
FedTrust: Towards Building Secure Robust and Trustworthy Moderators for
Federated Learning

Chih-Fan Hsu† Jing-Lun Huang† Feng-Hao Liu‡ Ming-Ching Chang∗ Wei-Chao Chen†

† Inventec Corporation, Taipei 111, Taiwan
‡ Florida Atlantic University, Boca Raton, FL 33431, USA

∗ University at Albany – State University of New York, Albany, NY 12065, USA

Abstract

Most Federated Learning (FL) systems are built upon
a strong assumption of trust—clients fully trust the cen-
tralized moderator, which might not be feasible in prac-
tice. This work aims to mitigate the assumption by using
appropriate cryptographic tools. Particularly, we exam-
ine various scenarios with different trust demands in FL,
and then design the corresponding practical protocols with
lightweight cryptographic tools. Three solutions for secure
and trustworthy aggregation are proposed with increasing
sophistication: (1) a single verifiable moderator, (2) a sin-
gle secure and verifiable moderator, and (3) multiple se-
cure and verifiable moderators, which can handle adversar-
ial behaviors with different levels. We evaluate the perfor-
mances of all our proposed protocols on the test accuracy
and the training time, showing that our protocols maintain
the accuracy with time overhead from 30% to 156% de-
pending on the secure and trustworthy levels. The protocols
can be deployed in many practical FL settings with appro-
priate optimizations.

1 Introduction
When data becomes the core to guarantee the perfor-

mance of machine learning models to solve practical prob-
lems, allowing multiple parties with different data to jointly
train a model becomes more attractive to communities. Fed-
erated Learning (FL) [10, 16] has shown growing success in
decentralized multi-modal feature learning [16]. However,
for the distributed nature of FL, security and privacy risks
threaten the whole FL framework.

Most existing FL algorithms implicitly assume that the
moderator (who aggregates gradients updated from clients)
is trustworthy and honest and focus on the single moderator
setting. However, requiring clients to completely trust the
moderator implies significant vulnerabilities on the clients’
side. Besides, the assumption is strong when considering
data privacy from individual and business entities. It has

been less studied how to protect the moderator against cor-
ruption or failure. In the former case, the moderator might
not follow the prescribed aggregation procedure and thus
result in a wrong model; in the latter case, the modera-
tor might be disconnected/dropped out due to unstable net-
works or the running server. Moderator failure (even hon-
est dropout) can abruptly stop the training process and then
eventually damages the collaborative training.

The focus of this paper is to improve the trustworthiness
and robustness of the moderator for the federated learn-
ing framework. We note that general cryptographic so-
lutions and mechanisms (such as multi-party computation
and verifiable computation [19, 7]) exist but they require
heavy computation/communication overhead. Thus, a prac-
tical solution is not found in the literature. This work aims
to identify suitable lightweight cryptographic protocols and
evaluate their concrete performance/overhead in several FL
settings with progressive secure levels. The result demon-
strates the practicality of the protocols, which enhances the
protection from the client’s perspective and makes an im-
portant step toward developing a robust and trustworthy FL
for current and future applications. The contribution of this
paper is summarized as follows:

• We implemented several practical FL protocols to im-
prove the security, trustworthiness and robustness of the
FL moderator.

• We balance the usability and security of proposed proto-
cols by using lightweight cryptographic tools.

• We evaluated the protocols on testing accuracy and train-
ing time overhead, which are commonly used benchmarks
in implementation.

2 Background
We adopt several cryptographic tools to our solutions

for building secure and trustworthy moderators. We first
present the additive homomorphic hash, which is used to
build a verifiable aggregation protocol at the moderator,



such that clients can verify the correctness of gradient ag-
gregation computation. We utilize coin tossing, a widely
used tool in multi-party computation (MPC), to generate
common random bits not controlled by any malicious user
in MPC. We also use (robust threshold) secret sharing in
the setting with multiple moderators. In the setting where
the moderators are less honest, we use Threshold Additive
Homomorphic Encryption (TAHE) to protect the privacy of
users’ gradients. We next briefly introduce necessary cryp-
tographic tools.

