
A Robust Collaborative Learning Framework Using Data Digests and Synonyms
to Represent Absent Clients

Chih-Fan Hsu
Inventec Corporation
Taipei 111, Taiwan
hsuchihfan@gmail.com

Ming-Ching Chang
University at Albany - SUNY

Albany NY 12065, USA
mchang2@albany.edu

Wei-Chao Chen
Inventec Corporation
Taipei 111, Taiwan

chen.wei-chao@inventec.com

Abstract
We propose Collaborative Learning with Synonyms

(CLSyn), a robust and versatile collaborative machine
learning framework that can tolerate unexpected client ab-
sence during training while maintaining high model accu-
racy. Client absence during collaborative training can se-
riously degrade model performances, particularly for un-
balanced and non-IID client data. We address this issue
by introducing the notion of data digests of the training
samples from the clients. The expansion of digests called
synonyms can represent the original samples on the server
and thus maintain overall model accuracy, even after the
clients become unavailable. We compare our CLSyn im-
plementations against three centralized Federated Learn-
ing algorithms, namely FedAvg, FedProx, and FedNova as
baselines. Results on CIFAR-10, CIFAR-100, and EMNIST
show that CLSyn consistently outperforms these baselines
by significant margins in various client absence scenarios.

1. Introduction
With the success of modern machine learning (ML), the

performance of a model often depends on the availability
and quality of data. In practice, the large amount of data
may be held by multiple parties. Collecting data to a central
site for model training can incurs large overheads in man-
agement, compliance, privacy concerns, or even regulation
and judicial issues [1, 2]. In this regard, collaborative ML
takes a step further by assuming that multiple learning par-
ties can collaboratively train a ML model [2]. Federated
learning [3] is collaborative ML without centralized train-
ing data, where modern concepts including heterogeneity,
data privacy, model privacy, security, anti-adversarial at-
tacks, incentive mechanisms are properly addressed.

Client robustness is an important issue in collabora-
tive learning. Client absence can be caused by short-term
network communication breakage [3, § 3.5], or long-term
cease of participation due to business regulation or com-
petitions, which are much less addressed in the literature.

Model training with client absence can degrade severely
when the client data is non-independent-and-identically-
distributed (non-IID) [4]. The client absence issue becomes
more severe as the skewness of the client data increases.

In this paper, we develop a solution for robust, uninter-
rupted collaborative training under client absence. We con-
sider the following three scenarios: (1) unreliable clients,
(2) continue training after clients leave for a long duration
or disappear permanently, (3) carry on a stopped training
after new clients join.

We propose Collaborative Learning with Synonyms
(CLSyn), a collaborative machine learning framework that
can address client absence by learning to synthesize training
samples while client data are available. We name the syn-
thesized samples the synonym of the training samples that
are kept at a centralized training moderator. An encoder is
used at each client to produce digests, while a generator is
learned at the centralized moderator to generate synonyms
from digests. Since under non-IID client data setting, the
model trained at each client is very different, such that any
client leaving can cause catastrophic performance drop. To
this end, a corresponding replacement model operating on
the synonyms can be use to continue the joint model train-
ing. In each training iteration, data digests are produced at
each client and sent to the moderator for model update. At
the moderator side, synonyms can be generated from the re-
spective digests of each client to continue the collaborative
training. This way, the raw private data never leave each
client to ensure privacy during training.

The proposed CLSyn algorithm can jointly learn syn-
onym generation and the collaborative model training. Our
design is motivated by the following two intuitions and con-
trolled by respective loss functions. (1) A Data Similarity
Loss (DSL) ensures the projection of the private data (i.e.
the digest) and the projection of synonym should be simi-
lar. (2) A Synonym Classification Loss ensures that the syn-
onym and the digest produced at each client should be clas-
sified well by the learned model. Our experiments compare
CLSyn with fully centralized learning (which violates data

hsuchihfan@gmail.com
mchang2@albany.edu
chen.wei-chao@inventec.com


(a) (b) (c)

Figure 1: Overview of the proposed network models. (a) Encoder E encodes the private data P i of each client i into the
digest Di, and the synonym generator G to decode Di into the synonym Si of the original data. (b) The client model Mi

takes its private data P i and digest Di and perform feature extraction. The extracted features are concatenated to perform
classification. (c) The server model M has an identical structure as Mi but working with different data access.

locality) as well as three common federated learning algo-
rithms, namely, FedAvg [5], FedProx [6], and FedNova [7].
Experimental results show that the proposed CLSyn frame-
work can significantly enhance collaborative training per-
formance against client absence.

