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Abstract 
 

Lumber is a primary material for the production of 

various types of wood products. However, many industries 

still carry out the lumber quality inspection process 

manually, relying on human sight and instinct to compare 

many similar objects. To streamline the inspection process, 

this study developed a deep learning-based surface defect 

detection system with a proposed “lightning YOLOv4” 

model. Specifically, to improve the model’s performance 

speed, we simplify CSPDarknet53 and path aggregation 

network (PANet) for the feature extraction stage of 

YOLOv4 by reducing the convolution layers. Moreover, we 

introduce the simplification technique to reduce the 

number of channels in CSPDarknet53 by multiplying it 

with the scaling coefficient. In addition, we add spatial 

attention module (SAM) to the structures, which can 

improve whole system performance on two types of lumber 

datasets (pine and rubber lumber). According to the 

experimental results, the proposed detection system 

improves the average precision of defect localization with 

the highest gap of 1.3%, as well as improves the frames per 

second (FPS) by 10.8 points over the baseline. 

 

Keywords: Surface defect inspection system; YOLOv4, 

CSPDarknet53, PANet, SAM.  

 

1. Introduction 
 

Even in modern times, lumber cannot be entirely 

replaced as a building material, and continues to be used, 

especially in wood products. In general, companies that 

engage in lumber production still carry out the quality 

inspection process manually, relying on the sense of sight 

and instinct to compare many similar objects. However, 

observations with human eyes can only give accuracy 

between 50-60% [8], which makes the accuracy and 

efficiency of production time variable and subjective, and 

hinders the performance of the lumber industry. The deep 

learning field poses a potential solution for the lumber 

industry to automatically inspect processed products with 

consistent quality standards.  

Figure 1. The comparison on rubber lumber dataset. 



The proposed works in [1] included an experimental 

study of defects in lumber surface datasets. This method 

applied the state-of-the-art deep learning approach, 

YOLOv3. In the results on the rubber lumber dataset in 

Figure 1, YOLOv4 [1] achieved higher accuracy, but had a 

slower processing speed. That is because the YOLOv4 

architecture is more complex than that of YOLOv3. The 

detection system of YOLOv4 consists of 167 processing 

layers; consequently, the system detection process takes 

longer than it does with YOLOv3. On the other hand, the 

tiny version of YOLOv4, or “tiny YOLOv41”, proposes 

compressing the convolution layers down to 53 to enhance 

the processing speed. However, this slim version delivers 

suboptimal performance as the complexity of the dataset 

increases.  

Motivated by the issues highlighted above, this research 

sought to develop a defect detection system for sawn 

lumber by simplifying the YOLOv4 model. We call the 

proposed model “lightning YOLOv4”. The experimental 

results show that the proposed approach significantly 

increases speed and performance compared to the previous 

methods [1, 12]. The remaining sections of this paper will 

present in detail the design of the proposed method. 

 

2. Related works 

 
The objective of this work is to improve the 

performance of the state-of-the-art model YOLOv4 [1] or 

proposed lightning YOLOv4. This section overviews the 

detection baseline, activation function, and attention 

module, which are the three main components of our 

proposed method. 
 
2.1. Detection baseline 

 

YOLOv4 [4] was developed from the YOLOv3 [10] 

model, and has shown improvement in Accuracy of 

Performance (AP) and Frames Per-Second (FPS). There 

are five essential components of the YOLOv4 architecture. 

The first is a backbone, which serves as the foundation of 

the YOLOv4 method. The second is the neck, which 

functions as a connector between the foundation and the 

detection process. And lastly, dense prediction with a 

sparse prediction function is used as an object detection 

algorithm.  

Most of the architecture of YOLOv4 is nearly identical 

to that of YOLOv3; however, there are key differences 

between the two versions. The first distinction is that 

YOLOv3 uses Darknet-53 as a backbone, while YOLOv4 

uses CSPDarknet-53 [13]. This new extractor has a more 

complex arrangement that includes 29 convolutional layers 

with 3 x 3 layers and a 725 x 725 receptive field, and 27.6 

million parameters. With the improvements described in 

                                                 
1 https://github.com/AlexeyAB/darknet  

this section, the model is able to offer a better backbone 

because it runs more effectively. The next distinction lies 

in the detection enhancement methods. YOLOv3 only uses 

Feature Pyramid Networks (FPN) [4] to extract the 

multiscale features, while YOLOv4 uses many more 

methods, such as mosaic data augmentation, IoU-loss [11], 

cross mini-Batch Normalization (CmBN), DropBlock 

regularization, self-adversarial training, elimination of grid 

sensitivity, multiple anchors for single ground truth, cosine 

annealing scheduler [6], optimal hyper-parameters, and 

random training shapes. Therefore, YOLOv4 can produce 

Frames Per Second (FPS) faster and more accurately. 