Additively Homomorphic Hash (AHH). Let H : X → Y
be some collision resistant hash function, i.e., it is computa-
tionally infeasible to find data x1 ̸= x2 such that H(x1) =
H(x2), where x1 and x2 are data. The hash is additively
homomorphic for any x1, . . . , xk, that is, H(

∑
i∈[k] xi) =∑

i∈[k] H(xi). The hash can be instantiated from the lattice
problem Ring-SIS [11].

Particularly, let R be the cyclotomic ring with dimension
N , where N is a power of 2, i.e., R = Z[x]/(xN + 1), and
RQ = R/QR for some modulus Q. Then we construct
the AHH process by defining a function H which takes the
input with domain X = {x ∈ ZNℓ ⊂ Rℓ : ∥x∥∞ < β}
for some β ∈ Z; and output with domain Y = Rk

Q. The
hash H description is a ring matrix A ∈ Rk×ℓ

Q . On input
x ∈ X , where x can be interpret as a ring vector in Rℓ,
H(x) outputs h = A ·x mod Q. The output h is the hash.

Verifiable Aggregation Protocol (VAP). By using AHH,
we can design a verifiable aggregation protocol against
a malicious FL moderator. Consider the scenario that n
honest clients C1, . . . , Cn who hold (non-private) inputs
x1, . . . , xn cooperate with the moderator M who computes
the aggregation of all the inputs in a verifiable way. We next
describe the proposed verifiable aggregation protocol.

• Each client Ci first broadcasts data hash hi = H(xi) to
all clients and the moderator, then, sends data xi to the
moderator M .

• The moderator broadcasts the aggregated result z =∑
i∈[n] xi to all clients.

• Each client checks
∑

i∈[n] hi = H(z) to determine
whether z is the correct aggregated result.

Coin Tossing. In many distributed protocols, it is impor-
tant for parties to generate common random strings where
no adversarial parties can bias the outcome. A coin toss-
ing protocol [5] can achieve this goal. In practice, one can
use the blockchain as a source of a random string, and each
party just agrees on reading at a particular location on the
blockchain.

Secret Sharing. An (n, t) secret sharing scheme consists
of two algorithms, Share and Recon, where Share(x) dis-
tributes the input x into n shares such that only when t of

Table 1: Our protocols for handling different FL scenarios.
Non-private Aggr. Private Aggr.

Single M SVM SSVM
Multiple Ms SVM (Extended) MSVM

them are collected can Recon() recovers the input x. Other-
wise, x is information-theoretically hidden. Shamir’s secret
sharing scheme [12] achieves the goal based on polynomial
evaluation and interpolation.

Threshold Additive Homomorphic Encryption (TAHE).
A TAHE scheme consists KeyGen protocol, Enc(), and
Dec() algorithms. The KeyGen protocol generates a com-
mon public-key pk and shares of the corresponding secret-
key sk to every party. Enc(x, pk) encrypts x to the cipher-
text x̂. Dec(x̂, sk) decrypts x̂ to obtain x, where the func-
tionality works only when every party holding the share of
sk participates. This primitive can be implemented from
some protocols in prior works, such as [8].

3 Trustworthy Federated Learning
We present multiple protocols that are suitable for vari-

ous scenarios with different security guarantees, using the
tools described in Section 2. Particularly, we consider two
important design demands—(1) whether the clients’ gradi-
ents need to be kept private, and (2) whether more modera-
tors are available during the FL, as summarized in Table 1.
Based on the considerations, we design different protocols.

