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ABSTRACT

Fisheye lenses inherently offer a wider, omnidirectional cov-
erage area compared to traditional cameras, which can reduce
the number of cameras required for intersection monitor-
ing. In our study, we introduce a new large-scale Fisheye
DEtection and TRACking (Fisheye-DETRAC) dataset. This
dataset is designed for the training and assessment of 2D road
object detection and multiple object tracking from fisheye
cameras, containing a total of 470K bounding boxes span-
ning five classes: Pedestrian, Bike, Car, Bus, and Truck. The
dataset includes 20,000 images, 157,000 bounding boxes, and
313,204 identities captured in 27 videos. These videos were
recorded using 22 fisheye cameras deployed for traffic mon-
itoring in Hsinchu, Taiwan, with resolutions of 1080x 1080,
1920x1920, and 1280x1280. These images exhibit signifi-
cant distortion and often feature numerous road users, partic-
ularly people on scooters. This paper further focuses on ve-
hicle tracking and proposes a novel Hybrid Data Association
(HDA) method for tracking vehicles directly from a fisheye
camera. The benchmark is available at https://dakors.com,
providing annotation formats compatible with PASCAL
VOC, MS COCO, YOLO, and MOT. The Fisheye-DETRAC
dataset promises to be a substantial contribution to the field
of fisheye video analytics and smart city applications.

Index Terms— Fisheye Benchmark, Fisheye Camera,
Multiple Object Tracking (MOT), Object Detection

1. INTRODUCTION

Traffic flow estimation is a key task for monitoring and man-
aging traffic streams in an intelligent transportation system.
To estimate traffic flows from a whole multi-lane intersection,
a fisheye camera will be more suitable compared to an CCTV
camera due to its wider Field of View (FOV).

In recent years, fisheye camera applications attracts grow-
ing attentions, as 360° omni-directional wide coverage can be
easily obtained when compared with the narrow FOV of tradi-
tional cameras. Employing fisheye cameras for traffic mon-
itoring systems reduces the required number of cameras for
monitoring areas such as street intersections.

In the last decade, the amount of road traffic object de-
tection datasets in the literature has increased greatly, as traf-
fic monitoring is an important research topics in computer vi-
sion; see Table 1 for an overview. However, to the best of our
knowledge, there is no open competition website constructed
from fisheye traffic surveillance cameras for road object de-
tection and multiple object tracking tasks. The only exception
is the fisheye based road dataset [ 1] captured by a car dash
camera for self-driving vehicle usage.

In this study, we introduce a new large-scale Fisheye
DEtection and TRACking (Fisheye-DETRAC) dataset that is
specifically designed for the training and assessment of fish-
eye road object detection and multiple object tracking tasks.
It contains a total of 470K bounding boxes spanning five
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Table 1. Summary of existing road traffic datasets. The Frame column indicates the number of images containing at least
one object on them (1K = 103). The Boxes column indicates the unique object bounding boxes. In the remaining columns, ‘+
indicates the availability of a supported feature, ‘D’ indicates the target is a detection task, ‘3D’ indicates a three-dimensional
detection task, ‘T’ indicates a tracking task, and ‘Seg’ indicates a segmentation task.

Dataset Frame Boxes Task Vehicles Pedestrian Weather Occlusion Altitude View Classes Location Type
MIT-Car 2000[ 1] 1.IK 1.1K D + - Surveillance 2D
KITTI-D 2014[2] ISK  80.3K D + + + 3 Car 2D

UA-DETRAC 2015[3] 140K 1210K D,T + + + 4 Surveillance 2D
Detection in LLC 2017[4] 7.5K 15K D + + 12 Car 2D
CARPK 2017[5] 1.5K 90K D + - Drone 2D
UAVDT 2017[6] 80K 841.5K D,T + + + + + - Drone 2D
NEXET 2017[7] 50K - D + + 5 Car 2D
BDD100k 2018[&] 57K - D,T + + + 10 Car 2D
AAU RainSnow 2018[9] 22K 13297 D,Seg + + Surveillance RGB&Thermal
MIO-TCD CCTV 2018[10] 113K 200K D + + 5 Surveillance 2D
BDD100k Adas 2018[8] 100K 250K D,Seg + + 10 Car 2D
Woodscape 2018/2019[11] 10K - D,3D,T + + 7 Car Fisheye
CityFlow2D 2021[12] - 3139K D,T + Surveillance 2D
Fisheye-DETRAC [our] 20K 470.0K D,T + + + 5 Surveillance Fisheye

