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Abstract—Human detection and pose estimation are essen-
tial for understanding human activities in images and videos.
Mainstream multi-human pose estimation methods take a top-
down approach, where human detection is first performed, then
each detected person bounding box is fed into a pose estimation
network. This top-down approach suffers from the early commit-
ment of initial detections in crowded scenes and other cases with
ambiguities or occlusions, leading to pose estimation failures. We
propose the DetPoseNet, an end-to-end multi-human detection
and pose estimation framework in a unified three-stage network.
Our method consists of a coarse-pose proposal extraction sub-
net, a coarse-pose based proposal filtering module, and a multi-
scale pose refinement sub-net. The coarse-pose proposal sub-
net extracts whole-body bounding boxes and body keypoint
proposals in a single shot. The coarse-pose filtering step based
on the person and keypoint proposals can effectively rule out
unlikely detections, thus improving subsequent processing. The
pose refinement sub-net performs cascaded pose estimation on
each refined proposal region. Multi-scale supervision and multi-
scale regression are used in the pose refinement sub-net to
simultaneously strengthen context feature learning. Structure-
aware loss and keypoint masking are applied to further improve
the pose refinement robustness. Our framework is flexible to
accept most existing top-down pose estimators as the role of the
pose refinement sub-net in our approach. Experiments on COCO
and OCHuman datasets demonstrate the effectiveness of the
proposed framework. The proposed method is computationally
efficient (5-6x speedup) in estimating multi-person poses with
refined bounding boxes in sub-seconds.

Index Terms—human detection, human pose estimation, Det-
PoseNet, coarse-pose filtering, top-down, bi-directional refine-
ment, unified network, multi-scale learning, multi-stage joint
learning, structure-aware loss, keypoint masking, COCO.

I. INTRODUCTION

HUMAN detection and pose estimation from images or
videos are two related tasks with many applications in

computer vision. While human detection localizes people in
bounding boxes, pose estimation further identifies the body
parts and skeletal joints of each detected person. The two tasks
are intrinsically related to each other. While human detection
reduces the search space for pose estimation, pose estimation
can also assist human detection in providing constraints on
body physique and posture structures that can resolve ambigu-
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Fig. 1: Difficulties in top-down person detection and pose
estimation, where a large number of bounding boxes including
mostly redundant ones (in black color) co-exist around valid
proposals (red and blue). IoU based non-max-suppression
(NMS) in this case tends to keep only one (e.g. the red)
proposal box after NMS, as the blue and red boxes (each
for a person under heavy occlusion) are with high overlap.
To correctly extract the poses of both individuals, existing
top-down methods rely on lowering the NMS threshold to
retain more-than-sufficient detection boxes to avoid possible
miss-detection. Costly pose estimation must carry out on these
redundant proposals which results in high computational cost.

ities in the scenes. Such bootstrapping is particularly effective
in the cases when multiple people occlude one another.

Existing works and systems, however, treat these two tasks
separately and usually perform them sequentially. Most ap-
proaches [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] choose a
top-down strategy, where a deep neural network (DNN) model
detects all humans, and then another DNN model further
estimates the pose of each person. Fig. 1 depicts this top-
down approach, where human detection is first performed, and
then the detection boxes are fed to a non-max-suppression
(NMS) step before they are fed to a pose estimator network
one-by-one. Although such top-down methods are simple to
implement, they suffer from an early commitment problem in
human detection — If human detection fails, pose estimation
cannot recover the detection errors, and thus the subsequent
pipeline of pose estimation will be seriously affected. This
is particularly problematic in crowded scenes with heavy
occlusions, where the NMS mechanism in human detection
tends to remove valid detections due to ambiguities. Specif-
ically in Fig. 1, NMS may merge nearby detection boxes
into a single proposal, which is impossible for the pose
estimator to recover the miss detection and thus results in
poor pose estimation results. Existing top-down methods also
tend to suffer from high computational costs in keeping as
many detections as possible for pose estimation. As a result,
redundant and erroneous pose candidates must be discarded
and removed eventually, resulting in a waste of computation.

mchang2@albany.edu


IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ##, NO. ##, MONTH YYYY 2

Fig. 2: The DetPoseNet multi-person detection and pose estimation is based on a coarse-pose filtering design, which consists
of three stages of processing: (a) A light-weight coarse-pose proposal extraction sub-net consists of two network branches:
The person detection branch generates human bounding box proposals in a top-down manner. The lightweight coarse-pose
extraction branch generates coarse human pose proposals using the part-affinity loss in a bottom-up manner. (b) The coarse-
pose based proposal filtering refines both human detection boxes and pose estimation proposals, which can effectively reduce
false-positives and false-negatives. (c) A multi-scale pose refinement sub-net of hourglasses stacks takes person detection boxes
from the previous stage as input and produces finalized pose skeleton outputs.

In other words, these top-down approaches trade solutions for
early commitments with heavy computational costs.

Unlike the top-down approaches, bottom-up methods [11],
[12], [13], [14] first localize all individual human body key-
points in a single pass and then associate these keypoints
to human instances. These methods are robust against early
commitments (as they do not rely on human detection).
However, bottom-up methods cannot distinguish individual
human instances in low pixel resolution, as the network must
take the whole image as input to perform keypoint search, and
inevitably miss-detections can seriously degrade performance.

In this paper, we present the DetPoseNet, a unified, end-
to-end framework for human detection and pose estimation.
DetPoseNet combines the advantages of top-down and bottom-
up methods by leveraging a coarse-pose filtering design to
improve the performance of both tasks. DetPoseNet consists
of three components as in Fig. 2:

1) A light-weight coarse-pose proposal extraction sub-net
(in Fig. 2a) extracts both the human-bounding-box pro-
posals and coarse-pose proposals in a bottom-up manner
without NMS.

2) A coarse-pose based proposal filtering (in Fig. 2b) jointly
improves the human detection and body keypoint esti-
mations. This coarse-pose filtering replaces the NMS of
human detections that are widely used in other top-down
methods. Our method basically improves such NMS
filtering.

3) A multi-scale pose refinement sub-net (in Fig. 2c) fi-
nalizes keypoint detections by taking the refined human
detection bounding boxes as input.