Several critical security requirements must be satisfied
for trustworthy FL, namely reliability and robustness for
moderators and privacy for clients, with the following goals:
(1) reliable aggregated result: how to verify the correctness
of the aggregated result at the client, which is related to the
concept of verifiable computing; (2) client privacy: how to
protect each client’s gradients, which is related to data en-
cryption; and (3) robust moderators: how to proceed with
the computation when a moderator drops out or fails during
training, which is related to the concept of MPC. Specifi-
cally, we propose protocols to address the following three
scenarios as follows:

• A Single Verifiable Moderator (SVM) in §3.1. Our goal
in SVM is to check the correctness of the aggregated re-
sult for a moderator. Here, we consider a simpler case
where the clients’ gradients are non-private. This method
can be extended to the setting with multiple moderators,
as clients simply run the single moderator protocol with
each of the moderators. As long as one of the moderators
does not drop out during FL training, the clients can re-
ceive the expected aggregation outcomes, implying a ro-
bust FL for non-private gradients.

• A Single Secure and Verifiable Moderator (SSVM) in
§3.2. This scenario is similar to SVM, except the clients’



(a) SVM (b) SSVM (c) MSVM-2/3 (d) MSVM-half (e) MSVM-one

Figure 1: Five investigated scenarios for achieving secured and verifiable federated learning. We show the data transmitted
between the moderators and the clients to highlight the difference.

gradients are private and should be protected, for achiev-
ing a verifiable and private aggregation.

• Multiple Secure and Verifiable Moderators (MSVM)
in §3.3. MSVM focuses on the robust moderators, where
the aggregation protocol cannot be disrupted by failures
from the moderator. To achieve this goal, we decentralize
a single moderator into multiple moderators so that they
can run some distributed protocol to prevent the disrup-
tion caused by moderator failure.

Figure 1 summarizes the transmitted data between the mod-
erator(s) and the clients of all scenarios.

3.1 A Single Verifiable Moderator
Scenario. Consider the case where there is only one (per-
haps malicious) moderator and n honest clients {Ci}i∈[n]

who hold non-private inputs {xi}i∈[n]. The clients want to
perform a verifiable FL training aggregation update via the
moderator to obtain the verified aggregated result z.

Solution. This can be achieved simply by using VAP, where
Ci uses the quantized gradients as the input xi in the pro-
tocol. The gradient quantization is used to fulfill the basic
requirement xi ∈ Z. Specifically, at the beginning of feder-
ated training, the moderator generates an AHH function H
and broadcasts H to all clients. For each training iteration,
the clients negotiate a zero-point and a scale to quantize the
gradients to certain bits to generate the input xi. Then, each
client verifies the aggregated result z transmitted from the
moderator with H and VAP.

3.2 A Single Secure and Verifiable Moderator
Scenario. We extend the SVM scenario with private inputs
{x̂i}i∈[n] held on clients. The clients want to perform a
verifiable FL training via the moderator, without revealing
their private inputs.

Solution. At the beginning of training, the clients first
run the KeyGen protocol from a TAHE, and obtain a com-
mon public pk and individual shares of secret keys ski.
Then the clients and the moderator run VAP, where each

client Ci transmits input x̂i ← Enc(xi, pk) to the moder-
ator, calculates the hash with x̂i, and then receives ẑ from
the moderator. The clients run the decode protocol to ob-
tain Dec(ẑ, ski) if the consistency check passes, namely,
H(ẑ) =

∑
i∈[n] ĥi. Otherwise, the clients abort by catching

the cheating behavior from the moderator.

3.3 Multiple Secure and Verifiable Moderators

In SVM and SSVM, we assume that a single modera-
tor will always complete the protocol. We relax this condi-
tion by considering how to design a robust protocol against
possible moderator failure (either maliciously or by ran-
dom faults). To achieve robustness, we introduce redun-
dant computation into the federated learning. Namely, we
decentralize the single moderator into m moderators, e.g.,
{Mj}j∈[m]. As in the prior sections, we assume that the
clients are honest. In the following, we present three proto-
cols against different corrupted patterns of the moderators.

3.3.1 At Least 2
3m Honest Moderators (MSVM-2/3)

Scenario. Assuming that at least 2
3m honest moderators

will complete the protocol, and the other 1
3m moderators

might be either corrupted or dropped out at any moment.

