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ABSTRACT Generative Adversarial Network (GAN) based techniques can generate and synthesize real-
istic faces that cause profound social concerns and security problems. Existing methods for detecting
GAN-generated faces can perform well on limited public datasets. However, images from existing datasets
do not represent real-world scenarios well enough in terms of view variations and data distributions, where
real faces largely outnumber synthetic ones. The state-of-the-art methods do not generalize well in real-world
problems and lack the interpretability of detection results. Performance of existing GAN-face detection
models degrades accordingly when facing data imbalance issues. To address these shortcomings, we propose
a robust, attentive, end-to-end framework that spots GAN-generated faces by analyzing eye inconsistencies.
Ourmodel automatically learns to identify inconsistent eye components by localizing and comparing artifacts
between eyes. After the iris regions are extracted by Mask-RCNN, we design a Residual Attention Network
(RAN) to examine the consistency between the corneal specular highlights of the two eyes. Our method can
effectively learn from imbalanced data using a joint loss function combining the traditional cross-entropy
loss with a relaxation of the ROC-AUC loss viaWilcoxon-Mann-Whitney (WMW) statistics. Comprehensive
evaluations on a newly created FFHQ-GAN dataset in both balanced and imbalanced scenarios demonstrate
the superiority of our method.

INDEX TERMS GAN-generated face, fake face detection, iris detection, corneal specular highlights,
residual attention network, data imbalance, AUC maximization, WMW statistics, FFHQ-GAN dataset.

I. INTRODUCTION
The development of Generative Adversarial Networks
(GANs) [1] has led to a dramatic increase in the realism in
generating high-quality face images, including PGGAN [2],
StyleGAN [3], StyleGAN2 [4], and StyleGAN3 [5]. As illus-
trated in Figure 1, these GAN generated (or synthesized)
fake faces are difficult to distinguish from human eyes. Such
synthesized faces are easily generatable, can be directly lever-
aged for disinformation, and potentially lead to profound
social, security, and ethical concerns. The GAN-generated
faces can be easily abused for malicious purposes, such
as creating fake social media accounts to lure or deceive
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unaware users [6]–[9], which can cause significant secu-
rity problems and frauds. Therefore, the authentication of
GAN-generated faces has obtained increasing importance in
recent years. However, there exists only a paucity of forensic
techniques that can effectively detect such fake faces.

Many studies employ CNNs or other classifiers to distin-
guish the GAN-generated faces from the real ones [10]–[15].
Although these methods detect various GAN-generated faces
with relatively high accuracy, similar to other deep learning-
based techniques, they suffer from poor generalization and
lack interpretability of detection results. Physiology-based
methods [10], [16], [17] detect fake faces by examining the
semantic aspects of human faces, including physiological or
shape-related cues such as symmetry, iris color, and pupil
shapes. Our prior work of an explainable physical method
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FIGURE 1. StyleGAN2 [4] generated faces are highly realistic and can be
easily abused for malicious purposes. Effective forensic methods for
identifying them is of strong needs.

in [18] addressed some of the above limitations, where
GAN-generated faces are identified based on a rule-based
decision over the inconsistencies of the specular eye patterns.
However, this method relies on assumptions of a frontal face
as input and the existence of far-away lighting reflection
source(s) from both eyes. When these assumptions are vio-
lated, generalization will be limited and false positives may
rise significantly.

In this paper, we improve our prior method of [18] and
develop an end-to-end approach for detectingGAN-generated
faces by examining the inconsistencies between the corneal
specular highlights of the two eyes. We first use Mask
R-CNN [19] to detect and localize the iris regions. Instead of
segmenting the corneal specular highlights using low-level
image processing methods in [18], we design a Residual
Attention Network which consists of residual attention
blocks inspired from [20], to automatically learn to localize
the inconsistencies. Our new method is data-driven and can
better spot inconsistent artifacts, including but not limited to
the corneal specular highlights.

