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ABSTRACT

The adversarial perturbation for object detectors has drawn increasing attention due to the application
in video surveillance and autonomous driving. However, few works have explored the transferability
of adversarial perturbations across different object detectors. In this paper, we describe a simple but
effective method, namely TransRPN, to generate adversarial perturbations that can reliably transfer
among different object detectors – different categories (e.g., SSD, Faster-RCNN, YOLO) and different
base networks (e.g., VGG16, ResNet, MobileNet), and even other tasks such as instance segmentation
methods. Our method targets the Region Proposal Network (RPN) as the common bottleneck of the
existing object detectors and disrupts the RPN by attacking the intermediate features. Moreover, as
RPNs have no constraint on size of input image, our method can generate the adversarial images
directly fitting into object detectors with arbitrary input size, which thereby improves the feasibility
of our method in practical applications. We study four type of RPNs and validate our method on
each type of RPN on MSCOCO dataset with nine object detectors and two instance segmentation
methods, as well as the real-world API, which demonstrates the effectiveness of our method regarding
the transferability.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Convolutional Neural Networks (CNNs) have proved to be

vulnerable against adversarial perturbations – the intention-

ally crafted noises that are imperceptible to human observers

while can lead CNNs to large errors (Akhtar and Mian, 2018;

Chakraborty et al., 2018; Zhang et al., 2020a; Ozbulak et al.,

2021). The vulnerability of CNNs to adversarial perturbations

suggests that the CNN models do not behave like humans,

which can help us to better understand these models and to

improve the robustness (Pang et al., 2018; Arnab et al., 2018;

∗∗Corresponding author.
e-mail: siweilyu@buffalo.edu (Siwei Lyu)

Naseer et al., 2020; Stutz et al., 2020) and defending strategies

(Tramèr et al., 2017; Mustafa et al., 2020).

The adversarial perturbation was originally proposed in

(Szegedy et al., 2014; Goodfellow et al., 2015; Zhou et al.,

2018; Brendel et al., 2017) to attack image classifiers with two

settings, i.e., white-box attack, where the attackers can access

the details of models (Szegedy et al., 2014; Goodfellow et al.,

2015), and black-box attack, where the models are unknown

to the attackers (Zhou et al., 2018; Brendel et al., 2017). One

typical solution for black-box attack is to improve the transfer-

ability, which aims to develop strong transferable adversarial

perturbations by attacking known models (Dong et al., 2018;

Zhou et al., 2018; Wu et al., 2020b; Li et al., 2020b).
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Fig. 1: Overview of TransRPN.

Recently, attacking object detectors has been drawn increas-

ing attentions due to the broadly usage of them in security-

critical applications such as video surveillance and autonomous

driving (Xie et al., 2017; Chen et al., 2018; Wei et al., 2019; Li

et al., 2020a). Compared to image classifiers, object detectors

are typically more sophisticated, which output multiple labels

and bounding boxes for each object instead of a single image

label. Therefore, adversarial perturbation schemes designed for

attacking image classifiers cannot be used directly to attack ob-

ject detectors. To date, most of the existing works (Xie et al.,

2017; Chen et al., 2018; Li et al., 2018, 2020a) are designed for

the white-box attack on object detectors and a relatively fewer

number of them are dedicated to develop transferable adversar-

ial perturbations among different object detectors. The UEA

method (Wei et al., 2019) proposed a GAN model (Goodfellow

et al., 2014) to generate transferable adversarial perturbations

based on Faster-RCNN to disturb SSD. However, this method

is only designed for VGG16 (Simonyan and Zisserman, 2014)

base network, which is not applicable to object detectors with

different base networks. The DR method (Lu et al., 2020) can

attack object detectors by transferring adversarial perturbations

from image classifiers. However, this method is not dedicated

for attacking object detectors, such that the transferability is

not fully explored. Moreover, since UEA method utilizes GAN

model to generate adversarial images and DR method gener-

ates adversarial images based on classifier, they have a common

shortcoming is that the size of generated adversarial images is

fixed, which can not be directly used to attack object detectors if

their input size is different, e.g., an adversarial image generated

by GAN model with 300×300 output size can not attack an ob-

ject detector with 512× 512 input size, which evidently hinders

the application of transferable adversarial attack in real-world

settings.