 

2.2. Activation Function 
 

The purpose of using activation is to find the optimal 

accuracy value and reduce errors. The model's weights 

should be changed to minimize the loss function during the 

training process to make predictions as accurate as possible. 

Activation unifies the loss function and model parameters 

by updating the model to obtain the loss function's output. 

In short, the optimizer will use its weights to shape the 

model we have into the most appropriate form [21]. 

The comparison experiments in [7] show that the Mish 

activation function was more effective than the leaky 

ReLU activation function in neural networks for improving 

classification accuracy. Mish uses the self-gating property, 

where the non-modulated input is multiplied by the output 

of a non-linear input function. In order to retain a small 

amount of negative information, Mish eliminates some of 

these negative values by designing an activation like the 

ReLU [2] phenomenon. This property helps achieve better 

expressivity and flow of information. Being infinite, Mish 

avoids saturation, which generally causes training to slow 

down drastically as the gradient approaches zero. Unlike 

Leaky-ReLU [15], inspired by Swish [9], Mish is 

continuously distinguishable, which is an attractive 

property because it avoids singularities, which are 

undesirable side effects when performing gradient-based 

optimizations. 

 

2.3. Attention Module 
 

SAM, or Spatial Attention Module, is a module for 

spatial attention in convolutional neural networks [14]. 

SAM generates a spatial map of attention by utilizing the 

inter-spatial relationship of features. In contrast to the 

attention channel [3, 5], spatial attention focuses on which 

part is informative. In the original SAM, maximum and 

average pooling are applied separately to the input feature 

maps to generate feature maps. The results are fed into a 

convolution layer to generate spatial attention, then 

https://github.com/AlexeyAB/darknet


followed by a sigmoid function. In YOLOv4, SAM is 

modified so that maximum and average pooling are not 

applied. 

 

3. Proposed work 

 

This study designed a lumber defect detection system 

using lumber image data from rubber and pine trees as the 

inputs. The system model was designed with a modified 

YOLOv4 model as its baseline architecture. A modified 

YOLOv4 architecture compressed YOLOv4 to make it 

simpler and faster. There are three main modifications in 

the modified YOLOv4. First, we simplified CSPDarknet53 

as shown in Table 1. Not only did our model reduce the 

residual block network, but it also carried out the 

simplification method by reducing the number of specific 

channels from the original backbone through 

multiplication with the scaling coefficient 𝛼 . This new 

technique uses an 𝛼 between 0.6 up to 1 so that the number 

                                                 
2 https://github.com/WenHe-Hnu/sawn-lumber-dataset  

of channels will decrease according to this coefficient. 

Next, the residual block network of PAN is reduced as 

shown in Figure 3, repeated from five to three times. Both 

of these architectural changes were made to speed up the 

training and testing processes. Second, Mish activation was 

substituted in place of the Leaky-ReLU used in the original 

PANet convolution layers, to increase accuracy. This 

approach also allows information to better penetrate the 

neural networks’ structure and allow the gradient to 

propagate more efficiently so that the neural networks will 

achieve better classification accuracy and generalization. 

Third, the Spatial Attention Module was added to the 

prediction head to increase the localization performance. 

Figure 2 gives a comprehensive view of the complete 

proposed framework architecture, which is referred to as 

lightning YOLOv4. It consists of 83 convolution layers, 12 

shortcut layers, 1 SPP layer, 21 route layers, 3 detection 

layers, and 2 up-sampling layers. Lightning YOLOv4 

yields three feature maps in 68x68, 32x32, and 16x16 sizes, 

if the input image size is set to 512 × 512. 

 

4. Ablation and results 
 

Tests were conducted under three scenarios to obtain the 

best experimental results in a single Tesla P100 16GB GPU. 

The sawn lumber dataset2 for each scenario contained 832 

images of pine lumber and 1,553 images of rubber lumber, 

where each category was partitioned 70:10:20 for training, 

validation, and testing, respectively. The pine lumber 

category had two classes: dead knot and intergrown knot. 

In contrast, the rubber lumber category had four classes: 

dead knot and intergrown knot, growth shake, and inbark. 

The default input image size used in these scenarios was 

set to 320x320. Scenarios one, two, and three, (or backbone 

simplification, activation function selection and attention 

module selection), used mean average precision (mAP) as 

a reference to get the best configuration. The comparison 

Figure 2. Proposed lightning YOLOv4 Architecture. 

Figure 3. Proposed lightning YOLOv4 head layer. 

https://github.com/WenHe-Hnu/sawn-lumber-dataset


of results from our proposed system versus the baseline 

methods are shown at the end of this section. 