Data imbalance is an important issue that is less addressed
in existing GAN-generated face detection works. In real-
world use scenarios of face examination, real face images
usually outnumber GAN-generated ones by a large amount.
Imbalanced data lead to learning problems and thus affect
model design. It is well-known the widely-used cross-entropy
loss [21] is not suitable for classifying imbalanced data.
Although substantial progress is made by sampling [22],
adjusting of class weights, data enhancement [23], etc., learn-
ingwith imbalanced data is still challenging. It is intuitive that
the AreaUnder Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) plot can be incorporated as a loss term to

improve classification performance [24]. However, the AUC
is a pairwise rank-based metric with discontinuous values
among iterations. Therefore, AUC is not directly applicable
for loss design for end-to-end optimization of the classifier.
To this end, we incorporate a ROC-AUC loss term by max-
imizing the Wilcoxon-Mann-Whitney (WMW) statistics of
the ROC, which is shown to provide similar effects in approx-
imating the AUC optimization [25], [26]. Our experimental
results show that a combination of the binary cross-entropy
loss and the WMW-AUC loss leads to the best end-to-end
result.

We perform experiments on two data sources: (1) real
human face images obtained from the Flickr-Faces-HQ
(FFHQ) dataset [3] and (2) GAN-generated face images
available from http://thispersondoesnotexist.com as shown in
Figure 1. Experiment results demonstrate the superiority of
the proposed method in distinguishing GAN-generated faces
from the real ones. We summarize the main contributions of
this paper in the following:
• We propose an end-to-end method for detecting
GAN-generated faces by visually comparing the two
eyes. A residual attention network model is incorpo-
rated to better focus on the inconsistencies of the eyes
e.g. corneal specular highlights and other artifacts. Our
fake face detection method is interpretable, and the pro-
posed cues can be leveraged by human beings as well to
perform examinations.

• We introduce the WMW-AUC loss that approximates
the direct optimization of the AUC. This can also
effectively address the data imbalance learning prob-
lem in contrast to other sampling or data augmentation
approaches.

• We generate a new FFHQ-GAN dataset by com-
bining portions of the FFHQ real faces with the
StyleGAN2 generated images. The performance of
GAN-generated face detection is evaluated on this
FFHQ-GAN dataset for both balanced and imbalanced
data conditions. Experimental results show that our
method achieves plausible performance, especially on
imbalanced datasets. The ablation study also validates
the effectiveness of the proposed attention module and
the loss design.

The paper is organized as follows. Section II summarizes
related works on GAN-generated faces detection, attention
methods, and learning from imbalanced data. Section III
describes the proposed network architecture and proposed
loss terms for robust learning. Section IV shows experimental
results with qualitative visualization and quantitative analy-
sis. Section V concludes this work.

II. RELATED WORKS
We briefly review related works, including GAN-generated
face detection methods. We also review the literature on
the attention mechanism and learning from imbalanced
data.
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FIGURE 2. The proposed architecture for GAN-generated face detection. We first use DLib [27] to detect faces and localize eyes, and use Mask R-CNN [19]
to segment out the iris regions. A Residual Attention Network (RAN) then performs binary classification on the extracted iris pair to determine if the face
is real or fake. The training is carried out using a joint loss combining the Binary Cross-Entropy (BCE) loss and the ROC-AUC loss with WMW relaxation to
better handle the learning from imbalanced data (see text).

A. GAN-GENERATED FACE DETECTION
GAN-generated faces detection methods can be organized
into two categories.

Data-driven methods [28]–[32] mostly train a deep neu-
ral network model to distinguish real and GAN-generated
faces. These deep learning (DL) based methods work well
in many scenarios, as they can better learn representations in
a high-dimensional feature space instead of raw image pixels.