In this paper, we propose a simple but effective method,

namely TransRPN, to generate adversarial perturbations that

can reliably transfer across different object detectors (e.g.,

Faster-RCNN (Ren et al., 2017), SSD (Liu et al., 2016)) and

YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017,

2018)), and different tasks (e.g., instance segmentation) (Fig.

1). Our method is based on the observation that most of the

existing object detectors rely on a Region Proposal Network

(RPN) style models at their core – RPN is a major component

of Faster-RCNN and also a regression-based model similar to

SSD and YOLO. Therefore, different with existing works that

attack the whole object detector for transferability, our method

works by attacking the RPNs as a common bottleneck of dif-

ferent object detectors. Moreover, since the RPN can take im-

ages of arbitrary size, we can directly perturb the original image

without the need of resizing as in the cases of (Wei et al., 2019;

Lu et al., 2020).

Note our preliminary conference work of (Li et al., 2018)

attacks RPN by corrupting the final outputs including confi-

dence score and bounding box regression prediction. In this

extension, we design a simple loss function to disturb the in-

termediate features, the common properties at a feature level,

which notably reduces the overfitting phenomenon and im-

proves the transferability. The loss function is then optimized

using the momentum iterative fast gradient sign method (Dong

et al., 2018). The experiments are conducted on the MSCOCO
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dataset (Lin et al., 2014) with nine mainstream object detec-

tors, covering three categories (Faster-RCNN, SSD and YOLO)

and five base networks (VGG16 (Simonyan and Zisserman,

2014), ResNet50 (He et al., 2016), ResNet101, ResNet152 and

MobileNet (Howard et al., 2017)) and two state-of-the-art in-

stance segmentation methods (Mask-RCNN (He et al., 2017)

and YOLACT (Bolya et al., 2019)). Moreover, our method is

validated on a real-world API from Facebook named Detec-

tron2. These experiments empirically demonstrate the effec-

tiveness of our method. We also investigate the influence of

other loss functions and their combinations with different opti-

mization methods on white-box and black-box attacks.

Our contributions are summarized as following:

1. We propose a simple but effective attack method that can

reliably transfer among different object detectors by at-

tacking the intermediate features of RPNs.

2. Thanks to the property of RPNs that can take images with

arbitrary size, our method can generate adversarial images

to directly attack object detectors without changing the

size.

3. We comprehensively investigate the transferability of ad-

versarial perturbations based on RPNs under different set-

tings that previous methods do not consider.

4. The experiments are conducted on various object detec-

tors, and instance segmentation methods, as well as the

real-world API, to demonstrate the efficacy of our method

on transferability.

This paper extends the preliminary conference paper (Li

et al., 2018) in several aspects: 1) We propose TransRPN,

which extends the task-specific loss functions, the confidence

loss and shape loss, which reduce confidence score and dis-

turb the bounding box shape regression of correct object pro-

posals, to intermediate feature map loss so as to improve the

transferability of adversarial perturbations. 2) We study the

performance of proposed method towards various object detec-

tors covering proposal-based and regression-based categories,

as well as instance segmentation methods and real-world API.

3) We study the robustness of proposed methods towards adver-

sarial defense strategies and image compression. 4) We conduct

ablation study on the effect of different loss combinations and

other strategies regarding the transferability.

2. Related Works

2.1. Adversarial Perturbations

Adversarial perturbations are intentionally crafted noises that

can cause the CNN models to make mistakes. The adversar-

ial perturbations are first designed to disrupt image classifiers

(Szegedy et al., 2014; Goodfellow et al., 2015; Kurakin et al.,

2017; Papernot et al., 2016b; Moosavi-Dezfooli et al., 2016,

2017; Zeng et al., 2017; Luo et al., 2018; Baluja and Fischer,

2018; Poursaeed et al., 2018). Specifically, many works fo-

cus on white-box attack by using the model gradient to change

the input images across the decision boundary (Szegedy et al.,

2014; Goodfellow et al., 2015; Kurakin et al., 2017; Dong et al.,

2018), while another vein focuses on improving the transfer-

ability of adversarial perturbations (Papernot et al., 2016a; Liu

et al., 2017; Mopuri et al., 2018; Dong et al., 2018, 2019; Zhou

et al., 2018; Li et al., 2020c; Huan et al., 2020; Zhou et al., 2020;

Lu et al., 2020; Huang and Zhang, 2020; Wu et al., 2020a).