Fig. 1. Samples of the 5 classes in our Fisheye-DETRAC
benchmark dataset: Pedestrian (people on the streets), Bike
(people riding bicycles, motorcycles, or scooters), Car (light
vehicles such as sedans, SUVs, Vans, efc.), Bus, and Truck
(dump-truck, semi-trailers, etc.) Observe the large FOV and
distortions introduced by the fisheye lens, which provides
great opportunities and challenges.

classes: Pedestrian, Bike, Car, Bus, and Truck; see Figure 1.
The dataset includes 20,000 images, 157,000 bounding boxes,
and 313,204 identities captured in 27 videos. These videos
were recorded using 22 fisheye cameras deployed for traffic
monitoring, with resolutions of 1080x 1080, 1920x 1920, and
1280x 1280. These surveillance cameras, owned by Hsinchu
City’s police department in Taiwan, provided our data free
from licensing or consent agreement issues. We fine-selected
22 short videos, ranging from 8 to 20 minutes, from long hours
of footage collected via 35 fisheye cameras. We have also un-

dertaken the necessary precautions to anonymize visible faces
and license plates within the video frames.

The Fisheye-DETRAC dataset encompasses diverse traf-
fic scenarios and conditions, including urban highways, inter-
sections, varying light conditions, camera angles, and varying
scales of five road object classes. We exercised diligence in
labeling objects, including all visible and identifiable objects,
irrespective of their distance from the camera.

However, a fisheye camera always causes hemispherical
distortions to the flat ground, thus vehicles at different posi-
tions are quite distorted. There are two key issues to build-
ing an accurate traffic flow estimation system from a fisheye
camera. The first issue is to build a robust vehicle detector
that can detect various vehicles in real time from surveillance
videos under various conditions, such as small sizes, occlu-
sions, and perspective distortions. The second component is a
robust tracker to track each vehicle for avoiding double count-
ing or missing.

We provide two critical contributions in this work toward
a practical use of fisheye cameras for MOT traffic analysis:
(1) effective fisheye object detection and re-identification
that can run directly on the highly distorted fisheye views,
without the need of view dewarping, (2) effective fisheye
tracker that can overcome the nonlinear physical modeling
in target/tracklet association on the distorted fisheye views.
Our method is superior over most existing MOT algorithms on
fisheye cameras, as they rely on the constant velocity assump-
tion of Kalman filtering and thus require fisheye dewarping,
which is less effective and prune to error.

Notable tracking algorithms encompass the Kalman fil-
ter [14], particle filters [15], and SORT [16]. The Kalman
filter employs a linear quadratic estimation model to predict
targets’ positions over time. Particle filters use a set of parti-
cles to depict the object’s movement’s posterior distribution,
while SORT merges the Kalman filter and Hungarian algo-
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Fig. 2. Sample images from the Fisheye-DETRAC benchmark: (Top) the original unlabelled images, (Middle) the labeled
ground truths, (Bottom) the YOLOvV5x6 [13] detected objects. The columns illustrate several viewing angles, time of day,

various intersections and road participants in the dataset.

rithm for real-time multiple object tracking. These State-of-
The-Art (SoTA) methods excel at tracking object movement
through standard cameras but falter when handling hemi-
spherical distortions in images from fisheye cameras. One
solution is to ”de-warp” the distorted fisheye image for ve-
hicle detection and tracking, although this increases both the
image size and computational demands.

This paper proposes a novel Hybrid Data Association
(HDA) method for accurate traffic flow estimation from a
fisheye camera. The HDA method can search a vehicle’s next
position not only from the distorted fisheye image but also
perspective one.

We believe that the proposed Fisheye-DETRAC repre-
sents a new benchmark for fisheye video analytics. It enables
large-scale deployment of fisheye cameras, which takes ad-
vantage of the wide-angle fisheye views to improve surveil-
lance, traffic monitoring, and smart city applications.