The contribution of this paper includes the following:

• We propose a collaborative learning framework based on
data digest encoding and synonym generation, to handle
client absence with non-IID data distributions.

• The ML model and synonym generator are jointly trained
end-to-end, such that model training can progress seam-
lessly with either available or absent clients.

• CLSyn can support privacy-preserving model training, as
only digests are sent out for training, and private data is
never shared outside each client. The privacy level de-
pends on the design of digest generation.

• Extensive evaluations on CIFAR-10, CIFAR-100, and
EMNIST with various client leaving and rejoining sce-
narios demonstrate the efficacy of CLSyn.

2 Related Work
There exists a large amount of works regarding dis-

tributed or collaborative ML [1]. Most literature is on (1)
addressing client data privacy or model privacy using dif-
ferential privacy (DP) algorithms [8], (2) handling non-IID
distribution for effective model learning, and (3) address-
ing limited computational resources or network bandwidth
to perform distributed learning. These solutions cannot ef-
fectively deal with client leaves during training, especially
for protected client data that are non-IID distributed. Due
to privacy protection, private client data should be kept and
accessible only at each client. As one or more clients leave,
the non-IID distribution will cause a crucial amount of rep-
resentative data to disappear, resulting in biased gradient
update and long-term training degradation.

3 Methodology
We hypothesize that a training data memorizing mech-

anism is required to effectively handle client leaves. We
handle client absence during collaborative training by en-
coding the private data of each client as digests that will

be shared with the moderator. 1 When clients are absent,
the moderator generates synonyms S to represent the pri-
vate data P from the stored digests D to continue training
(Fig. 1). The use of digests and synonyms is versatile and
adaptable to most existing architectures to perform collab-
orative training in applications. The synonym generator G
is jointly trained and optimized with the collaborative learn-
ing model on the moderator, such that the most suitable syn-
onyms can be generated. Since the generator G will synthe-
size synonyms from the digests, G should be protected to
avoid undesired access from any clients to avoid potential
data leak or adversarial attacks.

3.1 Digest Encoding and Synonym Generation
Each client i in CLSyn encodes private training samples

into digests Di by a data encoder E locally. The digests are
transmitted and stored at a training moderator, so collab-
orative training can continue using synonym Sj produced
from Dj . The selection of the data encoder E depends on
the property, complexity, and privacy level of the collabo-
rative training task. Note that S should be within the same
domain as P . Ideally, due to the transformation, they may
not be identical.

In the CLSyn framework, the data encoder E and the
client model Mi belong to the client, while the synonym
generator G and the server model M belong to the modera-
tor. At each client, we fix E (thus D is also fixed given the
input) to prevent the digest D depending on E . At the mod-
erator, we expect M to learn from synonyms S generated
by G. To achieve this goal, the following model structure
and training process are designed.

Since CLSyn must handle both cases of training with
available clients and client absence, our design intuition
is that, both the feature extractor and the task driven ML
model should produce as-similar-as-possible results from
(i) the digests and private data (D,P ) and (ii) the digests
and synonyms (D,S). Observe in Fig. 1(b,c) that the client
model Mi and server model share identical structure except

1We assume that the digest and synonym generators are not reversible
under adversarial attacks. Given that the synonym generator is only kept
at the secure moderator and not accessible by the clients, the private data
for each client is thus protected.



Figure 2: The relations and mappings among the client data
P , digests D and synonyms S.

working with different data access.
Fig. 2 provides a schematic plot showing the relations

and mappings among representation spaces (client data P ,
digests D, and synonyms S) and functions (synonym gen-
erator G, data encoder E , and feature extractors F ). The
collaborative ML model takes the concatenation of the ex-
tracted features from the private data P (or synonyms S)
and digests D for making a decision.

Client and server models. In collaborative learning,
model training occurs at each client, and model gradients
are transmitted to the server and aggregated to update the
server model. In CLSyn, when a client i is available, client
model Mi is trained using private data P i together with its
digest Di, as shown in Fig. 1(b). The model gradient ∇Mi

is sent to the server, where the gradients from all clients
are aggregated to generate the server model M. Note that
Mi, ∇Mi, and M are in the same shape and size. CLSyn
follows the common structure of the collaborative learning
that enforces identical structures for the server model M
and the client model Mi, with the only difference of data
accessing. When the client is available, its private data are
used to generate digests for training; whenever clients be-
come absent, the server will take the digests and reconstruct
the synonyms for the missing clients to continue training.
This way, CLSyn training does not interrupt whether clients
are present or not.