In our approach, after the initial human detection and
coarse-pose proposals are obtained, coarse-pose filtering is
applied over all person detection boxes (without NMS), which
leads to refined human detection boxes. Pose estimation can
then be carried out based on these refined boxes, as in Fig. 1.
We will show comprehensive evaluation results of our method
and comparison against state-of-the-art methods, including

both the top-down human detection and bottom-up pose esti-
mation methods in § IV. DetPoseNet outperforms mainstream
methods in multi-human pose estimation on both COCO [15]
and OCHuman [16] datasets. DetPoseNet is an extension of
our earlier work [17], which only focused on single-person
pose estimation. To the best of our knowledge, DetPoseNet
is the first end-to-end trainable method that can compete with
leading methods on both tasks of human detection and multi-
people pose estimation in popular benchmarks.

Our work brings four main contributions:

1) The proposed three-stage DetPoseNet effectively combines
the human detection and pose estimation modules into a
unified optimization framework.

2) The coarse-pose based proposal filtering module can ef-
fectively prevent the early commitment of detection and
jointly improve multi-people pose estimation. This design
is superior to the bottom-up methods in identifying humans
from low pixel resolutions.

3) Pose estimation performance is enhanced with the design
of multi-scale supervision and multi-scale regression in the
pose refinement sub-net. These designs can simultaneously
strengthen context feature learning via a global optimization
across scales.

4) Two additional designs of the structure-aware loss and
keypoint masking can effectively improve the learning of
human body structure in the pose estimation sub-net.

5) The proposed framework can be adapted to any State-of-
the-Art top-down pose estimation method, and it can reduce
the systematical complexity in terms of pose estimation by
80%.

The remaining of this paper is organized as follows. § II
reviews related works and compare our approach to existing
methods. § III describes the DetPoseNet in terms of the
pipeline and network design details. § IV reports evaluations
with results and discussions.
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II. RELATED WORKS

Human detection and pose estimation have been studied
extensively for the past decades. We organize relevant works
into three categories: (1) human detection methods that detect
and localize people in bounding boxes (§ II-A), (2) single-
person pose estimation methods that predict body keypoints
based on images cropped from the person boxes (§ II-B),
(3) multi-people pose estimation methods that localize each
person in the image and further recognize their body keypoints
(§ II-C). § II-D compares DetPoseNet to relevant methods in
the literature.

A. Human Detection

Modern human detection methods are developed upon
generic object detector networks that have advanced signif-
icantly based on convolutional neural networks (CNNs). R-
CNN [18] is a two-stage detector consisting of a proposal
generator and an RoI classifier. To reduce the redundant com-
putation of CNN feature extraction from images, region-based
feature extraction is introduced in SPP-Net [19] and Fast-
RCNN [20]. These methods significantly boost the training
and testing speed. The Region Proposal Network (RPN) in
Faster-RCNN [21] further speeds up person detection, where
the technique is also used in other popular networks such
as Mask-RCNN. The Feature Pyramid Network (FPN) [22]
generates object proposals at multi-scale layers to resolve the
scale mismatches between the RPN receptive fields and the
actual object size.

B. Single-Person Pose Estimation

Traditionally, human poses are estimated from images based
on local observations of body parts (keypoints) and the spatial
dependencies among them. The spatial relationship of artic-
ulated human poses is modeled using a tree graph followed
by a kinematic chain [23], [24], [25], [26], [27], [1], [28].
Non-tree models [29], [30], [31], [32], [33] augment the tree
structure with additional edges to capture relations including
occlusion, symmetry, and long-range relationships. To obtain
reliable local observations of body parts, CNNs have been
widely used to significantly boost human pose estimation [34],
[35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45],
[46], [17], [47], [9], [8], [10]. Tompson et al. [38] use a
CNN with a graphical model where parameters are learned
jointly by the network. Pfister et al. [48] further use CNNs
to implicitly capture global spatial dependencies by using
networks of larger receptive fields.

The convolutional pose machines (CPM) of Wei et al. [35]
is a multi-stage architecture based on a sequential prediction
framework [49]. It iteratively incorporates global context to
refine part confidence maps that can preserve multi-modal
uncertainty across iterations. Intermediate supervisions are
enforced at the end of each stage to address the problem of
vanishing gradients [50], [51], [52] during training. Newell et
al. [34] also leverage intermediate supervisions that are bene-
ficial to the stacked hourglass architecture. Yang et al. [44]
design a Pyramid Residual Module (PRM) to enhance the

invariance of CNN across scales by learning convolutional
filters on various feature scales. However, all these methods
make important assumptions that a single person (of interest) is
to be detected in the image, and the person should not deviate
too much from the assumed location and scale.

C. Multi-People Pose Estimation

The inference of multi-people pose estimation is challenging
due to several reasons: (1) unknown number of people in
the scene, where each person can appear in various scales
and positions, (2) activity or interaction between people can
induce complex postures, where the body part articulations
and occlusions make the problem difficult. Methods in this
category can be organized into top-down (§ II-C1) and bottom-
up (§ II-C2) approaches.

1) Top-down multi-people pose estimation: Top-Down ap-
proaches [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] are
based on the strategy to first detect each person and then
estimate the pose of each person independently in the detected
image patch. One major advantage of such approach is that
techniques for single-person pose estimation can be directly
applicable. However, this simple extension suffers from early
commitments of the person detection decisions. Methods here
also fail to capture spatial configurations among people, which
are useful in providing contextual information for leveraging
social interaction cues. Lastly, the computation time of these
methods grows linearly with the number of people found in the
image, as each person’s body keypoints must be determined
individually via passing through a round of pose estimation
network.

2) Bottom-up multi-people pose estimation: Bottom-up ap-
proaches [53], [13], [12], [14] employ the strategy to first de-
tect all body keypoints in a single forward of network, and then
group these keypoints to human instances. Such detection-
and-grouping strategy is computationally effective compared
to top-down methods, as the computational complexity does
not depend on the number of people in the image. 1 Also,
the bottom-up approaches are potentially capable of inferring
the latent relations among keypoints, which can address the
early commitment of person detection issues of the top-
down methods. Nonetheless, how to effectively leverage global
contextual cues to accurately localize multiple people (who
can appear arbitrarily in the view) is still an open research
problem. Finally, bottom-up approaches, in general, suffer
from low image resolution that can lead to miss-detection of
small appearing individuals, as the individuals are too small for
the network to detect when the whole input image is resized
to fixed input size.