Physical and physiological methods look for signal
traces, artifacts, or inconsistencies left by the GAN synthe-
sizers. These methods are explainable in nature. Simple cues
such as color difference are used in [33], [34] to distinguish
GAN images from the real ones. However, those methods
are no longer effective as the GAN methods advance. More
sophisticated methods in [11], [35] leverage fingerprints or
abstract signal-level traces of the noise residuals to differen-
tiate GAN-generated faces. Many works [36]–[38] identify
GAN images by recognizing the specific artifacts produced
by the GAN upsampling process. In [39], the distribution of
facial landmarks is analyzed to distinguish GAN-generated
faces. Inconsistent head poses are detected to expose the fake
videos in [10]. The work of [16] identifies GAN-generated
faces as well as deepfakes face manipulations by inspecting
visual artifacts. Our prior work of [18] determines the incon-
sistencies of the corneal specular highlights between left and
right eyes to expose GAN-generated faces.

B. ATTENTION MECHANISM
Since the seminal work of [40] in machine translation, the
attention mechanism is widely used in many applications
on improving the performance of deep learning models by
focusing on the most relevant part of the features in a flexi-
ble manner. The Class Activation Mapping (CAM) [41] and
Grad-CAM [42] are widely used in many computer vision
tasks [43]. However, in these works, attentions are only used
to visualize model prediction in showing significant portions
of the images. On the other hand, integrating the attention
mechanism into the network design is shown to be effective
in boosting performance, as the network can be guided by the
attention to focus on relevant regions during training [44].

The channel attention [45] can automatically learn to focus
on important channels by analyzing the relationship between
channels. SENet [46] embeds the channel attention mech-
anism into residual blocks, and effectiveness is shown on
large-scale image classification. The attention mechanism
is also used in [47] to distinguish important channels in
the network to improve the representation capability. The
idea of channel attention and spatial attention are combined
jointly in [48], [49] to improve network performance signifi-
cantly. The Residual Attention Network in [20] combines the
residual unit [50] with the attention mechanism by stacking
residual attention blocks to improve performance and reduce
model complexity.

C. IMBALANCED DATA LEARNING
Learning from imbalanced data has been widely studied in
machine learning [51]–[54] and computer vision [55], [56].
Earlier solutions for imbalanced data learning are mainly
based on the sampling design, e.g. oversampling for minor
classes, undersampling for major classes, and weighed sam-
pling [57], etc. These sampling-based methods come with
their own drawbacks. For example, undersampling may
ignore important samples, and oversampling may lead to
overfitting.

Data augmentation provides an alternative solution to alle-
viate data imbalance issues. For image recognition, image
mirroring, rotation, color adjustments, etc. are simple meth-
ods to augment data samples [58]. However, data augmenta-
tion methods can only address the data imbalance problems
partly, as the size of the original dataset must be diverse
enough, such that a sufficient amount of representative sam-
ples can be produced from augmentation.

III. METHOD
We next describe the proposed GAN-generated faces detec-
tion framework. Given an input face image, facial landmarks
are first localized using DLib [27], and Mask R-CNN [19] is
used to segment out the left and right iris regions of the eyes
(§ III-A). We adopt a residual attention-based network [20]
to perform binary classification on the iris regions of interest
to determine if the input image is real or fake (§ III-B).
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FIGURE 3. Details of our Attention Module from the our RAN in Figure 2.
Our design is inspired from the residual attention network of [20].

The training of our network aims to maximize the classi-
fication performance reflected by the standard Area-Under-
Curve of the ROC plot (§ III-C), which is general and can
effectively address the data imbalance problem. However,
due to the discrete nature of the ROC-AUC values, a naive
gradient-based implementation does not work for end-to-end
learning. In § III-D), we present a detailed solution in our
proposed approach by relaxing the AUC maximization and
approximating the goal using the WMW statistics. Figure 5
overviews the training pipeline of the proposed method that
can effectively learn from imbalanced data.