2. RELATED WORK

2.1. Datasets

Road datasets. High-resolution, diverse, and large-scale road
datasets play a critical role in advancing and enhancing traffic
monitoring systems. In the last decade, the number of open
road datasets [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12] for 2D and
3D road object detection, single and multiple object tracking,
object segmentation tasks have significantly increased. Ta-
ble 1 provides a summary of popular road datasets that are
used in both model development as well as for benchmark-
ing and public contests. In terms of camera locations, the
following datasets are captured using fixed surveillance cam-
eras: MIT-Car [1], UA-DETRAC [3], AAU RainSnow [9],
MIO-TCD [10], and AI-City [12] datasets. The CARPK [5]

and UAVDT [6] dataasets are captured using drones. The
KITTI [2], Detection in LLC [4], NEXET [7], BDD100K [8],
and Woodscape [ | 1] datasets are captured using in-dash cam-
eras mounted on a car. In terms of FoV, all the datasets were
constructed using standard perspective cameras, with the
drawback of narrow FoV. The only exception is the Wood-
Scape dataset [11] that are captured using an in-dash 180°
fisheye camera. To our knowledge, the proposed FishEye8K
dataset is the first of the kind among the open datasets, that
are designed and constructed specifically for the development
and evaluation of road object detection using fisheye traffic
surveillance cameras.

Fixed perspective traffic camera-based datasets. Table |
shows that most datasets are captured using fixed, perspec-
tive cameras, which are limited by the narrow FoV. All the
datasets have annotations for 2D road object detection task; on
top of it, a few datasets [0, 12] have multiple objects tracking
annotation, and one [9] has segmentation mask annotation. In
2000, MIT-Car dataset [ 1] was publicly offered as a flagship
dataset pioneering the road automation research field. The
dataset has 1.1K frames, including 1.1K bounding boxes for
the vehicle detection task. In 2016, UA-DETRAC [3] dataset
was offered with 140K frames, including rich annotations of
illumination, vehicle type, occlusion, and 1210K bounding
boxes. The dataset has four classes (car, van, bus, and oth-
ers) for detection and multiple object detection tasks. In the
same year, similarly, MIO-TCD CCTV [10] dataset is offered
with 113K frames, including 200K bounding boxes for the de-
tection task. In 2018, the AAU RainSnow [9] dataset was of-
fered as a benchmark for evaluating the SoTA rain removal al-
gorithms. The dataset has 22 five-minute real-world camera
video sequences collected from 7 urban intersections cover-
ing various weather conditions, i.e., snow, rain, haze, and fog.
They have extracted 100 frames from each five-minute video



to construct 2200 frames, including 13297 bounding boxes.
Recently, in 2021, AI-City Challenge [12] was held, includ-
ing vehicle detection and re-identification on CityFlowV2-
RelD dataset and multi-target multi-camera vehicle tracking
challenge on CityFlow2D dataset. CityFlow2D dataset has
313.9K bounding boxes for 880 distinct vehicles.

Drone based datasets. Lately, drone road datasets have
been publicly offered in the literature, namely CARPK [5]
and UAVDT [6]. Both datasets were captured from a high
altitude with a viewing angle of the top by narrow FOV cam-
eras for the drone-based road monitoring systems. Thus they
are not suitable for fixed surveillance camera-based traffic
monitoring.

2.2. Algorithm

Object Detection in MOT. Object detection has been a
very active field in computer vision since the blooming of
deep learning, and it is the basis of multi-object tracking.
The extensive amount of literature can be organized into
two categories based on their network architectures: two-
stage proposal-driven [17, 18] and one-stage (single-shot)
approach [19, 20, 21], [22] improve the tracking performance
based on these given detection results. The association ability
of these methods can be fairly compared. However, the above
methods are unsuitable for multi-class tracking tasks because
they are evaluated on a single-class MOT ( multiple objects
tracking) benchmark.