The early work of Pishchulin et al. [54] use inter-linear
programming to perform greedy association of the fully-
connected keypoint candidates. The inference runs slow and
can take hours to process a single image. Insafudinov et
al. [55] improve Pishchulin’s method with a more robust

1Note that there is a maximum number of people the bottom-up pose
estimation method can handle in a single network pass (e.g. around 40 people).
These methods can deal with the detection and pose estimation of a crowd
reasonably well.
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backbone using image-dependent pairwise scores to associate
the keypoint connections, which significantly reduces the
processing time. The Deepercut [55] performs regression on
the features extracted from the offset vectors between pairs of
body parts. A separate logistic regression is used to convert the
pairwise features into probability scores. Cao et al. [11] further
improve the above pairwise representations using a part affinity
field that can learn to associate body parts into the individual
human instance. Papandreou et al. [12] detect individual body
keypoints and predict their relative displacements. A greedy
decoding process is used to group the found keypoints into
human instances.

D. Comparison to Relevant Methods

In our earlier work of [17], we developed a single-person
pose estimator consisting of a set of multi-scale feature super-
vision and regression modules that learns multi-scale features.
Structure-aware loss is used to learn the skeleton configuration
in multi-people scenarios and occlusion cases. In § III-C,
we will summarize related designs that are integrated into
DetPoseNet in the pose refinement sub-net.

Regarding our structure-aware loss design that will be
described in § III-C3, in contrast to [54] and [55], our
approach can efficiently obtain pairwise and triplet occurrences
of keypoints without sophisticated design in the training. This
capability is sufficient for modeling keypoint relationship for
multi-people estimation. A related but independent work is
Insafutdinov et al. [56] with a simplified body-part relation-
ship graph for faster inference. Their single-frame model is
formulated as articulated human tracking via a spatio-temporal
grouping of part proposals. Newell et al. [13] propose asso-
ciative embeddings which can be thought as tags representing
the grouping of keypoints. Body keypoints are associated
via tags with similarities and thus grouped into individual
person instances. The Pose Residual Network of Kocabas et
al. [14] takes person detections and body keypoints as input
for the assignment of keypoints to person bounding boxes.
Nie et al. [57] partition all keypoint detections using dense
regressions mapping from keypoint candidates to the person
centroids in the image.

We note that Mask-RCNN [7] also generates person de-
tection proposals and performs pose estimation in each pro-
posal region using a single network. We describe two ma-
jor differences between Mask-RCNN and DetPoseNet: (1)
The optimization of Mask-RCNN is single-directional in that
human box proposals are used to aid pose estimation. In
other words, Mask-RCNN can not leverage pose (body parts)
to assist the person detection in return. (2) Mask-RCNN is
mainly designed for object detection. Thus the pose estimation
for each individual person was not improved (but it can be
improved as in the DetPoseNet). Specifically, the effective
resolution of the proposal of each person in Mask-RCNN tends
to be insufficient for body keypoint localization.

III. METHOD

The proposed DetPoseNet takes an RGB image of size w×h
as input to detect each person, localize body keypoints, and

recover the skeletal structure of each person by organizing and
linking together body keypoints. The overall pipeline consists
of three processing stages (as in Fig. 2): (1) In the first
stage of coarse-pose proposal extraction sub-net (§ III-A),
a Faster-RCNN embedded hourglass network generates the
person bounding box proposals together with a set of coarse
pose proposals; these two kinds of proposals are generated
in parallel. (2) In the second stage of coarse-pose based
proposal filtering, the coarse-poses containing rich part layout
(of each person instance) are used to refine both the person
detection and coarse-pose proposals. We also check if the
keypoint proposals are sufficient to form a human skeleton, as
incomplete body parts may suggest a false person detection.
(3) In the third stage, a multi-scale pose refinement sub-net
(§ III-C) consisting of a light cascaded pose estimator network
refines all pose proposals and produces the final skeletal pose
estimations.

As aforementioned, top-down methods following the com-
mon strategy of first performing person detection and then
estimating the pose of each detected person can suffer from
early commitment issues. To this end, we propose a coarse-
pose based proposal filtering in DetPoseNet to address these
issues. We will show in § IV that the optimization based on
coarse-pose filtering can indeed improve the pose estimation
accuracy and performance. Such coarse-pose filtering is su-
perior to the traditional non-maximal suppression (NMS) in
terms of lowering both the false-negatives and false-positives.

A. Light-weight Coarse-Pose Proposal Extraction

We modify the standard hourglass network [34] into a two-
branch proposal extraction sub-net that generates both (i)
person detection proposals and (ii) coarse-pose estimation
proposals in a single forward pass. As shown in Fig. 2a,
the person detection branch extracts person bounding boxes
similar to a standard detection network such as Faster-RCNN
[21]. The pose estimation branch extracts body keypoint
proposals as a set of heatmaps.

The person detection proposal branch can be either A
black-box or white-box detection network. The former takes
the multi-scale features shared from the hourglass network
to regress the person bounding boxes on the input image.
Compared with the original Faster-RCNN [21], the difference
is that we extract features from both Conv-downsampling and
Deconv-upsampling layers. The intuition is that features from
Conv-downsampling layers contain more contextual informa-
tion of the input image, while the Deconv-upsampling layers
mainly contain high-level features with more information
regarding the skeletal structure. We fuse these two sources of
features to regress/predict the person bounding boxes. Since
this adapted Faster-RCNN considers both individual and inter-
body keypoint features, our proposed person detector works
jointly with the pose estimator branch by sharing part of the
network modules.

The coarse-pose estimation proposal branch is an asym-
metric hourglass network, which shares a heavy head network
with the person detector branch. A set of light tail networks
are used to generate keypoint heatmaps (one heatmap per
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Fig. 3: Coarse-pose based proposal filtering refines both human detection proposals and body keypoint proposals in a (box,
box-score, pose) triplets, or (b, s, p). (a) shows an example of false-positive removal, where the orange person box is removed.
The effect is similar to the standard non-max-suppression (NMS) in existing object detection approaches. (b) shows an example
of miss-detection recovery, where the two person instances are identified and are separated into two person instances with
identified body keypoints.

keypoint). In this branch, we use the part-affinity-field loss
[53] to learn the body keypoint associations for each person.

We train the two sub-nets with both the person bounding
box and body keypoint annotations as input. The human pro-
posal loss term Lp consisting of a human detection loss (Ldet)
and a body keypoint loss (Lkpt) in weighted combination are
jointly minimized. Specifically, Ldet is calculated from the loss
terms as in Faster-RCNN [21], and Lkpt is calculated via the
body keypoint alignment loss similar to the part-affinity-field
loss [53].