A. FACIAL LANDMARK LOCALIZATION AND IRIS
SEGMENTATION
Given a face image, the first step of our method to determine
if it is real or GAN-generated is to detect and localize the face
using the facial landmark extractor provided in DLib [27].
The localized regions containing the eyes are cropped out
for consistency checking. Mask R-CNN [19], the state-of-
the-art detection and segmentation network, is employed to
further detect and localize the iris regions. Mask R-CNN is
a two-stage network based on Faster R-CNN [59] as shown
in Figure 2 (middle). The first stage of Mask R-CNN is a
Region Proposal Network (RPN) that generates candidate
object bounding boxes for all the object categories. In the
second stage, the R-CNN extracts features using the Region
of Interest Align (RoIAlign) layer for each proposal. In the
last stage, label classification and bounding box regression
are performed for each proposal, and mask prediction is
performed in a parallel branch. We train the Mask R-CNN
model using the eye region images from the datasets in
[60], [61], where more details will be provided in § IV-B.
Figure 4 shows examples of the extracted pair of iris regions
from the cases of GAN-generated (left) and real (right) faces.

B. RESIDUAL ATTENTION NETWORK
We adopt the attention mechanism [45], [47], [62]–[64]
to improve the spotting of inconsistent corneal specular

TABLE 1. Details of the proposed Residual Attention Network (RAN) in
the right of Figure 2.

FIGURE 4. The extracted iris pairs of our method for the
(a) GAN-generated and (b) real faces. Artifacts of inconsistent corneal
specular highlights are obvious in GAN-generated iris pairs.

highlights between the eyes so as to improve GAN-generated
face detection. Incorporating attention to a detection/
segmentation network is commonly accomplished by hav-
ing a separate branch that calculates the attention maps and
later is incorporated back to the main branch with weights.
Inspired from [20], each Attention Module in our attention
network consists of a trunk branch and a soft mask branch.
The trunk branch contains several residual blocks [50] and
acts as a shortcut for data flow. The soft mask branch uses a
U-net structure [65] to weight output features. Specifically,
given the input feature map f , denote the output of the trunk
branch T as T (f ), and the output of the soft mask branch
M as M (f ), respectively. As illustrated in Figure 3, the final
attended feature map f ′ is obtained via element-wise matrix
product via

f ′ = (1+M (f )) ◦ T (f ) , (1)

where the symbol ◦ denotes the Hadamard product.
The attention module can be configured to focus learning

on channel attention, spatial attention, or mixed attention.
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FIGURE 5. The proposed pipeline for training the Residual Attention Network (RAN) on possibly imbalanced data for GAN-generated face
classification. The extracted iris pairs are passed as input to the RAN. A robust loss function derived from maximizing the AUC of ROC is
optimized in the training of the RAN. See details in § III-D.

As suggested in [20], the mixed attention yields the best
performance. Thus, we use the Sigmoid function 1

1+exp(−fs,c)
to learn the mixed attention for each channel and each spa-
tial location, where s ranges over all spatial positions and c
ranges over all channels of f . The proposed Residual Atten-
tion Network (RAN) is constructed by stacking multiple
Attention Modules, as shown on the right side of Figure 2.
Table 1 provides details of the architectures. Although the
attention module plays an important role in classification,
a simple stacking of attention modules may reduce perfor-
mance. To this end, we adopt a simple solution by adding the
attentionmap onto the original featuremap. This combination
allows attention modules stacked like a ResNet [50] and
improves the performance [20]. Given an input image, The
RAN outputs a prediction score from the last Sigmoid layer,
as an indication of the likelihood of the input image being a
GAN-generated image.

C. AUC OF ROC FOR CLASSIFICATION EVALUATION
Most classification loss measures including the popular
cross-entropy loss are ineffective in addressing the issue of
data imbalance. The resulting models can produce accurate
but rather biased predictions that do not work well in practice.
It is desirable to address data imbalance directly by specifi-
cally designing a suitable loss function.