Tracking by Detection. Tracking by detection approaches
form trajectories by correlating a given set of detections over
time. RetinaTrack [23] proposes a conceptually efficient
and straightforward joint model of detection and tracking,
which modifies the famous single-stage RetinaNet [24] ap-
proach to be amenable to instance-level embedding training.
The FPN [25] series detectors [20] are popularly used for
JDE [27, 28] for their excellent balance of accuracy and
speed. The CenterNet [29] is anchor-free and becomes the
most popular detector cited by most latter methods [28, 30] for
its simplicity and efficiency. Most of these methods rely on
the detection boxes on a single image for tracking. However,
the number of missing and very high hemispherical distor-
tions on bounding boxes begin to increase when the vehicle
is close to the edges of video sequence.

Detection and Tracking from Fisheye Cameras. Several
research works use a single top-view camera for object detec-
tion [31, 32] and object tracking [33]. Thanks to the boom in
deep learning, CFPN [34] is the first automatic traffic flow es-
timation system to detect smaller objects even with significant
distortions from fisheye cameras on a real-time embedded sys-
tem. However, the above SoTA method on Fisheye video did
not consider the effects of distortion from the tracking proce-
dure; instead, they focused on detection.

3. FISHEYE-DETRAC BENCHMARK

We provide detailed information on the new detection split of
the Fisheye-DETRAC dataset. Figure 2 shows sample images
of the wide-angle fisheye views, which provide new oppor-
tunities for large coverage, but also new challenges of large
distortions of the road objects.

To avoid bias, the train, val, and test sets do not share
frames from the same camera. Annotations are provided
in several standard formats, including Pascal-VOC[35], MS
COCO [36], MOT [37], and YOLO [38].

3.1. Video Acquisition

We have acquired a total of 35 fisheye videos captured us-
ing 20 traffic surveillance cameras at 60 FPS in Hsinchu City,
Taiwan. Among them, the first set of 30 videos (Set 1) was
recorded by the cameras mounted at Nanching Hwy Road on
July 17, 2018, with 1920 x 1080 resolution, and each video
lasts about 50-60 minutes. The second set of 5 videos (Set 2)
was recorded at 1920 x 1920 resolution, and each video lasts
about 20 minutes.

All cameras are the property of the local police depart-
ment, so there is no issue of user consent or license issues.
All images in the dataset will be made available to the public
for academic and R&D use.

3.2. Dataset Preparation and Characteristics

Sampling. We chose 18 videos from the recorded footage,
with 15 videos coming from Set 1. These were cropped into
shorter videos, each lasting approximately 8 to 10 minutes, ex-
cept for one that lasted 16 minutes. Using a sampling method
of one frame per 50 and 200 frames for Set 1 and Set 2 videos,
respectively, we extracted over 20,000 frames. The resulting
images were then resized to 1080 x 1080 and 1280 x 1280 for
Set 1 and Set 2, respectively.

To incorporate a wide range of perspectives on road con-

ditions, we carefully selected videos for our dataset that fea-
ture diverse camera angles, including side-view and front-
view shots, as well as varying video quality. The dataset
also includes images from different intersection types, such
as T-junctions, Y-junctions, cross-intersections, midblocks,
pedestrian crossings, and non-conventional intersections. The
videos were captured under various lighting conditions, in-
cluding morning, afternoon, evening, and night, and diverse
traffic congestion levels ranging from free-flowing to steady
and busy. Figure 2 illustrates some of the wide-ranging road
conditions with ground truth annotations of road objects and
detection results obtained from YOLOvV5x6 [13].
Object classes: We annotate 5 major classes for road objects,
namely, Pedestrian (all visible people on the streets), Bike
(riders on bicycles, motorcycles, or scooters), Car (light vehi-
cles such as sedans, SUVs, vans, efc.), Bus, and Truck (dump-
truck, semi-trailers, etc.).
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Fig. 3. The object class distributions in the detection split of the Fisheye-DETRAC dataset, categorized according to (a)

splits, (b) illumination, and (c) scale.

Distant objects: The wide fisheye lens creates a wide FoV
but also results in a panoramic hemispherical image that is
notably distorted with a barrel effect. Additionally, the camera
has a tendency to produce blurred images of objects located
around the edges of the lens. As a consequence, distant objects
can appear minuscule and indistinct. Annotating these distant
objects can be an arduous or even impossible task due to their
lack of clarity.