Fig. 1(a) illustrates the relationship between the data en-
coder and synonym generator. Ideally, the dimension of the
digest D is usually less than the that of the private data P
and the synonyms S. Combining with the non-invertible
data encoder E , private data are thus protected by the shar-
ing of the digests. In our experiment, we design two shallow
convolutional networks to represent E and G, respectively.

3.2 The CLSyn Training Steps

The CLSyn training can be viewed as an extension of
FedAvg [9] with the newly introduced designs of digests,
synonyms, and loss functions. The loss functions control

the update of the generator G and help retaining model per-
formance when trained with possibly absent clients. Every
iteration of CLSyn training involves the following steps:

• Moderator pushes model M to every client i.
• Each client i encodes private data P i into digest Di

and then trains model Mi with P i and Di as input us-
ing stochastic gradient decent (SGD). The digest Di and
model gradients ∇Mi are then transmitted to the modera-
tor. Di only needs to be transmitted once at the beginning
of training if E is fixed.

• Moderator collects ∇Mi and determines if any client is
absent. If client j is absent, a replacement model M̂j is
used to calculate the gradient ∇Mj using the digests Dj

and the generated synonyms Sj = G(Dj).
• Moderator updates M by aggregating ∇Mi and ∇Mj .
• Moderator updates M and G with all collected digests D

and the generated synonyms S.

3.3 Losses for Joint Training of G and M
The ML model M aims to learn: (1) how best to gener-

ate appropriate S and (2) how best to perform classification
i.e. determine y from S and D. To achieve this, we intro-
duce two intuitions that establish the joint training of M
and G. Fig. 2 illustrates concepts related to these ideas.

• Intuition 1: We aim to train M so that it is capable to
correctly classify the information obtained from D and
S. This intuition is enforced by the two black dash lines
starting from D and S in Figure 2.

• Intuition 2: We want the digest of the synonym E(S) to
resemble the digest of the private data D, i.e. E(S) ∼ D.
This intuition is indicated by the green lines between the
digest space and the original private data space.

The following two loss functions are proposed to achieve
Intuitions 1 and 2. The Synonym Classification Loss
LSCL ensures that the synonyms S and digests D should
be classified well by the model M:

LSCL = Lce (M(G(D), D), y) , (1)

where the trainable networks are highlighted in red. The
Data Similarity Loss LDSL ensures that the projection of
the private data and the projection of the synonyms S should
be similar:

LDSL = Lmse (E(G(D)), D) . (2)

The total loss for jointly training G and M is: Lserver =
LDSL + λLSCL, where λ is a balancing hyperparameter,
which is set to λ = 1 in our experiments.

At each client i, the training data consist of the private
data P i and digest Di produced via encoder E . Each client
trains the client model Mi using the Classification Loss:

Lclient = Lce

(
Mi(P i, Di), y

)
. (3)

Once the client j is absent, a replacement model M̂j and
the synonyms G(Dj) will take over the roles of the client
and its data to continue training.



0 1 2 3 4 5 6 7 8 9
Label

0

100

200

300

400

#S
am

pl
es Client

Client 0
Client 1
Client 2
Client 3

(a) µ = 0.5

0 1 2 3 4 5 6 7 8 9
Label

0

500

1000

1500

2000

2500

3000

3500

4000

#S
am

pl
es Client

Client 0
Client 1
Client 2
Client 3

(b) µ = 0.1

Figure 3: Examples of non-IID data distributions of the 10
classes of CIFAR-10 for the 4 clients; µ controls the skew-
ness of non-IID data distributions.

4 Experiment Results
We perform experiments on three common classifica-

tion datasets CIFAR-10 [10], CIFAR-100 [10], and EM-
NIST [11]. We evaluate CLSyn against three implementa-
tion of collaborative learning algorithms FedAvg [9], Fed-
Prox [6], and FedNova [7] as baselines.

Experiment setup. All experiments are conducted on
a Linux server with Intel(R) Xeon(R) CPU E5-2690 v3
2.60GHz, 57GB RAM, and K80 GPU. We implement al-
gorithms with Python and PyTorch 1.9.0+cu102. All col-
laborative learning clients are trained sequentially due to
hardware limitations. We trained client models for 300 it-
erations with no early-stop. The total training iteration is
empirically selected to ensure the model is convergent. For
each training iteration, a client trains the client model with
the private data for one epoch. Batch size is set according
to the total number of training samples. Specifically, we
set batch size to 32 and 256 for the CIFAR-10/CIFAR-100
and EMNIST experiments, respectively. Stochastic Gradi-
ent Descent with momentum 0.9 and learning rate 0.001 are
used.

