the
similarity loss to optimize the parameters of the differen-
tiable Vector Render [15] (the module on the left side of
Fig. 2). The Bezier drawing curves are thus improved to
match the text input. We optimize 3 parameters for each
Bezier drawing curve: (1) the control point positions (each
curve contains 3 to 5 control points), (2) the curve width,
and (3) the curve color. We use Adam to optimize these 3
parameters using fixed learning rates of 1.0, 0.1 and 0.01,
respectively.

The proposed model was trained using a Tesla 100 GPU
for 1,000 optimization iterations. We take the drawing with
256 (high) strokes as the output, as it contains richer struc-
tural information with more details.



Figure 3: Comparison of the drawings from CLIPDraw and our method in terms of visual quality and the CLIPScore.

4.2 Evaluation Metric
Due to the nature of a generative model, it is hard to

define or quantify how good a generated image is, or de-
termine how well the sketch matches the input text. To the
best of our knowledge, there is no relevant evaluation met-
ric in the text-to-sketch synthesis literature due to the lack
of ground truth for the synthesized images. On the other
hand, the Amazon-Turk-like user study for evaluating the
drawing image is labor extensive, prone to errors and in-
consistencies.

To this end, we provide a quantitative evaluation using
CLIPScore [4]. CLIPScore is shown to yield similar ten-
dencies as the human subject study in [8, 14]; thus, it is
suitable to evaluate the compatibility between the input text
and the generated drawing image. Since there is no evalua-
tion dataset, and we have no access to the training text data
for CLIP, we grab all examples reported in the papers of
CLIPDraw [23] and StyleCLIPDraw [23]. We thus obtain
a total of 36 text inputs as Evaluation Samples (I). Mean-
while, we randomly generate 164 text inputs in the format
CLIP recommends, which constitutes Samples (II). Finally,
we combine the two sample sets and obtain 200 text de-
scriptions as Sample (III). For a fair comparison, we set 256
as the default strokes in CLIPDraw. We then calculate the
CLIPScores for the generated drawings from the three sam-
ple sets. Table 1 reports the average CLIPScore from these
sample sets. Observe that our method consistently outper-
forms CLIPDraw in terms of CLIPScore (i.e., text-image
compatibility) in all experiments.

4.3 Qualitative Results
Fig. 3 provides visual comparisons of our generated

drawings with CLIPDraw. Our drawings are more plausi-
ble, meaningful and with richer visual contexts. Our draw-
ing contains richer structures over CLIPDraw; for example,

Table 1: Comparison of the average CLIPScore of our method vs.
CLIPDraw (the best scores are shown in bold).

Sample Sets CLIPDraw Ours
(I) 36 samples from 83.46 92.35

(II) 164 random samples 70.89 81.54
(III) The combination of (I) and (II) 66.06 75.33

Figure 4: The drawing visualization in the iterations during our
text-to-sketch optimization for ”Forest Temple as 3D Rendered in
Unreal Engine”. Observe that the initial random curves are pro-
gressively improved to match the input text description.

see the drawing of “A 3D rendering of a temple” in Fig. 3.
Fig. 4 illustrates the optimization process for drawing “For-
est Temple as 3D Rendered in Unreal Engine”.

5 Conclusion
We presented an improved text-to-sketch synthesis

method using two-stage dual augmentation as an exten-
sion of CLIPDraw. The proposed method is very robust
and does not require hyperparameter tuning. It takes ad-
vantage of text augmentation based on CLIP predictions.
The image augmentation batch is further enhanced via self-
attention. Experimental results show that our method can
generate better-drawing images in terms of human aesthet-
ics and CLIPScore text-to-image compatibility.



Future Work includes developing solutions to address
the known limitations for drawing based on CLIP and
CLIPDraw. The bias of CLIP causes a maj limitation in
handling the drawing of multiple objects as well as com-
plex drawing descriptions. The lack of a suitable evalua-
tion metric or a way to ground-truthing the aesthetics and
suitability of the drawing is another bottleneck. How best
to measure or evaluate the drawing image quality without
using ground truth is still an open question. If a powerful
and efficient evaluation approach exists, then such a metric
can be used for loss function design and optimization. A
feasible approach might be to create a large enough text-to-
sketch dataset such that existing metrics, including IS and
FID can be used to evaluate the generated image quality.
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