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ABSTRACT

Neural vocoders, used for converting the spectral repre-
sentations of an audio signal to the waveforms, are a com-
monly used component in speech synthesis pipelines. It
focuses on synthesizing waveforms from low-dimensional
representation, such as Mel-Spectrograms. In recent years,
different approaches have been introduced to develop such
vocoders. However, it becomes more challenging to assess
these new vocoders and compare their performance to pre-
vious ones. To address this problem, we present VocBench,
a framework that benchmark the performance of state-of-
the-art neural vocoders. VocBench uses a systematic study
to evaluate different neural vocoders in a shared environ-
ment that enables a fair comparison between them. In our
experiments, we use the same setup for datasets, training
pipeline, and evaluation metrics for all neural vocoders.
We perform a subjective and objective evaluation to com-
pare the performance of each vocoder along a different
axis. Our results demonstrate that the framework can show
competitive efficacy and quality of the synthesized sam-
ples for each vocoder. VocBench framework is available at
https://github.com/facebookresearch/vocoder-benchmark.
Index Terms: speech synthesis, vocoders, Mel-Spectrograms,
GAN, VocBench, benchmark, evaluation.

1. INTRODUCTION
Throughout the years, speech synthesis techniques have gone
through different phases of improvements, from knowledge-
based approaches [1, 2, 3] to data-based ones [4, 5, 6]. To
date, there are two types of speech synthesis algorithms, text
to speech, which converts input text to audio signals, and
voice conversion, which transforms an input audio to differ-
ent identities or styles. Regardless of this difference, most of
the recent speech synthesis approaches [7, 8, 9] rely on neu-
ral vocoders to generate the final waveform for more natural-
sounding speech synthesis.

In this context, a vocoder is designed to synthesize
waveform from the lower feature dimension, such as Mel-
spectrograms. For many years, the state-of-the-art (SOTA)

∗Work done during an internship at Facebook AI.

Feature Extraction

Scores

Synthesized W
aveform

Evaluation M
etrics

WaveNet

WaveRNN

MelGAN
Parallel
WaveGAN

WaveGrad

DiffWaveReference 
Waveform

LibriTTS

VCTK

LJ Speech

Fig. 1. An overview of the proposed VocBench framework.

methods used DSP-based approaches [10] for vocoder devel-
opment. While the advantage of fast speech generation time,
the quality of the synthesized waveform is largely limited due
to the assumptions under the heuristics. In recent years, more
sophisticated vocoders have been developed based on the use
of deep neural networks for more enhanced quality for the
generated speech. These methods include (1) autoregressive
approaches [11, 12], (2) Generative Adversarial Networks
(GANs) approaches [13, 14, 15], and (3) diffusion based ap-
proaches [16, 17]. Due to the different variables in the evalu-
ation process, datasets selection, hardware configuration, and
evaluation metrics used, how best to compare and evaluate
these different approaches remains an open challenge.

In this work, we present the VocBench framework, a com-
prehensive benchmark for vocoder quality and speed evalua-
tions. More specifically, we build VocBench to train and test
neural vocoders in a shared environment with public datasets.
We construct three datasets, including one single-speaker and
two multi-speaker scenarios, and then train six vocoders cov-
ering three different categories: autoregressive, GAN, and dif-
fusion based approaches. All vocoders are trained and eval-
uated following the same pipeline. We design two main ex-
periments. First, we test the efficacy of each vocoder in syn-
thesizing the waveform from lower-dimensional features such
as Mel-Spectrogram. Second, we test the generalizability of
each vocoder in synthesizing speech for speakers who are not
included in the training set. Figure 1 provides an overview of
the proposed framework.