Solution. We can run the classic BGW protocol [3], using
Shamir’s secret sharing. Specifically,

• Each client Ci generates a polynomial Pi with degree
2
3m− 1 and xi = Pi(0). Then, Ci sends Pi(j) to moder-
ator Mj by Share(xi).

• Each Mj sends pj =
∑

i∈[n] Pi(j) to all clients.

• Each client checks the receives (p1, . . . , pm) to recon-
struct the polynomial P by Recon(p1, . . . , pm). By the
homomorphic and robustness properties of the Shamir’s
scheme, the aggregated result z can be calculated with
z = P (0), as long as 2/3 receives are computed correctly.

We note that this protocol is information-theoretically
secure, and thus no cryptographic tool is needed.



3.3.2 More than 1
2m Honest Moderators (MSVM-half)

Scenario. We further relax the 2
3 condition to 1

2 . We assume
the existence of 1

2m+ 1 honest moderators.

Solution. We solve the scenario by the TAHE scheme.
Specifically,

• The clients first run the KeyGen protocol and obtain a
common public key pk and individual shares of the secret
key ski.

• Each client Ci sends x̂i = Enc(xi, pk) to all moderators.
• Each Mj broadcasts ẑj =

∑
i∈[n] x̂i.

• Each client receives (ẑ1, ..., ẑm) and checks majority con-
sistency of ẑ. All clients run the protocol Dec(ẑ, ski) to
obtain the aggregated result z.

From the assumption on an honest majority of the
servers, the majority vote suffices to guarantee the correct
sum of the ciphertexts. Thus, there is no need for VAP.

3.3.3 At Least One Honest Moderator (MSVM-one)
Scenario. Finally, we consider the worst case where only
one honest moderator can be guaranteed.

Solution. We propose a solution combined with verifiable
computing and the TAHE protocol. The solution is similar
to that in Section 3.3.2, except that the clients run the VAP
with each moderator Mj . Specifically,

• Each client Ci sends x̂i = Enc(xi, pk) to all moderators
and ĥi = H(x̂i) to all clients.

• Each Mj broadcasts ẑj =
∑

i∈[n] x̂i.

• Each client receives (ẑ1, . . . , ẑm) and performs hash con-
sistency check if H(ẑj) =

∑
i∈[n] ĥi is true to every j,

where ẑ is the first ciphertext passed the hash consistency
check. All clients run the protocol Dec(ẑ) to obtain the
aggregated result z.

4 Experiment Results

We implement and evaluate all proposed protocols and
compare them with several baseline methods including (1)
centralized training (Cen), (2) quantized centralized train-
ing (Cen (Q)), (3) federated training (FL), and (4) quan-
tized federated training (FL (Q)). We report the evaluation
using two performance metrics: test accuracy and the time
for a training iteration. All the scenarios and cryptographic
tools are implemented by Python3.8.10+cu11.5 on a server
with two Intel 6238T CPU @ 1.90GHz, 16GB RAM, and
a Tesla T4 GPU. We select a common dataset, CIFAR-10,
to test our implementation, which is easy to adapt to other
datasets. We use the original training and test splits to train
and validate the neural network, respectively, for a four-
client FL. Specifically, we use the Dirichlet Distribution

Figure 2: The detail structure of the client model. The num-
ber in the box shows the size of the tensor.

0.0

0.2

0.4

0.6

0.8

Cen Cen (Q) FL FL (Q)
Model

M
a
x
im

u
m

 A
c
c
u
ra

c
y

skewness

NA
100
0.1

Figure 3: Max test accuracy of the neural network models.

with the skewness parameter 0.1 to distribute the samples
to the clients. Figure 2 shows the detail structure of client
model, which contains 1,250,858 trainable parameters.