 

4.1. Backbone network simplification 
 

The simplification of channels in the proposed lightning 

YOLOv4 architecture in the first scenario is shown in 

Table 2. This simplification was done by reducing the 

number of layers in the modified CSPDarknet53 by 

multiplying by the specified scale coefficient 𝛼. The scale 

ranged from 0.6 up to 1. This operation aims to determine 

the effect of simplification on speed performance or FPS 

as compared to the original architecture. The testing results 

show that the simplification with a coefficient of 0.8 

obtains the best performance among all the numbers tested. 

 

4.2. Activation function selection 
 

In the second scenario, Mish activation was used. To 

demonstrate the efficiency, five types of activation 

functions were applied in the proposed modified YOLOv4 

network: original (Mish + ReLU), ReLU, Leaky-ReLU (L-

ReLU), Swish, and Mish. The network architecture 

employed in this stage was modified according to the best 

accuracy (mAP) on the results from the first scenario. This 

configuration aimed to determine which activation 

function could improve accuracy on our proposed lightning 

YOLOv4 architecture. 
According to Table 3, the best accuracy was achieved 

using a Mish activation of 91.95% for pine lumber, and 

90.7% for rubber lumber. In the Mish activation function: 

the positive values could go to any height, and it will avoid 

saturation due to capping. In theory, the small allowance 

for negative values should permit better gradient flow vs. a 

complex zero bound as in ReLU. Due to this, Mish 

contributes to the highest accuracy across the different 

categories for both datasets, among other activation 

functions. 

 

4.3. The attention module selection 
 

In the third scenario, an attention module, spatial 

attention module (SAM), was added to modified YOLOv4 

(Mod-YOLOv4). The module was added before entering 

the detection head. In addition, comparisons were made to 

several other attention modules, including squeeze and 

excitation network (SENet), adaptively spatial feature 

fusion (ASFF), and a combination of SENet and SAM. The 

architecture used in this test was the architecture with the 

best mAP value based on the comparison test results in the 

second scenario. This operation aimed to achieve the most 

optimal optimization in detection accuracy. 

Table 4 and Table 5 show that the modified (Mod) 

YOLOv4 network architecture with SAM attention 

modules achieved the best mAP on both types of wood. 

Moreover, the FPS value generated by the network 

architecture remained the highest with the inclusion of 

SAM channel attention. Therefore, the network 

architecture with the SAM attention module is the best 

choice for the proposed lightning YOLOv4. 

 

Table 1. The simplification transformation of 

CSPDarkne53 architecture. 

 

Type Filters Repeat Size 

Before After Before After 

C
1

 

Conv 32 32   3x3 

Conv 64 64   3x3/2 

Conv 32 32 

1x 1x 

1x1 

Conv 64 64 3x3 

Residual    

C
2

 

Conv 128 128   3x3/2 

Conv 64 𝛼 

2x 1x 

1x1 

Conv 128 𝛼 3x3 

Residual    

C
3

 

Conv 256 𝛼   3x3/2 

Conv 128 𝛼 

8x 4x 

1x1 

Conv 256 𝛼 3x3 

Residual    

C
4

 

Conv 512 𝛼   3x3/2 

Conv 256 𝛼 

8x 4x 

1x1 

Conv 512 𝛼 3x3 

Residual    

C
5

 

Conv 1024 𝛼   3x3/2 

Conv 512 𝛼 

4x 2x 

1x1 

Conv 1024 𝛼 3x3 

Residual    

 

Table 2. Comparison of simplification by reducing 

CSPDarknet53 channels based on a scale coefficient. 

 
𝛼 Pine Lumber Rubber Lumber 

mAP FPS mAP FPS 

1.0 91.00 80.1 87.73 76.9 

0.9 91.51 80.2 88.58 77.1 

0.8 91.95 81.3 89.49 80.3 

0.7 91.73 84.4 89.25 84.3 

0.6 91.04 90.3 88.69 88.1 

 
Table 3. Performance comparison of the selection 

activation function. 

 
Activation 

Function 

Pine Lumber Rubber Lumber 

mAP FPS mAP FPS 

Original 91.95 81.3 89.49 80.3 

ReLU 91.16 82.9 89.95 80.9 

L-ReLU 91.23 80.7 88.80 80.7 

Swish 92.20 82.2 89.84 79.2 

Mish 92.40 81.0 90.70 78.4 



Table 4. Performance comparison with the addition of an 

attention module in the pine lumber dataset. 