B. Coarse-Pose Based Proposal Filtering

The optimization strategy of state-of-the-art multi-person
pose estimation works is either top-down or bottom-up. Top-
down optimization e.g. Mask-RCNN [7] estimates human pose
according to detection proposals and tends to suffer from false-
detections. On the other hand, bottom-up optimization detects
and associates body keypoints and tends to suffer from miss-
detections due to low image resolution. To the best of our
knowledge, this work is the first to incorporate both top-
down and bottom-up optimizations into a unified framework.
We proposed a coarse-pose based proposal filtering strategy
that combines advantages of both top-down and bottom-up
optimization schemes to better address the false-detection and
miss-detection issues.

Specifically, our coarse-pose based proposal filtering aims
to: (1) eliminate redundant human detection box proposals us-
ing body keypoint proposals from the pose estimation branch,
and (2) recover possibly missing (false-negative) person detec-
tions by predicting a putative bounding box from the detected
body keypoints. The former is essentially the improvement of
human detection using pose estimations, and the latter is the
improvement of pose estimation using human detection. This
way, the coarse-pose based proposal filtering combines the
advantages of both bottom-up pose estimation and top-down
human detection, such that latent relationships between human
bounding boxes and body keypoints can be exploited and
leveraged together in a single optimization framework. This
way, false positive detections can be effectively reduced, and
false negative detections can be recovered. Fig. 3 illustrates an

Algorithm 1: Coarse-pose based proposal filtering
Input: person detection boxes B, keypoint heatmaps K
Output: refined person box & pose set P̃ initialized as ∅

1: Initialisation : Sort B by detection scores decreasingly,
initialize P̃ = ∅.

2: P = PoseExtractor(B,K) // sorted set of (b, p)
3: for each (b, p) ∈ P do
4: if nkpt(p) ≤ δkpt then
5: continue //likely false detection
6: end if
7: if nkpt(p) > δkpt and ∃(bj , pj) ∈ P̃ s.t. b = bj then
8: //recover a likely miss detection
9: b′ = kpt2box(p) //new box

10: P̃ .append (b′, p)
11: else
12: //normal case: b matches observed keypoints
13: P̃ .append (b, p)
14: end if
15: end for
16: return P̃

example of this two-way optimization. In Fig. 3a, false positive
detections are eliminated if there is not sufficient keypoints to
form a skeleton, or if the pose estimation is similar to any
identified pose instance. In Fig. 3b, false negative detections
can be recovered by creating a new bounding box from the
remaining identified body keypoints.

The top-down optimization in Fig. 3a can also be regarded
as an improved human pose-based NMS. In existing methods,
such NMS is typically performed by checking the intersection-
over-union (IoU) of detection boxes. This standard approach
is required by many other methods to eliminate duplicated
and highly overlapping responses around the peak of each
detection location. However, simple IoU-based NMS relies
on a critical assumption, that only a single person exists
around the peak of the detection. Such assumption restricts
the ability to distinguish or resolve ambiguities of crowded or
occluded cases, and thus can lead to potential false negative
detections. For the example in Fig. 3, the two baseball players
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Fig. 4: The multi-scale pose refinement sub-net incorporates a structure-aware design that can accurately localize the body
keypoints of each person, by taking the person person bounding box after coarse-pose based filtering as input. It consists of
three components: (i) multi-scale supervision (MSS) module (§ III-C1), (ii) multi-scare regression (MSR) module (§ III-C2),
and (iii) intermediate supervision layers using the structure-aware loss (§ III-C3). This network pipeline is fine-tuned using
the keypoint masking training scheme (§ III-C4).

are visually overlapping. Thus the multiple responses of highly
overlapped detection boxes will be blindly removed by typical
NMS until one detection is left, which results in false negative
detection of the other player. In comparison, our coarse-
pose based proposal filtering can effectively leverage identified
body keypoints from pose estimation to avoid such error.

Algorithm 1 shows the pseudo code for the proposed
coarse-pose filtering. Let B = {b1, · · · , bJ} denote the set
of person detection box proposals (J is the total number of
box proposals), where each box bi = (xi, yi, wi, hi, ci). The
human body keypoint heatmap K is represented as a third-
rank tensor (W × H ×M?), where M? is the total number
of heatmaps. Initially there are M? = M heatmaps (M
denotes the number of human body keypoints). In the later
stages of our algorithm when we consider structure-aware loss,
additional heatmap channels across adjacent keypoints will be
considered. Let K̃ denote ground-truth heatmaps.

The person detection box proposals in B are first sorted
by their confidence scores ci. Then bottom-up pose estimator
PoseExtractor extracts the (box, pose) tuple (b, p) from
detection proposals B and the heatmap map K. For each tuple
(b, p) in the human box-pose set P , function nkpt(p) checks
if pose p contains sufficient number of identified keypoints
δkpt such that p represents a valid human pose skeleton. Next
we determine if the pose p already exists in refined pose set
P̃ , by checking the COCO Object-Keypoint-Similarity (OKS)
[15] metric. If p is not in B̂P (set of (b, p)), the corresponding
box b will be regarded as false detection. Finally, for each
person detection box, we check if there is another pose pj in
P̃ that is with less similarity than a threshold and is located
within the same bounding box. If so, both boxes bj and bi

will be used as input to fed into the pose refinement sub-net
to recover pose skeletons.

C. Multi-Scale Pose Refinement Sub-net

The multi-scale pose refinement sub-net (PRS) in Fig. 2(c)
consists of light-weight cascaded hourglasses in stacks that
finalize the body keypoint localization for each person, based
on refining keypoints identified from the previous stage. The
PRS features two multi-scale designs and two structure-aware
training strategies, in which part of the designs are reported in
our previous work of [17] for single-person pose estimation.
Here we adopt these for the detection and pose estimation of
multiple individuals after the coarse-pose based filtering in the
new pipeline. Details are described in the following.

The multi-scale supervision (MSS) module (§ III-C1) is an
enhancement of the standard hourglass conv-deconv network
with skip connections [34] that can be trained with multi-scale
loss supervision. The multi-scale regression (MSR) module
(§ III-C2) performs a pose structural regression by matching
multi-scale keypoint heatmaps and their high-order associa-
tions, which produces the final human pose estimation at the
end. As in Fig. 4(top), MSS stacks can be repeated multiple
times depending on the available GPU memory. Both the
MSS and MSR modules share a common structure-aware loss
function (§ III-C3), which is designed to ensure effective multi-
scale structural feature learning. The training of the whole
pipeline is fine-tuned using the keypoint masking training
scheme (§ III-C4) to focus on learning hard samples.

We next compare and motivate our multi-scale and
structure-aware design, and highlight the differences with other
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standard hourglass networks. First, our conv-deconv hourglass
stacks aim to capture rich features for keypoint detection
across large variability in appearances and scales. In contrast,
standard hourglass [34] is sensitive to a particular scale in the
multi-scale pyramid, and thus lacks a robust and consistent
response across scales. To this end, we explicitly add layer-
wise supervisions to each of the deconv layers in the training
of our MSS module.