Dataset split. We distribute 80%/10% of the samples
to the clients to train/validate the client models. The re-
maining 10% of samples are dispatched to the moderator
for monitoring the performance of server model. We use
classification accuracy for performance evaluation metric.
We compare the accuracy of the server model trained with
different algorithms on the test set of the original dataset.
We use classification accuracy for performance evaluation
metric.

Non-IID sample distributions. We distribute the train-
ing samples to each client via Dirichlet distribution to sim-
ulate a real world non-IID data distribution [12, 13, 14].
Fig. 3 shows examples of the sample distributions with dif-
ferent µ’s. Generally, small µ values indicates a highly un-
balanced data distribution among clients. We set µ to 0.1 to
test the algorithm’s ability to handle a difficult situation.

4.1 Model Initialization
We initialize the data encoder E using the encoder of a

pre-trained convolutional autoencoder [15]. The synonym
generator G and the server model M are randomly initial-

ized. All clients share a single version of E in CLSyn. This
way, digests generated from different client data can map to
the same digest space, even for non-IID client data distribu-
tions. G is securely stored at the moderator and not share-
able with any client. This ensures private data protection, as
data synonyms are only accessible by the moderator.

4.2 Training Without Client Leaving
We first investigate the scenario without client leaving.

We sample the distribution of client data by Dirichlet dis-
tribution with µ = 0.1 for five repeat experiments, and
compute the average testing accuracy of the latest 30 it-
erations. In this experiment, FedAvg, FedProx, FedNova,
CLSyn, and centralized training achieve 0.69 (0.013), 0.69
(0.016), 0.69 (0.021), 0.68 (0.008), and 0.78 (0.005) accu-
racy, respectively. Values in the parentheses are the stan-
dard deviations of the five experiments, which shows the
consistency of different methods. The highest accuracy
of centralized training represents the cap of all decentral-
ized training methods. Although the CLSyn test accuracy
is slightly lower than the baseline methods (1%), perfor-
mance improvement of CLSyn is significant in the tested
client leaving scenarios that we will show next. The con-
sistency of CLSyn is comparable to the centralized training
and outperforms other algorithms.

4.3 Impact of Client Leaving
We target four client absence scenarios on CIFAR-10 for

experiments: (1) the largest client (who stores the great-
est number of samples) leaves temporarily; (2) the largest
client leaves forever; (3) all clients leave sequentially; and
(4) a pair of clients join the training in the beginning, and
another pair of clients join later. Experiments are conducted
with µ = 0.1 to compare collaborative learning algorithms
in highly-skewed non-IID scenarios, where client data dis-
tributions are shown in Fig. 3b. Specifically, client 0, 1, 2, 3
own unbalanced 13.5%, 32.6%, 46.4%, and 8.6% of train-
ing samples, respectively.

Fig. 4 shows the results of the four scenarios on CIFAR-
10, where the test accuracy at each iteration illustrates the
performance impact caused by client leaving. In Fig. 4a,
client 2 leaves and rejoins training at iteration 50 and 100,
respectively. Observe that CLSyn training curve is almost
unaltered, while the test accuracy of the other curves drops
significantly when client 2 leaves. This is because the server
models trained by the baseline algorithms suffer from catas-
trophic knowledge forgetting due to the non-IID training
samples caused by client absence. The final accuracy of the
baseline algorithms is inferior to CLSyn, which indicates
that temporary client leaving can cause permanent damage
to the final trained model.

Fig. 4b and Fig. 4c show results for permanent client
leaving and sequential client leaving until all clients are
gone. The accuracy of CLSyn shows no large difference



C2 leaves C2 rejoins

0.2

0.4

0.6

0.8

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method

FedAvg

FedProx

FedNova

CLSyn

(a) Leaving temporarily

C2 leaves

0.2

0.4

0.6

0.8

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method

FedAvg

FedProx

FedNova

CLSyn

(b) Leaving forever

C0 leaves C1 leaves C2 leaves C3 leaves

0.2

0.4

0.6

0.8

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method FedAvg FedProx FedNova CLSyn

(c) Leaving sequentially

C0,C1 leave C2,C3 join

0.2

0.4

0.6

0.8

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method

FedAvg

FedProx

FedNova

CLSyn

(d) Group training

Figure 4: Comparison of CLSyn vs. baseline methods for the four targeted client absence scenarios on CIFAR-10.

