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Abstract

Multi-camera vehicle tracking at the city scale is an es-
sential task in traffic management for smart cities. The
large-scale analytics is a challenge due to large data vari-
abilities, frequent occlusions, and appearance differences
caused by large viewing angle variations, etc.. In this work,
we develop an efficient multi-camera vehicle tracking sys-
tem consisting of four modules: (1) Faster-RCNN vehi-
cle detection, (2) vehicle association and re-identification
feature map generation, (3) single-camera vehicle tracking
to form basic tracklets, (4) multi-camera vehicle tracklet
matching and re-identification that creates longer, consis-
tent tracklets across the city scale. Our main efforts are
on the tracklet creation, association, and linking in the
single-camera tracking and multi-camera tracking. We pro-
pose three single-camera tracking (SCT) filters that can ef-
fectively eliminate unreliable tracklets. For multi-camera
tracking, we propose a novel Group-10U metric to evaluate
the connectivity of tracklets across views. Our system ob-
tains IDF1 score 0.1343 and are ranked 18-th on the AICity
2021 Challenge Track 3 public leaderboard.

1. Introduction

Although the expansion of city-scale increases city man-
agement’s difficulty, the development of computer vision
and monitoring networks all over the city provides a new
choice for city management. Multi-camera vehicle tracking
is one of the crucial tasks in traffic management. Its pur-
pose is to achieve better traffic design and traffic flow opti-
mization by tracking many vehicles in a network of multiple
surveillance cameras. As Figure 1 shows, we need to con-
nect the same tracklets in every camera.

In recent years, vehicle tracking has become a hot fron-
tier field, especially single-camera tracking. In computer
vision research, recent years have witnessed many success-
ful works after releasing some public data sets and chal-
lenges in this field. Compared with single-camera tracking,

multi-camera vehicle tracking is a much more complicated
task, including detection, re-identification (RelD), tracking,
and camera synchronization. Although the former methods
have made remarkable achievements in various challenges,
it also has some shortcomings. First of all, feature aggrega-
tion and large models consume many computing resources,
such as GPUS. Besides, most of the previous methods need
large-scale annotated data sets to train their models. Finally,
it is sometimes challenging to collect the required data sets.
In addition to the above, there are several challenges in this
field.

1. The vehicle’s appearance varies depending on its an-
gle and distance of the camera and the brightness of
the light. The above reason brings challenges to the
accuracy of the vehicle re-identification.

2. Because of the two-level synchronization, it is very
time-consuming to synchronize the tracking id. It is
required to match the tracklets in the single-camera
view in the first level and later match tracklets from
different camera views in the second level to complete
multi-camera tracking.

Previous works such as [19, 1] engage in generating a
discriminative feature of vehicles and improving the per-
formance on single-camera tracking. But in Multi-camera
tracking, they simply use Euclidean distance or cosine sim-
ilarity to measure across-camera tracklets. Then, they as-
sociate the tracklet to the tracklet with largest cosine simi-
larity or smallest Euclidean distance. That means that the
strategy only consider the tracklet with top-1 score. In
order to making good use of the ranking information, we
propose Group-IOU to evaluate the connectivity between
across-camera tracklets. Moreover, a matching strategy is
proposed to grouping tracklets with Group-IOU metric.



Figure 1. Al City Challenge 2021 — Track 3 Challenge on multi-target multi-camera vehicle detection and tracking.

2. Related Work
2.1. AI City Challenge 2020

[20] proposes an effective multi-camera vehicle tracking
system that is accurate and easy to train. In the detection and
tracking part, Qian ef al. use the weighted inter-class non-
maximum suppression algorithm to generate more accurate
boundaries. In RelD, the aggregate loss is used for training
to overcome the appearance differences caused by differ-
ent perspectives. Finally, given the tracklets and distance
matrix, the method uses the fast multi-target cross-camera
tracking strategy to generate the result.