Recently, various studies have been conducted for neu-
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ral vocoder evaluation. Govalkar et al. [18] conducted a
study with six autoregressive-based vocoders and two addi-
tional phase reconstructions vocoders. Airaksinen et al. [19]
adopted classical methods for vocoder design in their study.
Both of these works used MUSHRA [20] as their main evalu-
ation metric to compare the performance of each vocoder. In
this study, we extend the vocoder implementations to include
both GAN and diffusion-based models. Additionally, we
carry on the evaluation using both subjective and objective
metrics. We use the Mean Opinion Score (MOS) test as a sub-
jective evaluation. To evaluate each of the different vocoders
objectively, we used the following four different evaluation
metrics: Structural Similarity Index Measure (SSIM) [21],
Fréchet Audio Distance (FAD) [22], Log-mel Spectrogram
Mean Squared Error (LS-MSE), and Peak Signal-to-Noise
Ratio (PSNR). More details about the experiment setup and
evaluation metrics are presented in § 3.

2. NEURAL VOCODERS

We next describe the three main categories of the neural
vocoders used in our study: the autoregressive models (§ 2.1),
GAN based models (§ 2.2), and diffusion models (§ 2.3).

2.1. Autoregressive Models
The key feature of the autoregressive models is that they are
designed as probabilistic models to predict the probability of
each waveform sample based on the previous samples. This
allows generating a natural, high-quality speech signal. How-
ever, due to the sample-by-sample generation process, the
overall synthesis speed is slow compared to other methods.
In the following, we will consider two main autoregressive
models: WaveNet and WaveRNN.

The WaveNet [11] model works on the waveform level to
achieve long-range temporal dependency through the depth
of the model. It combines a stack of causal filters and dilated
convolutions to help their receptive fields grow exponentially
with the depth. We use the open-source implementation from
[23] with different configurations of input types and loss func-
tions. More details are provided in § 3. The autoregressive
WaveRNN [12] architecture utilizes a recurrent neural net-
work (RNN) for sequential modeling of the target waveform.
A single layer RNN with a dual softmax layer is used.

2.2. GAN Based Models
GAN-based vocoders have shown remarkable performance
often exceeding autoregressive models in the speed and qual-
ity of the synthesized speech. The main idea of GANs [24]
use a generator to model the waveform signal in the time do-
main and a discriminator to assess the quality of the gener-
ated speech. We consider two representative models, Mel-
GAN and Parallel WaveGAN among the different variants of
GAN-based vocoders.

MelGAN [13] takes the standard GAN architecture for
fast waveform generation. A fully convolutional model is
used for high-quality Mel-Spectrogram inversion. With fewer

parameters compared to the autoregressive model, MelGAN
achieves higher real-time factor on both GPU and CPU with-
out the need of hardware-specific optimization.

The Parallel WaveGAN [15] architecture is distillation-
free, fast, and requires only small memory footprint for
waveform synthesis. Parallel WaveGAN jointly optimizes
the waveform-domain adversarial loss and multi-resolution
short-time Fourier transform (STFT) loss.

2.3. Diffusion Based Models
Diffusion probabilistic models are generative models entail-
ing two main processes: diffusion and reverse [25]. The diffu-
sion process is defined as a Markov chain that gradually adds
Gaussian noise to the original signal until it gets destroyed.
The reverse process, on the other hand, is a denoising process
that progressively removes the added Gaussian noise and re-
stores the original signal. We included two diffusion-based
vocoders in our study: WaveGrad and DiffWave.

The WaveGrad [16] model architecture is built on prior
works from score matching [26] and diffusion probabilistic
models [25]. The WaveGrad model takes a white Gaussian
noise as input, and condition on the Mel-Spectrogram to iter-
atively refine the signal via a gradient-based sampler.

DiffWave [17] is a versatile diffusion probabilistic model
for waveform synthesis that works well under both condi-
tional and unconditional scenarios. Using a white Gaussian
noise as input, DiffWave performs a Markov chain process
with a constant number of steps to gradually generate a struc-
tured waveform [27, 28, 25]. The model is trained to optimize
a choice of variational bound on the data likelihood.