Since the area under the curve (AUC) of a receiver oper-
ation curve (ROC) [26], [66] is a robust evaluation metric
for both balanced and imbalanced data, we would like to
directly maximize the AUC to handle imbalanced situations.
TheAUC is widely used in the binary classification problems.
We next briefly review the definition of AUC, and then moti-
vate how we incorporate a loss term that directly maximize
the AUC performance. Given a labeled dataset {(xi, yi)}Mi=1,
where each data sample xi ∈ Rd and each corresponding
label yi ∈ {−1,+1}. We define a set of indices of positive
instances as P = {i | yi = +1}. Similarly, the set of
indices of negative instances is N = {i | yi = −1}. Let
gw : Rd

→ R be a parametric prediction function with
parameter w ∈ Rm. gw(xi) represents the prediction score
of the i-th sample, where i ∈ {1, · · · ,M}. For simplicity,

we assume gw(xi) 6= gw(xj) for i 6= j (ties can be broken
in any consistent way).

Given a threshold λ, the number of negative examples with
prediction scores larger than λ is false positive (FP), and the
number of positive examples with prediction scores greater or
equal to λ is true positive (TP). According to the FP and TP,
we can calculate the false positive rate (FPR) and the true
positive rate (TPR) as follows,

FPR =

∑
i∈N I[gw(xi)>λ]
|N |

, TPR =

∑
i∈P I[gw(xi)≥λ]
|P|

,

where I[a] is an indicator function with I[a] = 1 if a is true
and 0 otherwise. The receiver operation curve (ROC) is a plot
of FPR versus TPR with setting different decision thresholds
λ ∈ (−∞,∞). Based on this definition, ROC is a curve
confined to [0, 1] × [0, 1] and connecting the point (0,0) to
(1,1). The value of AUC corresponds to the area enclosed by
the ROC curve.

D. WMW AUC RELAXATION FOR LOSS DESIGN
The computation of an AUC score based on the area under a
ROC curve cannot be directly used in a loss function due to its
discrete nature. According to the Wilcoxon-Mann-Whitney
(WMW) statistic [25], we can relax the AUC as follows,

AUC =
1

|P||N |
∑
i∈P

∑
j∈N

I[gw(xi)>gw(xj)].

Therefore, the corresponding AUC loss (risk) can be defined
as:

LAUC = 1− AUC =
1

|P||N |
∑
i∈P

∑
j∈N

I[gw(xi)<gw(xj)]. (2)

Obviously, LAUC takes value in [0, 1]. It is a fraction of pairs
of prediction scores from the positive sample and negative
sample that are ranked incorrectly, i.e., the prediction score
from a negative sample is larger than the prediction score
from a positive sample. If all prediction scores from the
positive samples are larger than any prediction score from
the negative samples, then LAUC = 0. This indicates we
obtain a perfect classifier. Furthermore, LAUC is independent
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of the threshold λ. LAUC only depends on the prediction
scores gw(x). In other words, the predictor gw affects the
value of LAUC . Therefore, we aim to learn a classifier gw that
minimizes Eq.(2).

Although we can calculate LAUC by comparing predic-
tion score from the positive sample and prediction score
from the negative sample in each pair, the LAUC formulation
is non-differentiable due to the discrete computation. It is
therefore desirable to find a differentiable approximation for
LAUC . Inspired by the work in [25], we find an approximation
to LAUC that can be directly applied to our objective function
to minimize the AUC loss along with our imbalanced train-
ing procedure. Specifically, a differentiable approximation of
LAUC can be reformulated as:

LAUC =
1

|P||N |
∑
i∈P

∑
j∈N

R(gw(xi), gw(xj)), (3)

and R(gw(xi), gw(xj)) ={
(−(gw(xi)− gw(xj)− γ ))p, gw(xi)− gw(xj) < γ,

0, otherwise,
(4)

where γ ∈ (0, 1] and p > 1 are two hyperparameters.
Loss for the Proposed Residual Attention Network:We use

a joint loss function comprising the conventional binary
cross-entropy (BCE) loss function LBCE and the AUC loss
function LAUC in weighted sum:

L = α LBCE + (1− α) LAUC , (5)

where α ∈ [0, 1] is a scaling factor that is designed for
balancing the weights of the BCE loss and the AUC loss.