INlumination: Four categories of illumination conditions
were identified, namely morning (sunrise), afternoon (sunny),
evening (sunset), and night. The distribution of video se-
quences based on their respective illumination attributes is
illustrated in Figure 3(b), with the majority of bounding boxes
falling under the afternoon category. Night-time sequences
follow in second place, with morning and evening categories
trailing behind respectively. Notably, the distribution of
classes across all times of day is remarkably similar

Object scale: We define the scale of the bounding boxes
of road participants based on their size (length and width)
in pixels. The MS COCO evaluator is employed for small
and medium, and large scaled objects. However, as the size
of the image grows toward 1080 x 1080 or 1280 x 1280,
respectively for Sets 1 and 2, we doubled the size of standard
scales, i.e., small (pixels < 64 x64), medium (64 x 64 < pixels
< 192x192), and large (pixels > 192x192). The distribu-
tion of road participants in the dataset in terms of scale is
presented in Figure 3 (c), where small and medium-scaled ob-
jects make the most of the dataset. Bus and Truck classes have
a similar number of small and medium scaled objects. On the
contrary, other classes have a comparatively high number of
small-scaled objects than medium and large-scale objects.

3.3. Annotation

Annotation rules. The road participants were annotated
based on their clarity and recognizability to the annotators,
regardless of their location. In some cases, distant objects
were also annotated based on this criterion.

Notably, the night video captured by Camera 3 has the
highest number of objects. In this dataset, the dominant
classes are Bike (88,373) and Car (50,597), which can be at-
tributed to the semi-tropical location of the country where the
videos were recorded. On the other hand, the classes of Truck

(3,317) and Bus (2,982) have the lowest number of objects,
rendering the dataset highly imbalanced. Figure 1 displays
a selection of samples from all classes, showcasing various
scales. Furthermore, the distributions of classes are depicted
as bar graphs in Figure 3.

3.4. Validation

Given the complexity and effort required for the labeling task,
human errors were inevitable, and it was necessary to cor-
rect them to avoid inaccurate results. Therefore, in order to
minimize human error, we employed two semi-automatic ap-
proaches to validate all bounding boxes.

In the case of mislabeled objects, we followed a two-step
approach. Firstly, we cropped and copied the objects based
on their respective bounding boxes into the corresponding di-
rectories. Secondly, our annotators manually verified if the
objects were correctly placed in their designated directories
through simple inspection, which is highly accurate and re-
quires less time and effort. However, this approach is blind to
objects that were not labeled in the first place, which is known
as a missing label error. To address this issue, we inspected the
False Positives generated by the YOLOv7 model [39] trained
on FishEye8K, which helped identify numerous missing label
errors. This approach was especially effective in identifying
errors in distant areas and regions with high traffic density of
vehicles and bikes.

3.5. Data Anonymization

The identification of road participants such as people’s faces
and vehicle license plates from the dataset images was found
to be unfeasible due for various reasons. The cameras used for
capturing the images were installed at a higher ground level,
making it difficult to capture clear facial features or license
plates, especially when they are far away. Additionally, the
pedestrians are not looking at the cameras, and license plates
appear too small when viewed from a distance. However,
to maintain ethical compliance and protect the privacy of the
road participants, we blurred the areas of the images contain-
ing the faces of pedestrians and the license plates of vehicles,
whenever they were visible.



Fig. 4. The fisheye camera model.

4. FISHEYE CAMERA MODEL

Refer to Fig. 4. Denote the projection of a 3D point P
(X,Y, Z)! on the 2D undistorted perspective image as pg =
(z4,94)* and such a 2D projection point on the fisheye image
as py = (zr,yr)", respectively. Denote the angle between
the light ray and the Z-axis as 6, focal length as f, and the
distance between p, and the Z-axis as r4. The perspective
relation between rg and 0 is r4 = f - tan(6). For small 6,
we assume that the length 7 between py and the Z-axis is
approximately f - 6. Denote the center and radius of a circle
on the fisheye image as (¢, ¢y) and R, respectively. Then, ¢
is calculated as vy = \/(zy — ;)% + (yf — ¢y)?. Next, rq is
calculated as: rq = R - tan (%), where f = R. Denote the
angle between py and the x axis as ¢. We have:

( = arctan (yf_cy> . (1)

Tf—Cyg

Next, x4 and y4 can be obtained by x4 = ¢, + r4 - cos i and
Yq = Cy + rq - sinp. Finally, x4 and yg4 is calculated as:

Tqg=c, + R-tan s cos | arctan 7 "] ,
f Tf —Cyg

Yq = ¢y + R - tan ") sin (‘arctan [ 222 ) ). 2)
f Tf —Cyg

5. VEHICLE TRACKING

In fisheye images, straight lines from the original perspective
become curved. We propose to first detect these curved trajec-
tories and then self-calibrate the fisheye camera to determine
its parameters. This enables efficient correction of vehicle po-
sitions with significant hemispherical distortions, without the
need to de-warping the original image.

For real-time applications, we have adapted the Strong-
SORT algorithm [ 1 6] to track vehicles using a fisheye camera.

As detailed in Sec.5.1, our proposed Hybrid Data Association
(HDA) predicts vehicle movements and calculates the Twin
Intersection over Union (Twin-IoU) similarity scores as out-
lined in Sec.5.2. We found that the use of fisheye and distorted
perspective images together can improve vehicle tracking.

5.1. Hybrid Data Association (HDA)

We propose the Hybrid Data Association (HDA) to enable
effective learning for performing accurate and robust target
tracking directly from the distorted fisheye views. Let By de-
note the predicted box for a target (vehicle) V' with a fish-eye
camera. Let (27,7 ) and (zf, y) denote the positions of the
upper-left and bottom-right box of V, By=(x},y7,z,yF).
By can be converted to its new position B, on the distorted
perspective image using Eq.(2). In HDA, a hybrid bounded
box B is created to represent V' both on the fisheye image and
the distorted perspective image, B = (By, B4). The move-
ment state S of target V' is modeled as: Explain what the sym-
bols with dot mean.

S = (By, Ba, By, Ba). 3)
Kalman filtering (KF) [14] is then adopted on S to solve the
trajectory prediction problem for target tracking directly on
fisheye views. This way, the inter-frame displacement of each
target can be effectively predicted via KF. In the case when
there is no detection to associate with a target, its positions on
the fish eye image and the distorted perspective one are simply
predicted using linear velocity terms B ¢ and Bj.

5.2. Twin Intersection over Union

We introduce the concept of Twin Intersection over Union
(Twin-IoU), which accounts for the bounding box B, encom-
passing both B from the fisheye image and B from the dis-
torted perspective image.

Let’s consider a vehicle V;_; at the (t — 1) frame with
corresponding bounding boxes denoted as B. Subsequently,
the vehicle detected in the t*" frame, represented as V, is as-
signed a predicted bounding box B through our earlier work,
the PRB-Net detector [20]. The similarity between V;_; and
V; is measured by their Twin-IoU:

_ |ByNBy| | [BanBdl
[BfUBy|  [BaUBal

Different from the IoU score used in the SORT algorithm [16],
Eq.(4) considers the IoU score not only from the fisheye cam-
era but also the perspective image. Then, the next position
of V=1 at the ' frame is tracked by solving the following
equation:

TwinloU(Vi_1,Vy)

“)

V; = argmax TwinloU(Vi_y, V}). (%)
Vtzi
If ToU (V;—1, V;) < a threshold, the its position of V;*_; at the

t*" frame is simply predicted with E}/t_l



Table 2. Evaluation of SoTA detection models trained on the Fisheye-DETRAC benchmark. The table consists of two groups
of various versions of YOLO object detection models for input sizes of 1280x 1280 and 640 x 640.