Implementation Details. For the Cen (Q) and FL (Q), we
quantize the model weights from float32 to int8 af-
ter the client finishes the training at each iteration. For FL
(Q), we introduce a process to exchange the maximum and
minimum values of the client weights to negotiate a range
for weight quantization. For the followed experiments, we
set the number of clients to four n = 4 and the number
of moderators to three m = 3. We use common param-
eters of the cryptographic tools. For the additively homo-
morphic encryption scheme, we implement the BFV [1]
scheme with ring dimension N = 2048, plaintext modulus
p = 524287, and ciphertext modulus Q = 256. For AHH,
we use the following parameter sets: for non-encrypted val-
ues, N = 1024, k = 2, ℓ = 1222, β = 28, n = 210,
and Q ≈ 262; for encrypted values (or un-encrypted big-
ger values), N = 4096, k = 2, ℓ = 611, β = 240,
n = 28, and Q ≈ 262. These schemes are at least 128 bit-
security. We adopt the Numpy.polymul function to cal-
culate the polynomial multiplication, which is heavily used
in the AHH and encryption/decryption. The time complex-
ity of the current implementation is O(N2), where N is the
ring dimension, and can be improved to O(N logN ) by the
Fast Fourier Transform.

Testing Accuracy. Figure 3 shows the average maximum
test accuracy of the investigated methods from five sep-
arated experiments with different seeds. The interval on
each bar indicates the standard deviation of the five exper-
iments. Overall, the maximum accuracy is stable among
experiments. The experiment results follow our expecta-
tions. We can observe that (1) the weight quantization does
not largely impact the accuracy; (2) the accuracy of the FL
algorithms is slightly lower than the centralized training;



and (3) the level of data skewness does impact the accu-
racy and the parameter value and the accuracy have a pos-
itive correlation. We note that no weight bias is introduced
by the proposed protocols. Hence, the test accuracies are
highly similar to the accuracy of the FL (Q) experiment with
skewness parameter 0.1. Specifically, the testing accuracy
of SVM, SSVM, MSVM-half, and MSVM-one are 0.742
(0.009), 0.741 (0.009), 0.736 (0.002), and 0.734 (0.002),
respectively. The values in the parentheses are the standard
deviation of the experiments unless otherwise specified. We
did not measure the accuracy of the MSVM-2/3 protocol
because of the unreasonable long training time. Details are
discussed in the next section.

Training Time. For the MSVM-2/3 protocol, according to
the (m, 2/3m)-Shamir’s secret sharing, a gradient gener-
ates a polynomial P with degree 2/3m− 1. We extend the
degree of polynomial from 1 to 3 because the one-degree
polynomial is relatively small due to m = 3. Then, we
measure the time for generating shares and reconstructing
P for one gradient, which takes 0.00032 (0.00010) and 0.34
(0.006) second, respectively. In our FL setting, each client
transmits 1, 250, 858 gradients. A training iteration takes
4.92 days even if clients run parallel, which is impossible
to wait for the model converge. Therefore, we report the
theoretical time for a training iteration.

Table 2 reports the time and the time overhead compared
to the centralized training for each procedure in the proto-
col. The dash symbol denotes that the protocol does not in-
clude the procedure. We omit the standard deviation to ful-
fill the space limitation because the values are usually very
small. The train time includes the time for performing the
forward and backward processes to update the neural net-
work model. The consistency (Con.) check time includes
the time for hash consistency check, majority consistency
check, and the equality check for the aggregation. Gener-
ally, the time usages for the four baselines are highly simi-
lar. The train time of the protocols is slightly different due
to the computation variance although all experiments were
conducted on the same device. Weight quantization and
dequantization only take a few milliseconds without large
accuracy degradation, which can be considered in the se-
curity protocol design. The verifiable computing process
(AHH and Con. check) increases about four seconds for an
iteration, which increases about 30% per iteration training
time compared to the centralized training. If the weights
are encrypted, the verifiable process takes additional time
according to the increased size of the ciphertext compared
to the plaintext. Overall, enabling the homomorphic addi-
tion to secure weights largely increases the training time.
The time can be reduced by the hardware support and the
better implementation. The aggregation time increases in
the multiple moderator scenarios but the increment is rela-
tively smaller than the time for the gradient protection. The