[13] proposed a Spatio-temporal consistent hierarchical
matching method for tracking vehicles across cameras. It
represents the target by combining spatial and temporal fea-
tures and compares the targets in different cameras using a
bottom-up hierarchical matching strategy.

2.2. Vehicle Re-identification

Object re-identification is the task of matching and
searching for targets in different scenes. Many papers have
focused on person-RelD, such as [6] propose an efficient,
end-to-end, fully convolutional Siamese network that com-
putes the similarities at multiple levels to train person RelD.
With the increasing attention paid to urban management and
intelligent transportation, researchers have paid more atten-
tion to vehicle re-identification. To improve accuracy, some
methods [14] will provide more information than appear-
ance features, such as license plates and car models, are
adopted. However, due to the competition data’s limita-
tions, this research can not rely on these attributes. There-
fore, this research’s model can only rely on the id of the
track and the camera’s id.

[9] is based on a strong baseline with a bag of tricks
(BoT-BS) proposed in person RelD. First, extract the fea-
tures from the model, and obtain the preliminary results af-
ter sorting according to the features. Finally, these prelimi-
nary ranking results are post-processed using the weighted
feature tracklet-level reranking strategy to obtain the final
RelD results.

2.3. Vehicle Detection

Object detector is usually based on the proposal. R-CNN
[5] is the first one to use CNN for detection. This method
uses selective search to generate proposals. Fast R-CNN
[4] introduced sharing the feature map across the entire net-
work. Later Faster R-CNN [24] introduces the concept of
Regional Proposal Network (RPN), which can improve the
quality of the proposal, which also greatly improves the
quality of the detection. Introducing two-stage detection in
the front, next to introduce one-stage detection, which can
predict the bounding box without generating a proposal, so
the speed is much faster than the two-stage method. YOLO
[21] and Yolov2 [22] consider target detection as a regres-
sion problem. They divide the original images into sev-
eral network units and predict each network unit’s bounding
box and the relevant classification probability. SSD [15]
predicts different proportions of bounding boxes in differ-
ent layers, thereby improving the performance of the one-
stage detector in complex scenes. All in all, the two-stage
(proposal-based) detector focuses on high accuracy, while
the one-stage detector focuses on the speed of detection.

2.4. Single-Camera Tracking (SCT)

Most of the recent multi-camera tracking (MOT) meth-
ods based on tracking by detection schemes [3], that is,
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Figure 2. The proposed multi-camera vehicle tracking pipeline. SCT: Single-Camera Tracking. MCT: Multi-Camera Tracking.

given the detection results, we hope to correlate the results
across frames and hope to be able to estimate the position
of the object even when the detection result is unreliable, or
occlusion occurs. [1, 2, 10] follows the tracking by detec-
tion schemes. Many tracking methods are based on graph
models [25] and solve the problem by minimizing the to-
tal cost. In [25], Tang et al. regards the detected objects
as point (vertices) in the graph model, and in [27], track-
lets are the points of the graph. For detection-based models,
there are two main disadvantages. First, one of the fun-
damental assumptions is the independence of each point.
However, detection is not conditionally independent from
frame to frame. Therefore, if we want to track an object
for a longer time, the time information must be used more
effectively. Second, the detection-based graph usually has
a dimensional affinity matrix, making it challenging to find
the global minimum solution. However, the tracklet-based
graph model can better use the short trajectory information
to measure the relationship between points, but this is under
the premise of the careful handling of false associations in
the tracklet generation step.

2.5. Multi-Camera Tracking

With the development of smart cities, road camera sen-
sors have greatly improved multi-target multi-camera track-
ing research. [17] proposed a pipeline for multi-target vi-
sual tracking in a multi-camera system. The pipeline also
extracts the similarity of appearance and dynamic motion.
In order to track the loss of the tracking target, a General
Multi-view Tracking (GMT) framework focusing on cross-
camera trajectory prediction is proposed in [29]. To re-
duce the search and matching space of multi-camera track-
ing (MCT), [12, 26, 27] also considered camera link mod-

els with Spatio-temporal constraints. For example, in the
estimation process of unsupervised schemes in [12], cam-
era link models use two-way transition time distribution. In
[26, 27], Tang et al. uses the estimated vehicle speed to es-
tablish the transition time distribution for each connected
camera pair. Using reliable camera link models, the can-
didate set for matching will become smaller, significantly
improving cross-camera association accuracy.