(a)
0.0

0.2

0.4

0.6

FedAvg FedProx FedNova CLSyn
Methods

A
c
c
u
ra

c
y

Skewness

0.1

0.5

1

(b)

C0 leaves C1,C2 leave C3 leaves C4,C5,C6

leave

C7 leaves

0.2

0.4

0.6

0.8

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method FedAvg FedProx FedNova CLSyn

Figure 5: The impacts of (a) label skewness and (b) number
of users on CIFAR-10.

between the two scenarios, which demonstrates the effec-
tiveness of digests and synonyms against client leaving.

Fig. 4d shows group training at two stages. Specifically,
clients 0 and 1 start the collaborative training and leave at
iteration 100. Clients 2 and 3 then continue training at it-
eration 150. Note that there is no client joining training
between iterations 100 and 150, and baseline algorithms
have a straight horizontal line of accuracy (no model up-
date). During the first 100 iterations, all algorithms per-
form poorly (0.4 testing accuracy) due to partial and biased
data distribution. Once the new samples join in the train-
ing, CLSyn benefits largely from the stored digests and syn-
onyms, which greatly boosts the server model as if clients 0
and 1 are still available.

4.4 Label Skewness and Number of Users

We investigate the effectiveness of CLSyn in handling
different levels of label skewness, by setting the Dirichlet
distribution hyperparameter µ as 0.1, 0.5, and 1.0. Fig. 5(a)
shows the results. We observe a stable classification accu-
racy of the server model trained with CLSyn under different
skewness. Models trained by the baselines suffer from accu-
racy degradation as the data skewness increases. The error
bars represent standard deviations of the last 30 iterations.

We next test CLSyn on a eight-client scenario with se-
quential leaving. Specifically, one client leaves at iteration
50, then two leave at 100, one leaves at 150, three leave at
200, and one leaves at 250. Fig. 5(b) shows the result. Ob-
serve that the accuracy degradation has a positive correla-
tion to the number of leaving clients. FedNova suffers from
an unstable test accuracy during training. This is caused
by the weights for aggregating the gradients at the moder-
ator in the FedNova algorithm. The weight calculation not

(a)

C0 leaves C1 leaves C2 leaves C3 leaves

The Maximum Accuracy
of the Centralize Training

0.0

0.1

0.2

0.3

0.4

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method FedAvg FedProx FedNova CLSyn

(b)

C0 leaves C1 leaves C2 leaves C3 leaves

0.25

0.50

0.75

1.00

0 100 200 300
Iterations

A
c
c
u
ra

c
y

Method Cen FedAvg FedProx FedNova CLSyn

Figure 6: Sequential leaving scenarios on (a) CIFAR-100
and (b) EMNIST. Green horizontal dash line shows the cap
of maximum accuracy from centralized training.

Table 1: Average test accuracy of different G initializations.

Dataset Initial G Avg. Test Accuracy

CIFAR-10 Random 0.672 (0.005)
Autoencoder 0.667 (0.007)

EMNIST Random 0.861 (0.001)
Autoencoder 0.868 (0.001)

only involves the number of training samples but also the
number of training steps, and the sum of weights is usually
greater than one. Updating the model with a large gradient
eventually causes an unstable learning curve during train-
ing. The situation becomes more severe when (1) the model
is trained with a larger learning rate or (2) a larger number
of clients join the collaborative learning. Overall, CLSyn
outperforms all baseline algorithms by a large margin.

4.5 Experiments on CIFAR-100 and EMNIST
To verify generalizability, we test CLSyn on two addi-

tional datasets CIFAR-100 and EMNIST. We keep the same
network architectures as in the CIFAR-10 experiments, and
only resize the EMNIST images from 28×28 to 32×32 and
set the first conv kernel size to 3×3×1. Fig. 6 shows the
results. We observe a similar trend that CLSyn significantly
outperforms other methods. The CIFAR-100 test accuracy
is relatively low due to the insufficient network complexity.
We observe similar overall trend as in CIFAR-10 experi-
ments, that CLSyn can handle client leaving seamlessly.

In the EMNIST experiments, CLSyn significantly out-
performs all baselines with surprising results that are al-
most as good as centralized training. The inspection of
the synonyms generated from the digests provides some
explanation. Fig. 7(b,d,f) shows examples of the private
data and the synonyms generated from random-initialized



(a) (b)

(c) (d)

(e) (f)

Figure 7: Examples of (a,b) client data samples, (c,d) cor-
responding synonyms learned from random initialization of
G, and (e,f) autoencoder produced synonyms, for results on
(a,c,e) CIFAR-10 and (b,d,f) EMNIST, respectively.