Model Version Input Size  Precision Recall mAPys mAPs. 95 FI-score APs APy APy, Ini;;l;es:}lce
YOLOVS [13] YOLOv516 1280%x 1280 0.7929 0.4076 0.6139  0.4098 0.535 0.1299 0.434 0.6665 22.7
YOLOvV5x6 12801280  0.8224 04313 0.6387  0.4268 0.5588 0.133 0.452 0.6925 43.9
YOLOR [40] YOLOR-W6 1280x 1280 0.7871 04718 0.6466  0.4442 0.5899 0.1325 0.4707 0.6901 16.4
YOLOR-P6 1280%x 1280 0.8019 0.4937 0.6632  0.4406 0.6111 0.1419 0.4805 0.7216 134
YOLOVT [39] YOLOv7-D6 12801280  0.7803 04111 03977 0.2633 0.5197 0.1261 0.4462 0.6777 26.4
YOLOvV7-E6E  1280x 1280 0.8005 0.5252  0.5081  0.3265 0.6294 0.1684 0.5019 0.6927 29.8
YOLOVT [39] YOLOv7 640 x 640 0.7917 0.4373 0.4235 0.2473 0.5453 0.1108 0.4438 0.6804 4.3
YOLOv7-X 640 %640 0.7402 0.4888 0.4674 0.2919 0.5794 0.1332  0.4605 0.7212 6.7
YOLOVS YOLOvS8I 640 %640 0.7835 0.3877 0.612 0.4012 0.5187 0.1038 0.4043 0.6577 8.5
YOLOv8x 640 x 640 0.8418 0.3665 0.6146  0.4029 0.5106 0.0997 0.4147 0.7083 13.4

Table 3. Evaluation of SoTA MOT models trained on the
Fisheye-DETRAC benchmark.

Method HOTAT IDFT MOTA1 AssAt DetA1 IDs)

SORT [16] 22.1 24.1 279 20.1 233 48,201
FairMOT [28] 37.2 45.8 46.2 32.7 38.7 32,597
ByteTrack [41]  40.8 49.2 50.4 39.6 40.1 25,691
DeepSORT [42] 38.1 475 48.8 379 40.0 26,984
StrongSORT [43] 40.3 49.8 49.8 40.5 40.3 25999
BoT-SORT-R [44] 41.2 52.1 50.0 412 415 19,566

* Higher Order Tracking Accuracy (HOTA), ID F1 (IDF), Multiple Object
Tracking Accuracy (MOTA), Association Accuracy (AssA), Detection Ac-
curacy (DetA), ID switch (IDs).

6. BENCHMARK RESULTS

We evaluate the object detection performance of several
YOLO models on Fisheye-DETRAC using a workstation
with an 11*” Gen i7 CPU and an Nvidia RTX 3080 GPU.

6.1. Hyperparameter Settings and Evaluation Metrics

We utilized several frameworks and platforms, i.e., Dark-
net [45], PyTorch [46], and PaddlePaddle [47] for the model
training. platforms for detector and tracker
Hyperparameters. All YOLO variations were pre-trained on
MS COCO [36] dataset. Among the models, we trained four
models, namely YOLOv7 [39], YOLOvV7-X [39], YOLOVSI,
and YOLOvS8x on input image size of 640x640. The rest six
models, namely YOLOv5x6 [13], YOLOv516 [13], YOLOR-
W6 [40], YOLOR-P6 [40], YOLOvV7-D6 [39], YOLOv7-
EG6E [39], are trained with size 1280% 1280. All models were
trained with the same procedures for 250 epochs. Adam
[48] optimizer were used with momentum of 0.937 except
for YOLOVS, where the SGD optimizer was employed. The
confidence and the IoU threshold for Non Max Suppression
(NMS) were both set to 0.5; the learning rate is 0.01.

We use a confidence threshold 0.3 to determine the de-
tection reliability balancing between false positives and neg-
atives in performing tracking. We use a confidence threshold
0.4 for initializing new tracks, and we use a track buffer size 30
to determine lost tracks. These parameters we selected to han-

dle occlusions properly. We use a matching threshold 0.7 to
manage detection-track associations for controlling tracking
accuracy. We use the aspect ratio threshold 1.6 and minimum
box area of 10 pixels to consider only suitable detections. If
enabled, the score and IoU fusion feature combines detection
score and IoU to improve tracking.