Secondly, our MSS hourglass model can learn and infer
refined keypoint heatmaps by considering the global structures.
This can be observed by comparing the MSS heatmaps before
and after training. Recall that each heatmap corresponds to the
location likelihood of each body keypoint (e.g., elbows, wrists,
ankles, knees). During the training of our MSS, heatmaps are
supervised against the ground-truth body keypoint heatmaps
that are typically generated using 2D Gaussian blurring as
initialization. After training, at the test runs of the MSS pose
estimation, we observed mostly non-Gaussian heatmaps that
variate according to the human gestures in the training images.
In contrast, a key deficiency in the original hourglass model
[34] is that each keypoint heatmap is estimated independently
in the way the relationship between keypoints are not consid-
ered. In other words, structural consistency among detected
keypoints is not optimized in these methods.

Thirdly, to ensure structural consistency in the pose esti-
mation pipeline, the structure-aware loss supervision is intro-
duced in between the MSS hourglass modules, which serves as
the purpose of intermediate supervision. This can better cap-
ture the adjacency and associations among the body keypoints.
The structure-aware loss is also used in the MSR module
at the end of the pipeline, to oversee all keypoint heatmaps
across all scales globally. This way a globally consistent pose
configuration can be inferred as the final output.

Finally, the MSR matches both individual body key-
points (first-order consistency) and pairwise consistencies
among adjacent keypoints (second-order consistency). The co-
occurrence of a matching pair between a hand/leg w.r.t. the
head/torso with high confidence can provide a stronger hypoth-
esis that can win over other separated, uncorrelated individual
matches. This way, global structural posture consistency can
be better inferred. The MSR module is trained to perform such
optimization across all body keypoints, all scales of features,
and all pairwise correlations in a joint regression.

1) Multi-scale supervision (MSS): To effectively learn deep
features for each scale and across multiple scales, multi-scale
supervision (MSS) is performed during model training at all
deconv layers. We explicitly match the keypoint heatmaps at
each scale with the corresponding down-sampled ground-truth
heatmaps, and compute the residual at each deconv layer to
calculate the loss (e.g., at 1/2, 1/4, 1/8 down-sampling scales).
The MSS network architecture is depicted in the gray box
at the bottom-right of Fig. 4. To make equal the feature map
dimensions to compute the residual at the corresponding scale,
a 1-by-1 convolutional kernel is used for dimension reduction.
The 1-by-1 conv also converts the high-dimensional deconv
feature maps into the desired number of features, where the
number of reduced dimensions matches the number of body
keypoints (i.e. the number of heatmaps).

Fig. 5: Multi-scale supervision (MSS) can provide keypoint
refinement analogical to the attention mechanism in resolution
pyramid search. (a) to (c) are the 8x, 4x, 2x scales keypoint
heatmaps respectively. The progression from (a) to (c) shows
the refinement of keypoint heatmaps during the deconv up-
sampling, where the location of the thorax keypoint is refined
with increasing accuracy and more concentrated heatmap.

The multi-scale supervision can provide keypoint local-
ization refinement similar to the attention mechanism [58]
of conventional resolution pyramid for image search. The
activation areas in the low resolution heatmap can provide
guidance of the location refinement in the subsequent high-
res layers. Fig. 5 provides a visual illustration.

We next describe the loss function LMSS for the training
of the multi-scale supervision module. LMSS is defined by
summing the L2 loss from the heatmaps of all keypoints across
all scales, similar to the multi-scale loss function used in [35],
[34]. To detect the M = 16 keypoints (head, neck, pelvis,
thorax, shoulders, elbows, wrists, knees, ankles, and hips), the
M heatmaps are generated after each conv-deconv stack. The
loss at the s-th scale is calculated by comparing the predicted
heatmaps of all keypoints against the ground-truth heatmaps
at each matching scale:

LMSS =
1

S

S∑
s=1

LSA(K
(s), K̃(s)) (1)

where K(s) and K̃(s) represent the ground-truth and the
predicted confidence maps at the scale s for all the keypoint,
respectively.

In standard datasets [59], [15], ground-truth poses are
provided as the keypoint locations. We follow the common
practice for generating ground-truth heatmaps as in Tompson
et al. [37], where the i-th keypoint ground-truth heatmap Ki

is generated using a 2D Gaussian centered at the keypoint
location (x, y), with a standard deviation of 1 pixel. Fig. 4
(bottom left, first row) shows a few examples of the ground-
truth heatmaps for certain keypoints.

2) Multi-scale regression (MSR): A fully convolutional
multi-scale regression (MSR) is performed after the MSS
conv-deconv stacks to refine the multi-scale keypoint heatmaps
globally. This can effectively improve the structural con-
sistency of the estimated poses. The intuition is that the
relative positions of arms and legs w.r.t. the head/torso provide
useful action priors, which can be learned from the regression
network by considering feature maps across all scales for pose
refinement. The MSR module takes the multi-scale heatmaps
as input and matches them to the ground-truth keypoints
at respective scales. This way the regression network can
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Fig. 6: Muti-scale regression (MSR) of body keypoints to
disambiguate multiple peaks in the keypoint heatmaps. (a-b)
shows an example of (a) keypoint prediction and (b) heatmap
from the MSS module hourglass stacks, which will be fed into
the MSR module for regression. (c-d) shows (c) the output
keypoint locations and (d) heatmap after MSR. Observe that
the heatmap peaks in (d) are more focused compared to (b).

Fig. 7: The human skeleton graph G used for structure-aware
loss definition: (a) Blue dots depict body keypoints. (b) Thick
black lines depict pair-wise connected keypoints and limbs.
(c) Red lines depict the triplets of keypoint connections for
calculating the structure-aware loss for elbows and knees.

effectively combine heatmaps across all scales to refine the
estimated poses.

The MSR module jointly optimizes the global body struc-
ture configuration by determining the connectivity among body
keypoints based on mutli-scale features. The effect of MSR
can be regarded as an extension to the work of Convolutional
Part Heatmap Regression [42], where only keypoint heatmap
regression at the original scale of the input image is consid-
ered. The input image with the keypoint heatmaps can be
viewed as an attention mechanism (as in MSS) commonly
used in the resolution pyramid. In this view, our MSR module
learns a scale-invariant, attention-based structural model with
better performance. Moreover, our MSR module optimizes the
structure-aware loss, which matches individual keypoints and
higher-order associations (pairs and triplets of keypoints) for
pose estimation. The output from the MSR module is thus
a comprehensive pose estimator capable of considering pose
configurations across multiple feature scales, multiple keypoint
associations, and high-order keypoint associations.