3. DATASET AND EXPERIMENTS

3.1. Dataset and Feature Extraction
We use three datasets in this study: LJ Speech for the single-
speaker scenario as well as LibriTTS and VCTK for the multi-
speaker scenarios. For all of the three different datasets, the
train, validation, and test splits are fixed across the different
vocoders that are used in our study.

The LJ Speech dataset [29] consists of 13, 100 short au-
dio clips of a single speaker reading passages from 7 non-
fiction books. A transcription is provided for each clip. The
length of each clip varies from 1 to 10 seconds, and the total
length is approximately 24 hours. We reserve the first 20 clips
for testing, and the following 10 clips for validation. The rest
of the clips are used for training.

The LibriTTS dataset [30] is a multi-speaker English cor-
pus of approximately 585 hours of reading English speech at
a 24kHz sampling rate. It is derived from the original materi-
als (MP3 audio files from LibriVox and text files from Project
Gutenberg) of the LibriSpeech corpus. We use train-clean-
100 and train-clean-360 subsets for training with about 1150
speakers and 25 minutes of recordings on average per speaker.
For validation and test splits, we use the dev-clean and test-
clean subsets respectively.



Table 1. Evaluation results for the four objective metrics (SSIM, LS-MSE, PSNR, and FAD) and the 5-scale MOS with 95%
confidence intervals evaluated on the three datasets: LJ Speech, LibriTTS, and VCTK. We welcome researchers to submit or
update their results at our GitHub repository https://github.com/facebookresearch/vocoder-benchmark for comparisons.

Metric Corpus WaveNet WaveRNN MelGAN Parallel WaveGrad DiffWave Griffin-Lim Ground
WaveGAN Truth

SSIM
LJ Speech 0.66 0.62 0.89 0.84 0.76 0.82 0.90 -
LibriTTS 0.056 0.53 0.91 0.86 0.71 0.74 0.89 -

VCTK 0.46 0.43 0.88 0.79 0.59 0.64 0.86 -

LS-MSE
LJ Speech 0.006 0.010 0.001 0.002 0.006 0.006 0.001 -
LibriTTS 0.008 0.008 0.001 0.001 0.005 0.006 0.001 -

VCTK 0.009 0.010 0.001 0.002 0.007 0.007 0.001 -

PSNR
LJ Speech 23.20 20.36 28.53 26.70 22.57 22.51 28.77 -
LibriTTS 21.54 21.17 29.98 28.62 22.94 22.18 29.03 -

VCTK 21.36 20.40 30.40 28.17 21.54 21.22 28.77 -

FAD
LJ Speech 1.05 3.43 1.51 0.92 3.12 3.62 2.69 0.31
LibriTTS 1.55 2.60 2.95 1.41 3.10 3.74 4.27 1.23

VCTK 0.99 3.59 1.76 1.22 4.10 5.59 3.92 0.61

MOS
LJ Speech 3.68±0.037 3.96±0.089 3.73±0.075 3.99±0.059 3.85±0.068 4.07±0.060 3.68±0.082 4.10±0.059
LibriTTS 3.75±0.107 3.74±0.099 3.50±0.086 3.82±0.069 3.48±0.083 3.80±0.073 3.36±0.092 4.03±0.065

VCTK 3.95±0.032 3.94±0.089 3.75±0.074 3.87±0.068 3.77±0.074 3.86±0.069 3.66±0.079 3.98±0.064

The VCTK corpus [31] includes speech data uttered by
110 English speakers with various accents. Each speaker
reads out about 400 sentences selected from a newspaper. We
randomly select 85% of the samples for training data, 10%
for validation, and 5% for testing.

Log-spectrogram computations. The speech signals in
the three datasets are re-sampled to 24 kHz. We extract the
80-dimensional Mel-Spectrogram features using 40 ms Han-
ning window, 12.5 ms frameshift, 1024-point FFT, and 0 Hz
& 12 kHz lower & upper-frequency cutoffs. We then per-
form log dynamic range compression on the resulting Mel-
Spectrogram features followed by a min-max normalization.