Metrics. The evaluation metric employed for object detection
tasks is the mean Average Precision (mAP), as defined in PAS-
CAL VOC 2012 [35]. To calculate mAP, the Average Preci-
sion (AP) values for each class are averaged. AP for a spe-
cific class is derived from the Precision-Recall curve, which
is generated by varying the detection confidence threshold.

Precision (P) and recall (R) are defined as P = TPT+7PFP and

R = 735, respectively, where True Positive (T'P) rep-
resents the number of correctly detected objects of the class,
False Positive (F'P) denotes the number of incorrect detec-
tions, and False Negative (F'IV) indicates the number of un-
detected objects of the class. The AP is computed by calculat-
ing the area under the Precision-Recall curve using either the
11-point interpolation method or the integration of the inter-
polated curve. The final mAP score represents the mean AP
across all object classes, providing an overall assessment of
the object detection model’s performance.

N
1
AP =5 AP,
m N; i (6)

where N is the number of object classes, and AP; is the aver-
age precision for the i*" class.

MOT Metrics [37]. We use the MOTA [37], IDF1 [37], and
HOTA [37] to evaluate the MOT performance. These metrics
reflect how well multiple object tracking is preformed and pe-
nalize identity switches.

6.2. Fisheye-DETRAC Benchmark Results

Object Detection. We quantitatively evaluate the Fisheye-
DETRAC for the popular YOLO family of object detectors,
namely, YOLOv5 [13], YOLOR [40], YOLOv7 [39], and
the latest YOLOv8. Table 2 shows the outcome in terms of
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Fig. 5. Samples of hard cases in Fisheye-DETRAC for
YOLOR-W6 detections on the input size of 1280 x 1280.
(a) False Negatives (F'N): instances where the labeled ob-
jects are not detected. These typically involve parked vehi-
cles or moving road participants. (b) False Positives (F'P):
cases where the background is erroneously identified as an ob-
ject class. (c) Detected objects that are misidentified as other
classes, which frequently occur at road signs, buildings, and
objects far away. For example, Pedestrians far from the cam-
era could be incorrectly classified as Bikes.

precision-recall, mAP, and inference time. Results demon-
strate that all models perform efficiently with only a few ms
of inference time. Figure 5 presents challenging examples for
the top-performing YOLOR-W6 [40] model.

MOT. We quantitatively evaluate the Fisheye-DETRAC for
six SoTA trackers [16, 42, 41, 43, 44]. Table 3 shows the
results using standard MOT evaluation metrics. The BoT-
SORT-R [44] performs the best on the Fisheye-DETRAC
benchmark.

6.3. Ablation study of HDA

Table 4 the results of an ablation study comparing Strong-
SORT [43] and BoT-SORT-R [44] with and without HDA.
The incorporation of HDA significantly enhances perfor-
mance, yielding superior scores across both methods com-
pared to their counterparts without HDA.

7. CONCLUSION

We introduce the Fisheye-DETRAC benchmark dataset.
We believe this benchmark dataset can filled a noticeable
gap in fisheye camera surveillance applications regarding

Table 4. Ablation study of HDA on the Fisheye-DETRAC
for two SORT based MOT methods [43, 44].

Method HDA HOTA
StrongSORT [43] as baseline 40.3
Ours v 44.1
BoT-SORT-R [44] as baseline 41.2
Ours v 45.6

road object detection and multi-object tracking tasks. This
anonymized dataset comprises 20,000 frames, 157K bound-
ing boxes, and 313K identities spanning 5 different road
participants, capturing a diverse range of road conditions. We
also produce a new Hybrid Data Association (HDA) method
as another contribution. The HDA can effectively improve
vehicle tracking and velocity estimation directly on fisheye
cameras, without the need to unwarp the underlie hemispher-
ical distortions. Unlike existing state-of-the-art methods that
primarily focus on detection, our HDA approach consid-
ers distortion effects while performing tracking and vehicle
movement prediction. The proposed Twin-IOU can calculate
the fisheye similarity scores, we found that the use of fisheye
and distorted perspective images together can improve vehi-
cle tracking. We expect the Fisheye-DETRAC benchmark
will continue to impact future researches on fisheye video
analytics and smart city applications.
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