Fig. 6 shows an example with improvements brought by the
MSR module. MSR works hand-in-hand with the MSS module
to explicitly model high-order relationship among body parts,
such that posture structural consistency can be maintained and
refined.

3) Structure-aware loss: It is a consensus that deeper CNN
hourglass stacks lead to better pose estimation results [34].
As the depth of hourglass stacks increases, gradient vanish-
ing becomes a critical issue in training the network, where

intermediate supervision [35], [34], [43], [44] is a common
solution. In this regard, we design a structure-aware loss
function following the intrinsic human skeletal graph structure.
Such structure-aware loss design was implemented in two
places of our network: (1) in-between the MSS module stacks
as a means of intermediate supervision to enforce structural
consistency while localizing keypoints; and (2) in the MSR
module to determine a globally consistent pose configuration.

The structure-aware loss is calculated according to the
human skeletal graph G shown in Fig. 7. Each node N (n)
(blue dots) represent a body keypoint of the human skeleton
and its connected keypoints, n ∈ {1, ...,M}. Thick black
lines depict pair-wise connected keypoints and limbs. Red
lines depict the triplet connections for the joints of elbows
and knees. The structure-aware loss LSA for each scale is
calculated as:

1

M

M∑
n=1

||K:,:,n − K̃:,:,n||2 + α2

∑
n′∈N (n)

||K:,:,n′ − K̃:,:,n′ ||2

 ,

(2)
where the first term calculates individual keypoint matching
loss, and the second term represents the structural matching
loss, in which K:,:,n′ and K̃:,:,n′ are the ground-truth and
prediction heatmaps for individual keypoint n and its neigh-
bors in graph N , respectively. Hyperparameter α2 is a weight
balancing the two terms.

All structural connectivity of keypoints is empirically deter-
mined to match the human skeletal graph G to better capture
the physical connectivity of the human body as structural pri-
ors. The structure-aware loss is typically calculated upon pairs
of connected keypoints, e.g., head-thorax, shoulder-elbow,
wrist-elbow, hip-knee, hip-hip, knee-ankle, in the bottom sub-
figure of Fig. 4. Since the elbows and knees have multiple
physical connections (in contrast to the shoulders and wrists,
and the hips and ankles, respectively), and the arms/legs can
be easily occluded due to their no-rigid flexibility compared
with the torso, we enforce three-way structure-aware loss for
elbows and knees (e.g., hip-knee-ankle, shoulder-elbow-wrist).

Fig. 4 (bottom left) shows a breakdown visualization of
how our skeleton-guided structure-aware loss is calculated in
traversing the keypoints and their relationships according to
N . The top row in the sub-figure shows the intermediate loss
defined on individual keypoints (e.g., the right ankle, knee,
hip, pelvis, thorax, head, wrist, elbow), where similar designs
are used in [35], [34]. The bottom row shows our structure-
aware loss defined for a set of connected keypoints, which is
unique in our method.

4) Keypoint masking in training: Occlusion or partly ob-
served body keypoints can strongly affect the performance of
human detection and pose estimation, especially for crowded
or multi-people scenarios. While the pose estimator is optimiz-
ing the search and localization of each body keypoint, there
might exist multiple suitable keypoints in the vicinity (due to
multiple subjects), or it could appear that none is found due to
occlusion. The structure-aware loss from § III-C3 can address
some of this challenging issue. Here we further enhance our
model capability during training via a data augmentation
scheme by masking keypoints.
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(a) (b) (c) (d)

Fig. 8: Keypoint masking to simulate hard training samples that can effectively improve robustness in body keypoint
localization and association for pose estimation in crowded scenes. (a) is a common case in human pose estimation, where the
keypoint (left-wrist) is occluded but can still be localized. (b) is a case where the nearby person’s keypoint can be mismatched.
We propose two keypoint masking strategies: (c) background keypoint masking to address the issue of (a) by cropping a
background patch and pasting onto a human body keypoint, and (d) keypoint duplication masking to address the issue of (b)
by cropping a body keypoint patch and pasting it onto the background. The approach of (c) simulates the cases when body
keypoints are invisible, and (d) simulates the multi-people or crowded scenarios with multiple peaks in the keypoint heatmap.

To motivate, refer to Fig. 8a, where the left wrist of the
person is completely occluded, however such occlusion can
still be recovered from the detected left elbow and arm via
structural connectivity. Fig. 8b shows another difficult case
where multiple people (and thus multiple body keypoints)
appear nearby, thus the pose estimator may mix and connect
keypoints across the nearby people and produce erroneous
results. From a data-driven point of view, a typical limitation of
the currently available human pose dataset is that the amount
of annotated samples for such complex scenarios is very
limited and insufficient to train a deep network. Conventional
data augmentation methods (such as image transformations
or color jittering) do not effectively address these issues. Our
aim here is to develop an effective data augmentation approach
that can address the issues of keypoint occlusions and multiple
keypoints.

In our keypoint masking data augmentation, we perform
copy/paste of selected keypoint patches from the image to
simulate two effects: keypoint occlusion and keypoint am-
biguity (due to additional keypoints from other people) in
the vicinity. We implemented the following two types of
keypoint data augmentation to generate hard training samples
to improve training: (1) background keypoint masking,
by copying a background patch and pasting onto a body
keypoint to cover it (as in Fig. 8c) to simulate keypoint
occlusion. This augmentation is useful for the learning of
occlusion recovery. (2) keypoint duplication masking, by
copying a body keypoint patch and pasting onto a nearby
background (as in Fig. 8d) to simulate the multiple keypoint
ambiguity in the vicinity. These augmentations can effectively
simulate the frequent ambiguities occurring in multi-people
pose estimation. Since these augmentations produce multiple
identical keypoint patches, the trained model can better learn
to infer keypoint ambiguities for multi-people cases. The key-
point masking training is especially beneficial to fine-tune our
keypoint regression network across multiple scales of features.
Finally, the proposed keypoint masking data augmentation
can be easily performed using known ground-truth keypoint
annotations — it can be performed either online (dynamically)
or offline (as pre-processing) for network training.