hash consistency check greatly increases in the MSVM-one
experiments, which takes about 8.5 seconds (2 checks), be-
cause we random the honest moderator during training. The
average time for checking one ẑ and the corresponding hash
takes about 4.2 seconds. The hash consistency check of
the MSVM-half experiment is small because checking the
majority consistency of ẑ is rapid. Overall, protecting gra-
dients greatly increases the training time. The time of the
verifiable computing only depends on the size of the ag-
gregation inputs. Overall, the time overhead is reasonable,
which shows the practicality for verifying the correctness of
the moderators.

5 Related Work

Federated Learning (FL) has been extensively stud-
ied [10] and is still in active development. Most existing FL
systems operated with a single centralized moderator. We
survey a new FL that works with more than one modera-
tor. The multi-center FL [17] learns multiple global models
and simultaneously derives the optimal matching between
users and centers using a multi-center aggregation mech-
anism. We note that our proposed multiple decentralized
moderators can achieve a similar goal but we focus more
on security and trustworthiness. The central-server-free FL
of [9] builds upon the framework and theoretical guaran-
tees in the generic social network scenario, where the trust
is unidirectional. Their analysis shows results on how users
can benefit from communication with trusted users in the
FL scenario. In comparison, our proposed FedTrust does
not rely on the trust of the FL client in the moderator, while
the FL can still perform securely and robustly.

Secure Aggregation. SecAgg [4] is a failure-robust FL
secure aggregation protocol based on pairwise additive
masking and Shamir’s secret sharing, and with significant
computation cost. SecAgg+ [2] reduces the communica-
tion costs by using a sparse communication graph with
a logarithmic degree. By using a probabilistic argument,
SecAgg+ [2] proves that their protocol achieves strong guar-
antees for privacy and resilience against user dropouts. The
hybrid method of [15] is based on threshold homomorphic
encryption, while HybridAlpha [18] is based on functional
encryption. Both above methods are composed of differ-
ential privacy and Secure Multiparty Computation; they
rely on a trusted party for key distribution. TurboAgg [13]
achieves a secure aggregation overhead of O(n log n) as op-
posed to O(n2) by adding aggregation redundancy via La-
grange coding and can handle a user dropout rate of 50%.
The method of [6] is based on designing the topology of
secret sharing nodes as a sparse random graph for efficient
secure aggregation. The LightSecAgg [14] changes the de-
sign from the random-seed reconstruction of the dropped
users to the one-shot aggregation-mask reconstruction of



Table 2: Average computational time and overhead (per iteration in seconds) of training the network of 1,250,858 parameters.
Exp Train Aggregate Quant. Dequant. AHH Con. Check Encrypt Decrypt Overhead
Cen 12.584 – – – – – – – 0%
Cen (Q) 12.530 – 0.004 0.002 – – – – -0.3%
FL 12.245 0.004 – – – – – – -2.7%
FL (Q) 12.215 0.002 0.003 0.004 – – – – -2.9%
SVM 11.995 0.001 0.003 0.004 2.166 2.165 – – 29.8%
SSVM 13.141 0.027 0.002 0.005 4.360 4.362 4.216 2.094 124.2%
MSVM-half 13.128 0.078 0.002 0.005 – 0.057 4.217 2.105 55.7%
MSVM-one 13.036 0.077 0.002 0.017 4.356 8.465 4.211 2.105 156.4%

the active users via mask encoding/decoding. This method
achieves the same privacy and dropout-resiliency guaran-
tees while significantly reducing the overhead. To the best
of our knowledge, all existing secure aggregation works
are single-sided and focus on handling unreliable client
dropouts. FedTrust is the first study on relaxing the trust
of moderators from the clients and handling moderator ro-
bustness and security with verifiable computation.