IV. EXPERIMENT
For experimental evaluation of the proposed method and
comparison against the state-of-the-art methods, we first
introduce the newly constructed FFHQ-GANdatasets § IV-A.
Implementation details of the proposed method are provided
in § IV-B. Performance evaluation on the FFHQ-GAN bal-
anced and imbalanced subsets is in § IV-C. Ablation studies
are provided in § IV-D. Finally, qualitative results are shown
in § IV-E.

A. THE NEW FFHQ-GAN DATASET
We collect real human face images from the Flickr-Faces-HQ
(FFHQ) dataset [3]. GAN-generated face images are created
using StyleGAN2 [3] via http://thispersondoesnotexist.com,
where the image resolution is 1024 × 1024 pixels. We ran-
domly select 5,000 real face images from FFHQ and 5,000
GAN-generated face images. After iris detection, we discard
those images with the iris of any eye not detected. This ends
up with 3,739 real faces (with iris pairs) and 3,748 fake faces
(with iris pairs), which constitutes our new FFHQ-GAN
dataset. The split ratio of training and testing is 8:2.

To enable a thorough evaluation of the model in both
balanced and imbalanced data scenarios, we sampled the
FFHQ-GAN dataset to form an imbalanced subset, where the
statistics of the subsets are provided in Table 2.

TABLE 2. Details of the FFHQ-GAN dataset regarding its balanced (-b)
and imbalanced (-imb) subsets.

TABLE 3. Results on the FFHQ-GAN dataset regarding its balanced (-b)
and imbalanced (-imb) subsets.

B. IMPLEMENTATION DETAILS
We implemented our method in PyTorch [67]. Experiments
are conducted on a workstation with two NVIDIA GeForce
1080Ti GPUs.

For iris detection, Mask R-CNN is trained using the
datasets from [60], [61]. For each training eye image, the
outer boundarymask of each iris is obtained using themethod
of [60] with default hyper-parameter settings. These masks
are used to generate the iris bounding boxes and the corre-
spondingmasks for training, using the default settings in [19].
In the test stage, given an input face image, we first use the
face detector and landmark extractor of DLib [27] to crop
out the eye regions. Each cropped eye region is fed to Mask
R-CNN for localizing the iris bounding box and segmentation
mask. This process is repeated for both the left and right eyes
to obtain the iris pairs as the input for our Residual Attention
Network. We resize all iris pairs to a fixed size 96 × 96 for
training and testing to ensure that the whole pipeline works
well.

Table 1 describes the details of our Residual Attention
Network (RAN), where the Attention Module (AM) detailed
in Figure 3 is repeatedly stacked three times. The network is
trained using Adam optimizer [68] with the learning rate of
0.001 and batch size 128. Training is terminated at 100 epochs
for balanced data and 2,000 for imbalanced data.
Hyper-Parameters:We set p = 2 in Eq. (4) and γ = 0.4 for

balanced dataset, and γ = 0.6 for imbalanced data. For the
experiments on the balanced dataset, α in Eq. (5) is set to 0.2.
For the experiments on the imbalanced dataset, α is set to 0.4.
These hyperparameters yields the best performance.

C. EVALUATION ON THE FFHQ-GAN DATASET
We report evaluation of GAN-generated face detection on the
FFHQ-GAN dataset in terms of Accuracy (ACC), Precision
(P), Recall (R), F1 score (F1), the area under the curve (AUC)
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FIGURE 6. Performance comparison of the proposed method with ResNet with BCE loss, Xception with BCE loss, and RAN with BCE loss.

FIGURE 7. Confusion Matrix on the FFHQ-GAN (left) balanced and (right) imbalanced datasets.

FIGURE 8. Impact of hyperparameter α of the AUC loss in Eq.(4) for the
GAN-generated face detection on the imbalanced dataset.

of the ROC, and Precision-Recall (PR) curves. Accuracy
is calculated as ACC =

TP+TN
TP+TN+FP+FN , where FN and

TN indicate false negatives and true negatives, respectively.
Precision-Recall is calculated as P = TP

TP+FP and R =
TP

TP+FN . F1 score is the harmonic average value of P and R,

as F1 = 2PR
P+R.

