

FlagDetSeg: Multi-Nation Flag Detection and Segmentation in the Wild

Shou-Fang Wu¹, Ming-Ching Chang², Cheng-Shih Wong³, Abhineet Kumar Pandey², Siwei Lyu⁴, Po-Chi Su¹

¹ National Central University, Taiwan
² University at Albany, State University of New York, USA
³ Academic Sinica, Taiwan
⁴ University at Buffalo, State University of New York, USA

Outline

- Overview
- Prior Work
- Method
- Experiment
- Discussion

Overview

- Precise instance segmentation for 200+ country flags
- **Data-augmentation-based** methods for fine-tuning
- Experiments performed on several popular detectors
- **RELEASE** (https://github.com/sfstefanwu/FlagDetSeg.git)
 - Pre-trained multi-nation flag detector
 - Annotated multi-nation flag dataset (authentic images)
 - Synthetic multi-nation flag dataset

Overview - Quick Demo

Overview - Challenge

- Non-rigid tiled, rotated, elastified, etc.
- Heavy occlusion in many cases
- Lack of data labor-intensive for production
 - 193 member states in UN

Prior Work

- Binary Flag Detection
 - HSV color texture analysis and gradient features (S. Jetley, et al.)
 - Color features and a fuzzy-neural algorithm with kNN classifier (E. Hart, et al.)
 - A 5-layer **CNN** but limited results (H. H. Duc, et al.)
- Multi-class Flag Detection
 - **Deep CNN**, yet is uncompetitive against RPN-based detectors (M. Gu, et al.)
 - Based on VGG16 FCN, local context network and Color-BRIEF features (T. Said, et al.)

Method - Overview

Flags from Open Image Dataset v6

OIDv6 Segmentation Dataset

aug1c3b1b8f08f aug1c3b1b8f08f e9b4028 e9b4029

e9b4040 e9b4041

aug1c3b1b8f08f

e9b4053

aug1c3b1b8f08f

e9b4018

aug1c3b1b8f08f

e9b4030

e9b4042

aug1c3b1b8f08f

e9b4031

aug1c3b1b8f08f

e9b4019

aug1c3b1b8f08f aug1c3b1b8f08f e9b4043

e9b4032

aug1c3b1b8f08f e9b4021

aug1c3b1b8f08f aug1c3b1b8f08f e9b4033

aug1c3b1b8f08f e9b4044 e9b4045

aug1c3b1b8f08f

e9b4056

e9b4022

e9b4034

14

e9b4046

e9b4058

aug1c3b1b8f08f e9b4023

aug1c3b1b8f08f aug1c3b1b8f08f e9b4035

aug1c3b1b8f08f aug1c3b1b8f08f e9b4047

aug1c3b1b8f08f

aug1c3b1b8f08f e9b4059

e9b4060

e9b4048

aug1c3b1b8f08f e9b4062 e9b4063

aug1c3b1b8f08f aug1c3b1b8f08f e9b4024 e9b4025

aug1c3b1b8f08f

aug1c3b1b8f08f e9b4026

e9b4027

aug1c3b1b8f08f

aug1c3b1b8f08f e9b4039

aug1c3b1b8f08f e9b4051

Real Image Set

- Collect **5** real images for each country
- Select flags with different poses to maximize diversity

Synthetic Image Set

- Natural Backgrounds + (Template or Instance)
- Generate large and balanced dataset with ground truth
- *"Simple copy-paste is a strong data augmentation method for instance segmentation"* (G. Ghiasi, et al., CVPR 2021)
- Source of background images
 - Human Made Scene Collection (Burge J., et al.)
 - Stanford Background Dataset (S. Gould, et al.)
 - In-house Collection

Samples of Background Image

Template in SVG

Samples of Transformed Instance

- Safe Transformations are applied to
 - (a) Templates in SVG format
 - (b) Segmented instances from our *Real Image Set*

to hallucinate realistic-looking flag images

Unsafe Transformation

Vertical flipping

Poland

• RGB channel shifting or aggressive hue change

Samples of Synthetic Image Set

Training Pipeline

Visual Result - Binary

Experiment

Multi-nation Flag Detector

	Backbone	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
Mask-RCNN	ResNet-101-FPN	87.92	93.1	92.36	40.8	80.03	91.03
Mask-RCNN	ResNeXt-101-FPN	85.81	90.75	90.11	44.71	81.58	88.84
	ResNet-101-FPN						
PointRend	ResNeXt-101-FPN	82.05	85.23	84.94	32.96	79.22	85.34

Visual Result of Synthetic Images

Visual Result of Real Images

Visual Result

PointRend predicts clearer segmentation masks

Discussion and Future Work

• Limitation : heavy occlusion causes mis-classification

- **3D engine** (b) to create realistic template and simulate deformation
- Teacher-Student network (semi-supervised learning) from flag images without annotation

Thank you for your listening.

Experiment

• Binary Flag Detection

- YOLACT++
 - not ideal for delineating complex flag instances
- PointRend has slightly better performance than Mask-RCNN

	Backbone	AP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
YOLACT++	ResNet-101-FPN	17.26	20.32	18.27	-	-	-
Mask-RCNN	ResNet-50-FPN	69.90	87.72	78.16	18.00	45.62	77.07
Mask-RCNN	ResNet-101-FPN	73.85	89.13	80.35	17.02	47.32	81.96
Mask-RCNN	ResNeXt-101-FPN	72.30	88.81	79.02	32.65	48.76	79.36
PointRend	ResNet-101-FPN	76.30	90.24	81.90	20.40	47.68	84.68
PointRend	ResNeXt-101-FPN	76.21	89.63	82.06	25.91	49.75	84.30

Binary flag detection - YOLACT++

- Miss
- False alerts, i.e. parachutes, birds