3. Method

The proposed multi-camera vehicle detection and track-
ing pipeline consists of four main modules as shown in
Figure 2: (1) vehicle detection, (2) vehicle (re-id) feature
extraction, (3) single camera tracking and tracklet filter-
ing, and (4) multi-camera tracking with a newly proposed
Group-10U metric.

Vehicles are first detected using Mask-RCNN. Re-id ap-
pearance features are extracted using ResNet101-ibn-a. The
detected vehicles are associated into individual tracklets us-
ing TrackletNet Tracker (TNT) [28] provided by the AIC-
ity 2021 Challenge organization. We perform SCT track-
let filtering to remove unreliable tracklet predictions as post
processing. For multi-camera tracking, We propose a new
Group-IOU metric to evaluate the similarity of each track-
lets that leads to the grouping and linking of tracklets across
camera views. We next describe detailed steps.

3.1. Vehicle Re-identification

We extract vehicle re-identification features using
ResNet-101 together with the IBN-Net-a. The Instance-
Batch Normalization Network (IBN-Net) [18] is a winning
method from the Drivable Area Segmentation (find the road
area that the vehicle is driving or it can potentially drive



on) in 2018 WAD Challenge. Unlike ResNet as an indepen-
dent network, IBN-Net can be combined with other deep
learning models to improve performance without increas-
ing the computational cost. Here we combine IBN-Net with
ResNet101 for re-id feature extraction.

The starting point of IBN-Net is to improve the model’s
to changes in the appearance of images, so it combines
two normalization layers (instance normalization and batch
normalization) to improve on various tasks. To reduce the
feature changes introduced by superficial appearance with-
out affecting the recognition of more profound content, this
method only adds instance normalization to the superficial
level. Moreover, to preserve the superficial level’s image
content information, half of the batch normalization in the
superficial level is replaced by instance normalization in-
stead of all of it.

IBN-Net has instance and batch normalization in shallow
layers and only batch normalization is adopted in top layers
to get better features. The difference between instance nor-
malization and batch normalization is that instance normal-
ization uses statistics of each sample to localize features;
the features it learns do not affect appearance changes such
as color, style, and virtuality/reality. Batch normalization
uses mini-batch with statistic mean and variance, and train-
ing normalizes each channel feature. If we want to retain
content and information, batch normalization is needed. At
the same time, batch normalization can speed up training
and learn more distinguishing features. In summary, IBN-
Net can mainly learn the style of the vehicles and learn the
content in the top layers.

3.2. Vehicle Detection

The AICITY contest provides the detection results using
Mask-RCNN[7], SSD512[16], YOLOv3[23]. The Mask-
RCNN consists of Faster R-CNNJ[24] and the mask module.
This research only uses Faster R-CNN part for vehicle de-
tection. Using convolution feature maps of a region-based
detector (such as Fast R-CNN) to generate region proposals
is what Ren et al. found out. So on top of these features, by
adding some convolutional layers to build a regional pro-
posal network (RPN), simultaneously output region bounds
and objectness score for each location. Therefore, RPN is a
full convolution network (FCN), which trains end-to-end to
generate high-quality region proposals and then sent to Fast
R-CNN for detection. The input of RPN is a road camera
frame, and the output is a set of rectangular proposals (ve-
hicles), each including a target score. This method slides a
small network on the last shared convolution feature map to
generate region proposals. This network is fully connected
toannxn (n = 3) spatial window of the input feature map.
It maps each sliding window to a low-dimensional vector,
which is input to two fully connected layers, a regression
layer, and a classification layer.