6 Conclusion

This paper aims to mitigate the Federated Learning as-
sumption where the aggregation relies on a trustworthy
moderator. We investigate multiple scenarios, from a sin-
gle and verifiable moderator to multiple secure and verifi-
able moderators, comprehensively exploring the implicit is-
sues between clients and moderators. Specifically, we pro-
posed different protocols for various scenarios using cryp-
tographic tools related to verifiable computing, data encryp-
tion/decryption, and multi-party computation. Experiment
results show the efficacy of the proposed protocols on test-
ing accuracy and training time. With increasing demands of
the data size for heterogeneous multimedia applications, we
expect the proposed protocols can be a start to improve the
robustness and privacy levels of FL.

References

[1] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Gold-
wasser, S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine,
K. Lauter, S. Lokam, D. Micciancio, D. Moody, T. Mor-
rison, A. Sahai, and V. Vaikuntanathan. Homomor-
phic encryption security standard. Technical report,
HomomorphicEncryption.org, Toronto, Canada,
November 2018.

[2] J. Bell, K. Bonawitz, A. Gascón, T. Lepoint, and
M. Raykova. Secure single-server aggregation with
(poly)logarithmic overhead. In ACM SIGSAC CCS, 2020.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC, pages 1–10. ACM, 1988.

[4] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B.
McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth.
Practical secure aggregation for privacy-preserving machine
learning. In ACM SIGSAC, 2017.

[5] R. Canetti. Universally composable security. J. ACM,
67(5):28:1–28:94, 2020.

[6] B. Choi, J. Sohn, D. Han, and J. Moon. Communication-
computation efficient secure aggregation for federated learn-
ing. In arXiv:2012.05433, 2021.

[7] S. Gordon, J. Katz, F. Liu, E. Shi, and H. Zhou. Multi-client
verifiable computation with stronger security guarantees. In
TCC LNCS 9015, pages 144–168, 2015.

[8] S. Gordon, F. Liu, and E. Shi. Constant-round MPC with
fairness and guarantee of output delivery. In CRYPTO, vol-
ume 9216 of LNCS, pages 63–82. Springer, 2015.

[9] C. He, C. Tan, H. Tang, S. Qiu, and J. Liu. Central server free
federated learning over single-sided trust social networks. In
arXiv 1910.04956, 2019.

[10] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawit, Z. Charles, G. Cormode, and et
al. Advances and Open Problems in Federated Learning.
now publishers inc., 2021.

[11] C. Peikert. A decade of lattice cryptography. Found. Trends
Theor. Comput. Sci., 10(4):283–424, 2016.

[12] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[13] J. So, B. Guler, and S. Avestimehr. Turbo-Aggregate: Break-
ing the quadratic aggregation barrier in secure federated
learning. IEEE JSAIT, 2:479–489, 2021.

[14] J. So, C. He, C. Yang, S. Li, Q. Yu, R. Ali, B. Guler, and
S. Avestimehr. LightSecAgg: a lightweight and versatile de-
sign for secure aggregation in federated learning. In MLSys,
2022.

[15] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig,
R. Zhang, and Y. Zhou. A hybrid approach to privacy-
preserving federated learning. In arXiv:1812.03224, 2019.

[16] O. Wahab, A. Mourad, H. Otrok, and T. Taleb. Federated
machine learning: Survey, multi-level classification, desir-
able criteria and future directions in communication and net-
working systems. IEEE Commun. Surv. Tutor., 23(2):1342–
1397, 2021.

[17] M. Xie, G. Long, T. Shen, T. Zhou, X. Wang, J. Jiang,
and C. Zhang. Multi-center federated learning. In
arXiv:2005.01026, 2021.

[18] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, and H. Ludwig.
HybridAlpha: An efficient approach for privacy-preserving
federated learning. In ACM Workshop on Artificial Intelli-
gence and Security, pages 13–23, 2019.

[19] S. Zhou, M. Liao, B. Qiao, and X. Yang. A survey of secu-
rity aggregation. In ICACT, pages 334–340, 2022.

HomomorphicEncryption.org