IV. DATASETS AND EVALUATIONS

We evaluate our method on three public benchmarks for
the joint tasks of simultaneously human detection and pose
estimation: (1) COCO keypoint challenge dataset [15] with
annotations of 17 keypoints for each person (12 body parts and
5 facial landmarks). The COCO training set consists of over
100K person instances with over 1 million labeled keypoints.
The test set contains “test-challenge” and “test-dev”subsets,
where each contains roughly 20K images. (2) OCHuman
dataset [16], which contains three types of human-related
annotations: detection bounding boxes, instance binary masks,
and 17 body keypoint locations. OCHuman is particularly
challenging and suitable for evaluating our method, as the
subjects in the dataset are usually heavily occluded by one or
several other people. On average, each person bounding box
contains 0.67 IoU overlapping with boxes of nearby people.
In comparison, the average IoU for each person is only 0.01 in
the COCO dataset. The OCHuman dataset is split into 2, 500
validation and 2, 231 testing images, which contains 4, 133
and 3, 797 human instances, respectively. Images in these
datasets are collected from diverse scenarios with real-world
activities including crowds, large scale and view variations,
occlusions, and interaction among people when performing
various movements.

We compare DetPoseNet against popular methods including
OpenPose [11] and Mask-RCNN [7] on COCO evaluation
in Table I. We report results on COCO keypoint challenge
and ablation study in Table II and performance comparison
on OCHuman in Table III. Experiments on the above two
datasets show that our DetPoseNet significantly outperforms
the previous state-of-the-art methods.

For qualitative results, Figures 10 and 11 show visual
results of the DetPoseNet on various real-world challenging
scenes, including the difficult cases of large scale variations
of individuals, large viewpoint variations, heavy body keypoint
occlusions, highly overlapping body layouts among interac-
tions or group activities, crowded scenes, large illumination
and appearance variations, and diverse activities with distinct
body layouts and movements. In many cases, DetPoseNet can
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TABLE I: Results on the COCO test-dev dataset for both top-
down and bottom-up approaches. AP50 denotes OKS = 0.5.
APL denotes evaluation for large-scale people only.

Team AP AP50 AP75 APM APL

Bottom-Up Approaches
METU [14] 70.5 87.7 77.2 66.1 77.3
PersonLab [12] 68.7 89.0 75.4 64.1 75.5
Associative Emb. [13] 65.5 86.8 72.3 60.6 72.6
OpenPose [11] 64.2 86.2 70.3 61.2 68.7

Top-Down Approaches w/ External Detector
MSPN [47] 76.1 93.4 83.8 72.3 81.5
MRSA [9] 73.7 91.9 81.1 70.3 80.0
HRNet-W48 [10] 75.5 92.5 83.3 71.9 81.5
EvalPose [60] 75.7 91.9 83.1 72.2 81.5

Top-Down Approaches w/o External Detector
RMPE [6] 73.3 89.2 79.1 69.0 78.6
G-RMI [5] 71.0 87.9 77.7 69.0 75.2
Mask R-CNN [7] 69.2 90.4 76.0 64.9 76.3
DetPoseNet 75.3 95.2 83.1 71.5 80.9

TABLE II: Results COCO val dataset.
Method AP AP50 AP75 APM APL

GT Bbox + PRS 78.1 92.6 84.0 74.1 83.3
F-RCNN + PRS 75.0 88.7 80.9 69.4 82.9
F-RCNN w/o FP + PRS 75.3 89.6 81.7 70.6 83.1
F-RCNN w/o FN + PRS 76.1 91.0 82.7 72.1 83.1
DetPoseNet 77.3 92.1 83.8 73.6 83.3
DetPoseNet w/ HRNet-48 78.3 92.7 84.2 74.3 83.5

† F-RCNN denotes Faster-RCNN [21]. PRS denotes the proposed pose
refinement sub-net. F-RCNN w/o FP denotes Faster-RCNN detected box
without false-positive from human detection. F-RCNN w/o FN denotes Faster-
RCNN without without false-negative from human detection.

detect and localize all individuals with highly accurate body
part localization.

A. Results on COCO Keypoints Detection

The COCO keypoint challenge evaluation is performed
based on the Object Keypoint Similarity (OKS) metric [15],
which is similar to the IoU metric in the evaluation of object
detection. The COCO evaluation results are reported using the
mean average precision (AP) over 10 OKS thresholds as the
main competition metric. The OKS is calculated from the scale
of each person and the distance between the predicted and
groundtruth points. Table I shows results from top teams in the
challenge. DetPoseNet achieves the best scores over all state-
of-the-art comparison methods that do not rely on external
person detectors.

Table II reports the comparison and ablation study results
on the COCO validation set. First of all, an experiment is
conducted by feeding the ground-truth person detection boxes
to our pose refinement sub-net (PRS), which represents a
reduced problem of single-person pose estimation based on
our earlier work in [17]. As a result, DetPoseNet achieved the

TABLE III: Performance comparison on the OCHuman dataset.

OCHuman Detection Pose
mAP AP 50 AP 75 mAP AP 50 AP 75

Mask-RCNN val 0.263 0.502 0.258 0.112 0.248 0.086
DetPoseNet 0.381 0.662 0.174 0.380 0.663 0.260

Mask-RCNN test 0.260 0.503 0.128 0.109 0.244 0.082
DetPoseNet 0.373 0.627 0.261 0.378 0.631 0.258

AP of 78.10%. This result can be regarded as the upper-bound
of the top-down pose estimation approach without the use of
the proposed coarse-pose proposal filtering. In a following up
experiment, we use Faster-RCNN [21], one of the state-of-
the-art object detectors, to produce person detection boxes,
and continue the pose refinement sub-net in a similar setup.
As a result, the AP drops down to 75.0%. Finally, in a third
experiment as in the last row of Table II, with the adding
of the proposed coarse-pose proposal filtering on top of the
Faster-RCNN, DetPoseNet obtained AP of 77.3, which is
comparable with the use of ground truth person boxes. If we
further remove the false positive detection box proposals, our
DetPoseNet outperforms the groundtruth box result by 0.6%.
Moreover, when we replace the use of HRNet-48 [10] as the
pose refinement sub-net in DetPoseNet, the performance can
be further improved to 78.3, which shows that our proposed
framework can be adapted to the latest single person pose
estimator.

Results in Table II also indicate the following observations.
(1) performance of the top-down human pose estimation
approaches relies heavily on the person detector as input.
Imprecise person bounding box induces performance bottle-
neck. Top-down pose estimation approaches suffer from both
performance drops and increased computational complexity
due to the false positive detections and false negative de-
tections arising from imprecise input boxes. (2) Our results
also show that the use of ground truth person bounding
boxes may not represent the performance upper-bound for top-
down multi-people pose estimation, as the manually annotated
groundtruth boxes may not be the “perfect” input localization
for a data-driven learned pose estimation network. To this
end, our proposed DetPoseNet is a jointly-learned, end-to-end
framework for both human detector and pose estimator that
can achieve superior performance. (3) Performance of pose
estimator generally increases with its network depth.