3.3. Single-camera Tracking (SCT)

We adopt the TrackletNet Tracker (TNT) [28], a graph-
based tracklet model for SCT. TNT consists of three compo-
nents: (1) trajectory generation, (2) connectivity measure-
ment, and (3) graph-based clustering.

Given each frame’s detection result, based on the cam-
era motion and the appearance similarity between two con-
secutive frames, tracklets are generated through the IoU
(intersection-over-union) with epipolar geometry constraint
compensation. Each generated tracklet is regarded as a node
in the graph. Between every two tracklets, the edges’ weight
in the graph model measures the connectivity, where the
connectivity represents the possibility of tracklets coming
from the same car. The TrackletNet architecture describes
as following. First, for each track-lets, enter its 4D posi-
tion information and 2048D appearance in-formation, and
spread it out in a 64D time dimension. To better charac-
terize the duration of the two tracklets, we are adding two
binary masks to the entry and exit channels, one for tracklet-
1 and the other for tracklet-2. On condition that any frame
in 64D time dimension, the entire column is set to 1, and
if it does not exist, it is set to 0. Connect all feature chan-
nels to 3 Conv/MaxPool layers, and use four types of 1D
filers to down-sample all features in the time dimension
to calculate the features’ continuity. Followed by average
pooling, calculate the average value of all appearance fea-
tures in all the time dimensions; that is, each channel has
only five-dimensional features left in each dimension of the
time do-main. Finally, after concatenating all the features,
two fully connected layers are used to output the similarity
score. The network helps us associate the same tracklet in a
camera. Then we use the method of [27] to perform cluster-
ing to minimize the total cost in the graph. After clustering,
tracklets with the same ID will combine into a group.

3.4. Post SCT Tracklet Filtering

Post processing is an important in MCT task. Because
the wrong tracklets may make the association become
harder, we need to remove the amount of across-camera
comparisons. With visualization results of SCT, we found
some weird detection such as parked cars, boxes with
no vehicles and so on. Therefore, we engage in the post
processing to eliminate these low quality detection.

For post processing, we first connect the lost tracklets
using appearance re-id features. By observing the single-
camera tracking result, we notice the following common
problems:

1. Tracklets with vehicle detection in a very high speed

2. Tracklets with vehicle detection stay in a very
short/long time, but in a normal speed

3. Parked cars
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Figure 3. An example of Group-IOU

To address these problems, we propose the foolowing
three types of tracklet filtering, that can effectively remove
abnormal tracklets.

SCT Filter 1. The first filter is defined by Eq.1

Speed - Mspeed

> thresspeed ey
Ospeed

The speed is calculated by the GPS positions provided by
AICITY contest. With this equation, we can easily remove
tracklets with abnormal speed. fispeeq 1S the average speed
of tracklets in one camera and ogpceq is the standard de-
viation of tracklets. To avoid deleting too many tracklets,
thresgspeeq Will increase until the ratio of removed tracklets
to total amount of tracklets is not over 0.03.
SCT Filter 2. The second filter is defined by Eq.2

abs(staytime — ustaytime)

> thresstaytime (2)
O staytime
The equation is similar to Eq.1. The purpose of this filter is
to remove the tracklets which stay too long in the camera.
We found that there are some wrong tracklets with normal
speed, but they stay too much time or too less time in the
camera. Therefore, we applied this filter to remove these
tracklets.
SCT Filter 3. The third filter aims to remove no moving
tracklets. It defined by Eq.3

box ¢irst N box
first last > thresiou (3)

boxfirst U boxlast

box first and boxiqss represent the first detection box and
last detection box in the tracklets. If the IOU of the first de-
tection box and the last detection box is bigger than thresh-
old, we regard this tracklet as no moving tracklet such as
parked cars. With these post processing techniques, we can
remove the redundant tracklets as more as possible. Also,
it avoid pairing invalid tracklets in the Multi-target Multi-
camera Tracking stage.

3.5. Multi-target Multi-camera Tracking (MTMC)

The proposed MTMC matching is performed according
to the following steps.