3.2. Training Setup
For training each of the vocoders in our study, we conduct
a hyperparameter search and report the best model configu-
ration on the three different datasets described in § 3.1. Our
framework is implemented on the PyTorch library, and train-
ing is performed on a Tesla V100 GPU. For reproducibility,
we use the Amazon Web Services (AWS) to compute the
evaluation metrics. Specifically, for CPU computations, we
use c5.4xlarge AWS instance with 16 vCPU of 3.6GHz
Intel Xeon Processors. For GPU computations, we use
p3.2xlarge AWS instance with 8 vCPU of 2.3GHz In-
tel Xeon Processors and one NVIDIA Tesla V100 GPU.

For each of the vocoders, we start from the original con-
figuration provided in the respective open-source implemen-
tation. However, for WaveNet, there are different configura-
tions that vary in terms of input types and loss functions. For
the input, we can use either raw waveform or pre-processed
waveform using µ-law compression. For the loss function,

there are two different options: Mixture of Logistics (MoL-
loss) or a single Gaussian distribution (normal-loss). We run
different versions of the WaveNet model using each config-
uration and report the one with the best performance. We
found that on LJ Speech and VCTK, it is better to use µ-law
compression on the input waveform; and on LibriTTS, raw
waveform input yields the best results. For the loss function,
using normal-loss helps to increase the overall performance.

3.3. Evaluation

Our aim is to evaluate multiple vocoders along different axes
numerically and qualitatively. The choice of metrics is crucial
for evaluation, and we consider the following metrics:

• Mean Opinion Score (MOS) is a subjective numerical
measure of the human-judged overall quality after listening
to a sample. We conducted the MOS study on each of the
vocoder models with three different datasets. Each MOS
test consists of 400 participants asked to rate the quality of
each sample between 1-5 (1:bad - 5:excellent). We report
the MOS for each vocoder as well as the ground truth over
20 samples from the test set.

• Structural Similarity Index Measure (SSIM) [21] is a
quantitative metric that measures the similarity between
two given images in the original study. We perform SSIM
in the frequency domain to compare the synthetic spectro-
gram with the real-world sample.

• Fréchet Audio Distance (FAD) [22] measures the quality
and diversity of the generated samples. FAD score is the
distance between two multivariate Gaussian distributions
estimated on the sets of embeddings, i.e. the background
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and evaluation embeddings. To generate these feature em-
beddings, FAD use a VGG model [32] trained on a large
YouTube dataset as the audio classifier.

• Log-mel Spectrogram Mean Squared Error (LS-MSE)
is computed between the ground truth spectrogram sample
and a generated one. We use the computation in § 3.1 to
obtain the Log-mel Spectrogram for the synthesized speech
samples. The LS-MSE can be interpreted as a measure of
how close the low-dimensional representation of the spec-
trogram is when compared to the ground truth spectrogram.

• Peak Signal-to-Noise Ratio (PSNR) is the ratio of the
power of a peak signal, which is the magnitude of the best-
case output of a signal to the power of the noise at the
peak measured in dB. We apply PSNR computation in the
frequency domain, where the peak signal of the output is 1
and the distorting noise is represented by LS-MSE.

3.4. Results and Discussion
Table 1 shows the results of the five objective and subjective
evaluation metrics described in § 3.3. Each of the metrics
are computed using 20 audio samples from each dataset. For
MOS, we report the mean value as well as the 95% confidence
intervals. We use the Griffin-Lim vocoder [10] as a baseline
to compare with each of the other vocoders in our study.