 
Method mAP  FPS 

YOLOv4 91.68 60.1 

YOLOv4 + SAM 92.45 58.5 

Mod-YOLOv4 + SENet 93.48 74.0 

Mod-YOLOv4 + ASFF 93.50 75.7 

Mod-YOLOv4 + SAM (proposed) 93.55 76.1 

 

Table 5. Performance comparison with the addition of an 

attention module in the rubber lumber dataset. 

 
Method mAP FPS 

YOLOv4 89.39 60.2 

YOLOv4 + SAM 90.19 60.0 

Mod-YOLOv4 + SENet 89.42 74.2 

Mod-YOLOv4 + ASFF 90.02 76.6 

Mod-YOLOv4 + SAM (proposed) 91.52 77.1 

 

4.4. The comparison results 
 

To demonstrate the efficiency of the proposed lightning 

YOLOv4, we ran the proposed method on the same GPU 

hardware and compared it against existing baselines. 

Table 6 and Table 7 show the experimental results on 

the pine and rubber lumber datasets. Compared to 

YOLOv4 with SAM attention as the default configuration 

of YOLOv4, if the input system had 320×320, 512×512, 

608×608 of input image sizes, the mAP of the proposed 

lightning YOLOv4 increased by 0.72, 0.51, and 0.41 on the 

pine lumber dataset, and by 2.2, 1.3, and 0.3 on the rubber 

lumber dataset. 

 

Table 6. Performance comparison for the pine lumber 

category. 

 

Method 
Input 

size 
mAP FPS 

YOLOv3 

320x320 

87.34 73.5 

YOLOv4 + SAM 92.45 58.5 

Tiny YOLOv4 91.28 114.3 

Lightning YOLOv4 (our) 93.17 76.1 

YOLOv3 

512x512 

90.54 50.7 

YOLOv4 + SAM 93.04 43.5 

Tiny YOLOv4 91.66 104.3 

Lightning YOLOv4 (our) 93.55 54.8 

YOLOv3 

608x608 

91.32 36.5 

YOLOv4 + SAM 93.41 33.0 

Tiny YOLOv4 93.02 100.2 

Lightning YOLOv4 (our) 93.82 41.2 

 

 

 

Table 7. Performance comparison for the rubber lumber 

category. 

 

Method 
Input 

size 
mAP FPS 

YOLOv3 

320x320 

76.0 72.4 

YOLOv4 + SAM 89.3 60.0 

Tiny YOLOv4 87.3 113.8 

Lightning YOLOv4 (our) 91.5 77.1 

YOLOv3 

512x512 

82.6 50.8 

YOLOv4 + SAM 91.7 43.6 

Tiny YOLOv4 88.2 106.9 

Lightning YOLOv4 (our) 93.0 54.4 

YOLOv3 

608x608 

85.6 36.4 

YOLOv4 + SAM 92.5 32.9 

Tiny YOLOv4 88.3 100.8 

Lightning YOLOv4 (our) 92.8 40.9 

 

Aside from the improvement in accuracy, once the input 

system size was 608×608, the detection speed for both 

categories of the sawn lumber dataset increased by 4.7 and 

4.5 from YOLOv3, thus meeting real-time time detection 

requirements in the industry. Although the proposed 

YOLOv4 modifications had a lower FPS than tiny 

YOLOv4 did, it should be noted that the mAP of the 

proposed lightning YOLOv4 modification was 

significantly higher for the complex defect category of the 

dataset or for the rubber lumber category. 

To complement the findings, a subjective performance 

comparison is given in Figure 4. The localization samples 

illustrate that the proposed lightning YOLOv4 can achieve 

a better result than the original YOLOv4 structure does. 

 

 
(a) 

 
(b) 

Figure 4. (a) and (b) are localization samples on rubber 

lumber of YOLOv4 and Lightning YOLOv4, respectively. 

 



5. Conclusion 
 

This work proposes a detection system for defects in 

sawn lumber based on simplifying YOLOv4 architecture 

by reducing the residual block on the CSPDarknet53 and 

PANet networks. Also, the number of channels on 

CSPDarknet53 was reduced by multiplying the number 

with a scale coefficient. This operation aimed to increase 

the detection speed of the system when compared to the 

original structure. However, the simplification 

dramatically and negatively affected the system's accuracy. 

Therefore, our proposed modified YOLOv4 uses Mish 

activation on the network and adds a spatial attention 

module to increase the system's accuracy. Additionally, 

this article defines a rubber lumber dataset that contains 

four defects, and a pine lumber dataset that contains two 

types of defects, for a total of 832 and 1,553 annotated 

images. The experimental results on the two datasets show 

that the proposed lightning YOLOv4 model can increase 

accuracy and detection speed, which can significantly 

enhance the effectiveness of a lumber cutting inspection 

system. 
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