First, we measure the GPS position of vehicle detection
box by using the provided calibration matrix. Then, we can

Figure 4. The locations of cameras in test set

obtain the direction of tracklets and use the cosine angle
to know if the two tracklets drive on the same direction or
not. If the direction of the two tracklets are different, which
means the cosine angle is smaller than 0.5, we consider that
it’s a impossible matching and the similarity would be set
to zero. Because the cameras are set on an arterial road(As
shown in Figure 4), the direction filter has significant im-
pact. The car would disappear in the road if it makes a turn.
Therefore, we set the threshold to 0.5 to remove the track-
lets which makes a turn or goes to the opposite direction.
Finally, We calculate the cosine similarity between track-
lets

We next rank the similarities and select the tracklets that
meet the condition below:

ST — [sim >=1 (4)
Osim

If the ratio of chosen tracklets to the total amount of
possible tracklets is bigger than 15%, we consider that
the tracklet does not matching any tracklet. That means
S$1gMag;m, 1s too small so that the similarity between query
tracklet and other tracklets is close.

After the two steps before, we can obtain the possible
matching tracklets of every tracklet. Because the tracklet
can match only one tracklet in one camera, we only keep
one matching tracklet in every camera.

We propose Group-IOU to evaluate the similarity be-
tween two tracklets. Group-IOU describes in Eq.5:

size(MatchListsNMatchListg) (5)

GT'OUpIOU = min(size(MatchLista),size(MatchListg))

As Figure 3 shows, matching list of tracklet A includes
1, 2, 3 and matching list of tracklet B includes 4, 5, 6. The
Group-10U score between tracklet A and tracklet B would
be 0.33.

To avoid cycle pairing, we define a pairing group as a
tree. The size of parent node should be larger than child
node or equal to the size of child node. Figure 5 is an ex-
ample of the grouping result. We compute Group-IOU be-
tween every tracklet and the tracklets whose size are larger
or equal to the first one. For example, we want to associate



Figure 5. An example of grouping tracklets

tracklet B to others. We find that tracklet B has biggest
Group-IOU with tracklet A and the Group-IOU score is
higher than threshold. Then, There are two conditions:

1. If size of the matching list of tracklet A is larger than
size of the matching list of tracklet B, tracklet B is set
to be the child node of tracklet A.

2. If size of the matching list of tracklet A is equal to
size of the matching list of tracklet B, we would check
tracklet B isn’t the parent of A and the grandparent of
A and so on. If tracklet B is, tracklet B is set to be the
parent of tracklet A. Otherwise, tracklet A is set to be
the parent of tracklet B.

Finally, every tracklet set to the same id as its root parent.

With the two constraints in step 5, we can completely
prevent from cycle pairing problem. Our proposed Group-
IOU and pairing method consider not only top-1 matching
tracklets, but all possible matching tracklets.

4. Experiments

Datasets. The organizer of the Al City Challenge pro-
vides the training data we used in this research. The data is
the short section of road camera videos, in which there are
58 videos recorded by different cameras for training and
verification, and the test data have 6 videos. The dataset
totally contains 3.58 hours of videos collected from 46
cameras spanning 16 intersections in a mid-sized U.S. city.
They also provides the training and verification data include
the final results of detection, RelD, and tracking.

Evaluation Metrics. The F1 score of vehicle identity
(IDF1) is used to evaluate the performance for multi-camera
tracking task. The following equation shows how to calcu-
late IDF1 score:

2TP;q
IDF1 = 2TP;q+ FP;q+ FNyiq ©
where T P,y represents true-positive, F'P;; represents
false-positive, F'N;4 represents false-negative. IDF1 mea-

sures the ratio of correctly identified detections over the av-
erage number of ground-truth and computed detections. Fi-
nally, we got IDF1 score of 0.1343. There are 20 submis-
sions on public leaderboard in this track. We rank 18-th in
public leaderboard of all the participant teams.