FAD and MOS metrics show close correlation especially
for GAN-based vocoders. Both metrics have the same best-
performing models in each dataset except LJ Speech. MOS
reports that Diffwave is the best performing vocoder for LJ
Speech with a MOS score of 4.07 ± 0.06, while Parallel
WaveGAN achieves the best FAD score of 0.92 (which is
the second-best in terms of MOS 3.99 ± 0.059). For Lib-
riTTS dataset, Parallel WaveGAN has the best performance
for both FAD (1.41) and MOS (3.82 ± 0.69). As for VCTK
dataset, WaveNet achieves lower FAD (0.99) and higher MOS
(3.95± 0.032) scores compared to other vocoders.

Observe that when using FAD and MOS metrics, each of
the different models achieves their best performance on LJ
Speech dataset, while having lower performance on VCTK
and LibriTTS, respectively. This is due to the fact that LJ
Speech is a single-speaker dataset which makes it easier to
train and evaluate on. On the other hand, VCTK and Lib-
riTTS are multi-speaker datasets. When LibriTTS is used for
speaker generalizability, the scenario is more challenging as
suggested from our experimental results.

Table 2 shows the model complexity of each vocoder and
how that affects the voice synthesis computation time. We
compare the following aspects of the neural vocoder models:
the model parameter size, the number of Floating Point Oper-
ations per Second (FLOPS) of a speech sample, total training
iterations, and Real-Time Factor (RTF).

The autoregressive models, namely WaveNet and Wa-
veRNN, have a consistent number of parameters (3.79 and
4.35 Million parameters respectively) and FLOPS (89.65
and 94.98 GFLOPS respectively) when compared to other

Table 2. Space and time complexity for vocoders under eval-
uation in terms of: (1) the number of parameters, (2) computa-
tion FLOPS, and (3) their corresponding RTF using on GPU
and CPU setup. #Param for GANs (MelGAN and Parallel
WaveGAN) is only for the generator and for a single step of
inference for the diffusion models (WaveGrad and DiffWave).

Model #Param (M) GFLOPS RTF
GPU CPU

WaveNet 3.79 89.65 - -
WaveRNN 4.35 94.98 - -

MelGAN 3.05* 3.01 0.001 0.029
Parallel WaveGAN 1.34* 31.26 0.002 0.576

WaveGrad 15.81* 33.75 0.381 9.858
DiffWave 2.62* 31.70 0.070 4.452

models. We exclude the RTF computation for the autore-
gressive model as they are significantly slower compared
to other vocoders in our study. For real-time applications,
custom kernels are used for autoregressive models such as
LPCNET [33].

For GAN-based vocoders, we report the number of pa-
rameters and FLOPS for the generator. MelGAN has fewer
number of FLOPS (3.01 GLOPS) compared with the Parallel
WaveGAN (31.26 GLOPS). This difference is also reflected
in the RTF values, where MelGAN has RTF 0.001 RTF for
GPU and 0.029 for CPU. On the other hand, Parallel Wave-
GAN achieves 0.002 RTF on GPU and 0.576 on CPU.

In Diffusion-based vocoders, WaveGrad has a relatively
higher number of parameters (15.81 Million parameters)
compared to DiffWave, while both models maintain the same
order of magnitude for the number of FLOPS (33.75 and
31.70 GFLOPS respectively). We report the computation of
a single step of the inference for both the number of model
parameters and FLOPS. In our experiments, during infer-
ence we use 50 steps noise scheduler for WaveGrad and 6
steps for DiffWave, following the original implementation.
This explains the higher RTF obtained for both vocoders in
comparison to GAN-based, where WaveGrad has 0.381 RTF
on GPU and 9.858 on CPU, respectively. DiffWave reports
0.070 and 4.452 RTF on GPU and CPU respectively.

4. CONCLUSION

We present VocBench, a framework for a general-purpose
benchmark of neural vocoders on the speech synthesis task.
VocBench provides the speech community a standard and
comprehensive approach for neural vocoders evaluation. Our
study includes results of both the objective and subjective dif-
ferences for the vocoders. We have open-sourced our toolkit
for training and evaluating neural vocoders on GitHub. We
welcome the community to contribute and share their imple-
mentations and evaluations against SOTA vocoders.
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