G and autoencoder-initialized G, respectively. Observe that
the private data and the random-initialized synonyms are
highly similar, which is caused by the shallow data encoder.
The digests still preserve sufficient information to recover
the original samples. As the training goes on, synonyms
produced by G become similar to the original samples, and
gradually the server model updates denominate the train-
ing. Thus, CLSyn training with a shallow data encoder can
eventually approach centralized training.

4.6 Alternative G Initialization

To investigate how different initialization of the genera-
tor G can affect the synonym, we compare (i) random ini-
tialization and (ii) using the decoder network of the pre-
trained autoencoder as the initialization in sequential leav-
ing experiments. Fig. 7(c,d) show synonyms generated by
randomly-initialized G. Observe that G eventually con-
verges to a state that generates synonyms resembling the
private data in both CIFAR-10 and EMNIST datasets.

Fig. 7(e,f) show synonyms generated by autoencoder-
initialized G, which are visually similar to the original pri-
vate data. While the synonyms are visually plausible, the
preparation of such generator require a step that violates
privacy concerns, as the autoencoder pre-training requires
accessing to all private data of the clients. Table 1 shows
the average test accuracy on the two different G initializa-
tions, where the accuracy has no significant difference. This
result indicates the robustness of CLSyn training in learning
to generate representation of the private data from digests.

5 Conclusion
We presented CLSyn, a robust learning framework us-

ing data digests and synonyms to address client absence in

collaborative training. The key idea is to memorize train-
ing data as digests via a data encoder, and decode the di-
gests into the synonyms as an alternative sample represen-
tation. CLSyn works well against unbalanced client data,
which can significantly affect the training outcome. We
test CLSyn in four client-leaving scenarios over three open
datasets to investigate its effectiveness. Our results show
that CLSyn outperforms FedAvg, FedProx, and FedNova in
all scenarios by a significant margin.

Future Work includes further mitigation of the privacy
concerns introduced from the shared digests and synonyms.
This includes the exploration of principled methods that
can de-identify the digests, such as pruning or merging to
strengthen anonymity.

References

[1] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Klop-
penburg, Tim Verbelen, and Jan S. Rellermeyer. A survey on dis-
tributed machine learning. ACM Comput. Surv., 53(2), Mar 2020.

[2] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. FDML:
A collaborative machine learning framework for distributed features.
In SIGKDD, page 2232–2240, 2019.

[3] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bel-
let, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawit, Zachary
Charles, Graham Cormode, and et al. Advances and Open Problems
in Federated Learning. now publishers inc., 2021.

[4] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated
learning on Non-IID data silos: An experimental study. In arXiv
2102.02079, 2021.

[5] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua
Zhang. On the convergence of FedAvg on non-IID data. In ICLR,
2020.

[6] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in heteroge-
neous networks. In MLSys, 2020.

[7] Jianyu Wang, Qianghua Liu, Hao Liang, Gauri Joshi, and H. Vincent
Poor. Tackling the objective inconsistency problem in heterogeneous
federated optimization. In NeurIPS, 2020.

[8] Xuefei Yin, Yanming Zhu, and Jiankun Hu. A comprehensive survey
of privacy-preserving federated learning: A taxonomy, review, and
future directions. ACM Comput. Surv., 54, 2021.

[9] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. Communication-efficient learning of
deep networks from decentralized data. In AISTATS, 2017.

[10] Alex Krizhevsky. Learning multiple layers of features from tiny im-
ages. In TR, U. Toronto, 2009.

[11] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van
Schaik. EMNIST: an extension of MNIST to handwritten letters,
2017.

[12] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan
Greenewald, Nghia Hoang, and Yasaman Khazaeni. Bayesian non-
parametric federated learning of neural networks. In ICML, pages
7252–7261, 09–15 Jun 2019.

[13] Qinbin Li, Bingsheng He, and Dawn Xiaodong Song. Practical one-
shot federated learning for cross-silo setting. In IJCAI, 2021.

[14] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papail-
iopoulos, and Yasaman Khazaeni. Federated learning with matched
averaging. In ICLR, 2020.

[15] Volodymyr Turchenko and Artur Luczak. Creation of a deep convo-
lutional auto-encoder in Caffe. In IDAACS, pages 651–659, 2017.