4.1. Vehicle Re-identification

IBN-Net-a changes to ResNet adds instance normaliza-
tion to the superficial network. As for where to add specif-
ically, we refer to [8]. [8] illustrates the necessity of the
identity mapping path, so we believe adding instance nor-
malization to the residual path is the right choice. To get
the features aligned with the identity mapping path, instance
normalization is added after the convolution in the resid-
ual module, rather than added after the last convolution,
which can prevent the feature from being misaligned. Ac-
cording to the design principles mentioned in the method,
the shallow layer should use batch normalization and in-
stance normalization simultaneously, so half of the chan-
nels are calculated through batch normalization, and the
other half of the channels are calculated through instance
normalization. Because instance normalization will only be
added to the superficial network, and ResNet is composed
of 4 residual modules, the improvement of IBN-Net will
only add instance normalization to the three blocks, which
are Conv2_x, Conv3_x, Conv4_x, and Conv5_x will not be
changed.

Our model’s input is all of size 224 x 224 images, and the
data augmentation methods include random horizontal flip,
padding, and random erasing. During training, we use the
aggregation of cross-entropy loss and triplet loss. The op-
timizer we use is SGD, and the initial learning rate is 0.01,
the momentum is 0.9, and the weight decay is 0.0005. In
addition to the optimizer, we also use WarmupMultiStepLR
as our scheduler. In the first ten epochs, our learning rate
will linearly increase from 0.001 to 0.01, which can solve
initial training instability. In the 40th epoch and the 70th
epoch, the learning rate reduces to 0.001 and 0.0001, re-
spectively, which can help the model converge in the later
training stages. We train a total of 100 epochs.

Figure 6 shows the example results. It shows that our
reid model can generate a discriminative feature for cars,
even if they are from different camera and different orienta-
tion.

Table 1 is an ablation study for different combination of
backbone model. The combination of ResNet101 and IBN-
Net-a performs the best on validation set. It gets 30.49%
mAP score. The IBN-Net-a actually makes the feature bet-
ter by the normalization design. It finally improves the per-
formance of mAP score about 10%.
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Figure 6. Vehicle Re-ID results. The query image in on the left
hand side. The top 50 gallery images that match the query image
are on the right hand side.

H Model ‘ mAP H
res50 + center loss 13.09%
res101 14.34%
res101 + center loss 19.11%
res50 + ibn-a 27.2%
res50 + ibn-a + with no data augmentation | 27.41%
res101 + ibn-a + with no data augmentation | 29.09%
res101 + ibn-a 30.49%

Table 1. Re-identification mAP results on validation set with dif-
ferent backbone models

4.2. Single-camera Tracking (SCT)

The AICity Contest only provides SCT result for Track-
letNet on testing set. Therefore, we want to confirm that it
is the suitable algorithm.

We use a graph-based model to implement our SCT. In a
graph, the tracklet is our vertex. Tracklets generation needs
to use the similarity between IoU and appearance, and in
order to reduce false negatives, we use an epipolar geome-
try algorithm to improve IoU. In simple terms, the epipolar
algorithm assumes that the detected bounding box is sta-
tionary or moving slowly between adjacent frames, and the
size remains the same. Next, for the edges of the graph, we
will first connect the tracklets at adjacent time points with-
out calculating the edges’ weight. Then delete the edges
of tracklets with overlapping time because the same object
cannot appear in different places simultaneously. Next, the
pair of the tracklets connected by the edges are brought to
the multi-scale TrackletNet to calculate the similarity. At
last, we pass the weighted graph into the clustering method
proposed in [27] to cluster our tracklets. Finally, the same
ID gives to tracklets clustered in the same subgraph.

Our setting for TrackletNet training is as follows: the
initial learning rate is 0.001, we will reduce the learning
rate by ten times every 2000 steps until the learning rate
becomes 0.00001 and stop training.