B. Results on OCHuman Dataset

To demonstrate how DetPoseNet performs on occluded
scenarios, we report person detection and multi-person pose
estimation results on the challenging OCHuman dataset in
Table. III. DetPoseNet outperforms Mask-RCNN [7] in both
detection and pose estimation tasks by a significant margin.
This shows that our proposed coarse-pose proposal filtering
approach can handle crowded scenes and heavy occlusions
much better than the typical top-down approach.

C. Ablation study on COCO validation set

We next investigate how the coarse-pose proposal filtering
can be applied to (other) generic human detectors to improve
human pose estimation. In the following experiments, we feed
the human detection proposals from other mainstream detec-
tors as input to our coarse-pose proposal filtering pipeline, and
compare the resulting pose estimation performance gain. Fig. 9
summarizes these results. The x-axis denotes the accuracy of
mainstream human detectors (left to right: SSD300, SSD512,
retinanet, faster rcnn r101, cascade r50, htc r50, htx x101,
htc fpn) ranked order by their detection mAPs. The y-axis
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Fig. 9: Evaluation on applying the coarse-pose based pro-
posal filtering on mainstream human detectors as input
on the COCO validation set (see text). Results show that
the proposed coarse-pose proposal filtering can consistently
improve pose estimation when combined with any of these
top-down human detectors.

denotes the pose estimation mAP produced using the respec-
tive person boxes as inputs, with (‘·’) and without (‘+’) coarse-
pose based proposal filtering, in two resolutions (256x256 and
384x384) in the final computation stage. The two horizontal
lines denote the (upper bound) pose estimation accuracy using
ground truth human boxes as input.

Fig. 9 shows that for all human detectors that are evalu-
ated, our coarse-pose proposal filtering consistently improves
the joint pose estimation mAP. Another observation is that,
along each curve, the detection mAP does not monotonically
increase as the human detection mAP increases. Relationships
between person detection boxes (the inputs) and pose estima-
tion responses is intricate but consistent.

D. Efficiency Analysis

We formulate the computation complexity of our multi-
person pose estimator as O(det)+N∗O(pose), where O(det)
and O(pose) are the complexity of the person detector and
the single-person pose estimator, respectively; and N is the
times of single-person pose estimator being run. This way
computational efficiency can be compared systematically and
fairly. As discussed in Sec. I, top-down approaches usually
suffer from the early commitment of person detector; thus,
in these approaches, a single-person pose estimator is applied
much more than the number of actual people in the images (i.e.
a much larger N is required). To illustrate, there are 11, 004
people in the COCO validation set, however HRNet [10] and
MSRA [10] apply 9.5 times (104, 125) of single-person pose
estimator runs, while MSPN [47] applies 8.0 times (88, 291)
of single-person pose estimator runs. In comparison, in our
proposed framework, we achieve similar or better performance
using only 1.6 times (17, 602) of single-person pose estimator
runs. Thus, with our proposed framework, the inference in
terms of the pose estimation can be sped up 5 to 6 times.

Our proposed framework is open and versatile, so it can be
adapted to and combined with recent top-down single-person
pose estimation methods, including the new ones, to leverage
newer advantages and breakthroughs.

E. Failure Case Analysis

Fig. 12 shows the failure cases of DetPoseNet on the COCO
evaluations. Occlusions of body parts can lead to localization
errors or miss-detections. Such occlusion-related problems can
also be addressed back to the data annotation quality, in which
we found that these occluded keypoints should be labeled in
mainstream datasets but in reality they were not. In highly
crowded scenes with overlapping people, the pose estimator
tends to confuse or miss keypoints from different people.
We found that humanoid statues or animals can be wrongly
detected as people in some cases. These issues could be
mitigated by adding more negative examples in the training set.
We also found that repeating multiple runs with slight changes
of scales and rotations can sometimes yield superior results.
However such “trick” can also reduce detection accuracy. In
our experiments, global accuracy on the COCO validation set
can drop by 5% this way. We avoid such approaches based on
repeated trials followed by decision fusion, as these tricks are
not a principal solution for real-world applications.

V. CONCLUSION

Human detection and multi-people pose estimation is an
important tasks for human-centric visual understanding and AI
applications. In this work, we proposed DetPoseNet, a unified
human detection and pose estimation pipeline, that can jointly
optimize the two tasks in a hybrid pipeline. The DetPoseNet
can effectively address the early commitment issues arising
from mainstream top-down approaches. We showed that the
proposed coarse-pose proposal filtering can be applied to
mainstream top-down human detectors and can consistently
improve pose estimation performance. Experiments on COCO,
and OCHuman datasets show the efficacy of the proposed
approach.

Future work includes the improvement of human detection
and pose estimation performances when trained with less data
or noisy annotations. One issue that lacks considerations in
mainstream object detectors is that a large number of detection
proposals must be kept for consideration in the processing
pipeline, while a large portion of these proposals is not valid.
Our coarse-pose proposal filtering achieves some level of
proposal refinement and thus alleviates this problem; however
potential improvements can be further explored. Finally, the
proposed hybrid framework can be extended to improve other
related problems such as the human parsing, where the in-
stance segmentation of each individual and each body part
can be improved using a similar hybrid framework.
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Fig. 10: Human detection and pose estimation results (part I): (1st row) large scale variations of the individuals appearing
in the scene and large viewpoint variations, (2nd row) heavy keypoint occlusions, (3rd row) highly overlapping body layouts
among interactions or group activities.

Fig. 11: Human detection and pose estimation results (part II): (1st row) crowded scenes in an open venue, (2nd row) rich
illumination and appearance vairations, (3rd row) diverse activities with distinct body layouts and movements.
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Fig. 12: Failure or imperfect cases of DetPoseNet. (1st row) partial human body, where a scarce set of body keypoints are
confidently detected, however the major portion of the human body is not visible, causing erroneous whole body regression
results. (2nd row) false body keypoint detection or regression results. (3rd row) miss-detection of body keypoints that causes
the miss-detection of the whole person or wrong body regression results. We note that DetPoseNet is not designed to handle
these cases. Many of these difficulties can be be handled with extra consideration or model sophistication; however these is
not the main focus of this paper.
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