Results on the Balanced and Imbalanced Set: To evaluate
the effectiveness of the proposed method, we evaluate RAN
trained with BCE+AUC loss against the ResNet-50 [50] and
Xception [69], two of the widely-used DNN classification
models trained with the BCE loss. Table 3 presents the clas-
sification results of experiments training/test on the balanced
and imbalanced FFHQ-GAN datasets. The corresponding
ROC and Precision-Recall curves are shown in Figure 6
(right), and the Confusion Matrices are shown in Figure 7.
Results show that both the ResNet-50 and Xception obtain
low Recall scores due to the imbalanced data distribution

FIGURE 9. Visualization of the extracted iris pairs and the corresponding
attention maps obtained from our Residual Attention Network (RAN).
Observe that the attention maps for GAN-generated faces better focus on
the artifacts such as the corneal specular highlights, while the attention
maps for real faces are widely distributed. This shows the effective
learning of RAN for identifying GAN-generated faces.

in Table 3. In comparison, our method achieves the highest
performance in all metrics. These results indicate that our
method can effectively improve performance on both bal-
anced and imbalanced data training. We have also performed
experiments to train our model, ResNet-50, and Xception
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FIGURE 10. Examples of detected GAN-generated faces and their corresponding iris regions and the attention maps produced from our method. These
examples show that our method can detect a wide range of face images, including those with tilted or side views where both irises are visible.

on a balanced dataset and test on an imbalanced dataset.
The obtained performance difference is similar to that of
training/test on the balanced dataset. This result suggests the
importance of the training model on an imbalanced dataset if
the model is expected to deal with detection on imbalanced
data.

D. ABLATION STUDIES
1) EFFECT OF THE AUC LOSS
We compare the proposed RAN model trained with the ideal
case with combined AUC and BCE loss in Eq. (5) against the
same model trained only with BCE loss. Results are shown in
Table 3 and Figures 6 and 7. Observe that the proposed joint
BCE+AUC loss outperforms the same model trained only
with BCE loss alone in all evaluation metrics. In other words,
the incorporation of the AUC loss improves the classification
performance substantially and consistently.

2) HYPER-PARAMETER ANALYSIS
We also study the impact of hyper-parameter α in our loss
function in Eq. (5) regarding detection performance of imbal-
anced data. Figure 8 shows the experimental results of the
obtained AUC score versus α ranging from 0 to 1, and
α = 0.4 yields the best detection performance.

E. QUALITATIVE RESULTS
Figure 9 provides visualization of the attention maps of the
real and GAN-generated iris examples. Observe that there is
an obvious difference between the corresponding attention
maps of the GAN-generated irises and the real ones. Con-
cretely, the network attends on the whole iris part for the real

images and attends to the highlight parts for the fake images.
Figure 10 shows additional examples of the GAN-generated
face with the extracted iris pairs and corresponding attention
maps. The visualization also provides an intuitive approach
for human beings to identify GAN-generated faces by com-
paring their iris regions.

V. CONCLUSION
In this work, we investigate building a robust end-to-end
deep learning framework for detecting GAN-generated faces.
We show that GAN-generated faces can be distinguished
from real faces by examining the consistency between the
two iris regions. In particular, artifacts such as the corneal
specular highlight inconsistencies can be robustly identified
through end-to-end learning via the proposed Residual Atten-
tion Network. Our design of a joint loss combining the AUC
loss with the cross-entropy loss can effectively deal with the
learning from imbalanced data. We also showed that a direct
optimization of the ROC-AUC loss is computationally not
feasible, however relaxing the ROC AUC via the Wilcoxon-
Mann-Whitney (WMW) statistics can provide a good approx-
imation. Our GAN- face detection result is explainable, and
the approach of spotting iris inconsistency can also serve as
a useful cue for human users. Experimental results show that
our model achieves superior performance on both balanced
and imbalanced datasets for GAN-generated faces detection.
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