Because the AICity contest does not provide TrackletNet

i results on validation set, we have to train our own model. We
. compare TrackletNet tracker with Hungarian algorithm and
. Tracklet Clustering on validation set. The result shows in

Table 2. The performance of TNT increases 9% compare to
performance of Hungarian algorithm, so we finally decide
to use TNT as our SCT module.

’ Method ‘ IDF1 ‘
Hungarian 60.22%
Tracklet Clustering 61.00%
TrackletsNet Tracker 69.31%

Table 2. SCT IDF1 results on validation set with Hungarian (tradi-
tional method) and TrackletNet Tracker (deep learning method).

4.3. Post SCT Tracklet Filtering

threSsiaytime | thresspeed | thresiou IDF1
1 1 0.1 60.72%
1 2 0.1 60.70%
2 1 0.1 60.69%
2 2 0.1 60.65 %
1 1 0.05 61.00%
1 1 0.01 60.72%

Table 3. Results for using different threshold values.

Table 3 shows the IDF1 score for using different thresh-
old values. We first keep the thres;,, being 0.1. We no-
tice that when both thressiaytime and thresspeeq set to 1,
we can obtain the best IDF1 score. However, there is only
sightly difference between each result. Because we limit
the ratio of removed tracklets to total amount of tracklets is
not over 3%, the limit effectively avoids removing too many
valid tracklets. Therefore, there is only little change for us-
ing different thresholds. Next, we fix thresgiaytime and
thresgpeea and adjust thres;,,. Generally, the IOU of the
first box and last box in the tracklet should be O if the track-
let is not a parked car. However, this constraint may remove
the correct tracklets which are far from camera. Although
the IDF1 has only slightly difference, we set thres;q, to
0.05. It is the most proper value to keep correct tracklets
and remove wrong tracklets as possible.

Table 4 shows the improvement that our filters bring.
The baseline denotes SCT with only removing overlapping
boxes which does not apply on the testing set because of
the heavy traffic. Due to the heavy traffic, the process is not
suitable. It would remove too many correct tracklets. With
these three filter, we obtain almost 20% increment of IDF1
score. These three filters can deal with different problems



’ filters \ IDF1 \
baseline 40.99%
speed 44.10%
speed + staytime 51.41%
speed + staytime + IOU 61%

Table 4. Results for using different filters

respectively. All of the three filters, the IOU filter has a
hugest impact.

4.4. Multi-target Multi-camera Tracking (MTMC)

Due to a tracklet consists of many detections, we first
calculate the standard deviation and mean of the tracklets’
features. The two values can represent the distribution of
tracklets’ feature. Then, we can calculate with cosine simi-
larity between tracklets. In Table 5, top-1 methods denotes
that the tracklet would associate to the track with top-1 co-
sine similarity. The IDF1 score increases almost 2.5% with
our Group-IOU method. Moreover, the amount of false
positive decreases almost 50%. Because some tracklets is
hard to evaluate the similarity with cosine similarity, top-1
method may associate tracklet to wrong group. Our Group-
IOU method consider all the possible matching tracklets. It
can tolerate the misleading information from cosine simi-
larity to avoid wrong matching. Accordingly, it cause the
increment of the IDF1 score.

Method ‘ IDF1 ‘ IDTP ‘ IDFP ‘ IDFN ‘
Top-1 32.65% | 48718 | 64305 | 136709
Group-IOU 35.13% | 47094 | 35610 | 138333

Table 5. MTMC IDF1 results on validation set with Group-IOU
and Top-1.

5. Conclusion

In this work, we present Group-IOU to evaluate the sim-
ilarity between tracklets. It improves the IDF1 score by
considering all tracklets matching. Also, it decreases the
amount of wrong matching and keep the amount of correct
matching at the same time. We propose three filters includ-
ing speed filter, stay time filter, IOU filter to conquer de-
tection issues. Compare to baseline, we obtain almost 20%
increment of IDF1 score. According to this research, we
know that cosine similarity may cause some problems, and
so does the Euclidean distance. Our future work is to find
a better metric which can replace the cosine similarity and
Euclidean distance.
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