Recently, adversarial perturbations are extended to object de-

tectors (Xie et al., 2017; Chen et al., 2018; Li et al., 2018, 2019;

Wei et al., 2019; Wang et al., 2020; Zhang et al., 2020b; Li

et al., 2020a; Chow et al., 2020a,b; Wu et al., 2020c; Serban

et al., 2020). The work in (Xie et al., 2017) first explored the

weakness of Faster-RCNN object detector using Dense Adver-

sary Generation (DAG) method in the white-box setting. The

work in (Wang et al., 2020) extends DAG with Projected Gradi-

ent Descent (PGD) method to improve efficiency. The work in

(Chow et al., 2020a) described a Targeted Adversarial Object-

ness Gradient Attacks on real-time object detectors. Then the

response of object detectors under different attack methods was

studied in work (Chow et al., 2020b). Another work in (Zhang

et al., 2020b) disrupted the contextual information of objects to

further disturb the predictions and the work of (Li et al., 2020a)

focused on finding the universal perturbation pattern for target
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models. However, few works focus on improving the trans-

ferability among different object detectors, especially different

categories. The UEA method (Wei et al., 2019) utilized a GAN

(Goodfellow et al., 2014) model to generate transferable ad-

versarial perturbations among object detectors. However, this

method is only validated on VGG16 based Faster-RCNN and

SSD. The work (Lu et al., 2020) studied the transferability of

adversarial perturbation from attacking image classifier to other

tasks such as object detectors. In addition, the existing methods

always generate adversarial images with fixed size due to their

internal mechanism, which is not well-suited in practical use.

In this work, we develop a simple method to create transferable

adversarial perturbation by attacking RPNs, which can notably

affect the performance of different object detectors and other

tasks such as instance segmentation.

2.2. Object Detectors and Region Proposal Networks

The recent mainstream object detectors can be divided into

three categories: Faster-RCNN (Ren et al., 2017), SSD (Liu

et al., 2016) and YOLO (Redmon et al., 2016; Redmon and

Farhadi, 2017, 2018). The Faster-RCNN is proposal-based ar-

chitecture that begins with a Region Proposal Network (RPN)

to generate object proposals, which are then forwarded to a sub-

network for refinement. The SSD and YOLO are regression-

based architecture where the final object detection can be ob-

tained in a single forward pass. The major difference between

them is SSD employs multiple feature maps to predict results,

while YOLO uses the last feature map for prediction. Since

the architecture of these object detectors is very different, the

transferability of directly using one’s adversarial perturbation

to attack others is weak (Xie et al., 2017; Li et al., 2018; Wei

et al., 2019).

The Region Proposal Networks (RPNs) is a regression-based

architecture, which outputs a set of object proposals in the form

of bounding boxes in a single forward pass. Concretely, a set of

predefined bounding boxes (anchor boxes) is initialized, then

the confidence score and location adjustment of each anchor

box are predicted. Due to its efficiency and accuracy, RPNs are

widely used in various tasks to provide object proposals. As

the RPN is a core component of Faster-RCNN and similar to

other regression-based models of SSD and YOLO, it can share

some common properties among the different object detectors.

Therefore, we target the RPN as the common bottleneck of dif-

ferent object detectors.

3. Methodology

In this section, we first introduce the task-specific loss terms

proposed in preliminary conference paper (Li et al., 2018) – the

confidence loss and shape loss, which correspond to disturb the

confidence score and the shape regression of correct object pro-

posals respectively. Then we introduce a new task-agnostic loss

used in TransRPN, the feature loss, which can greatly improve

the attack transferability by disturbing the intermediate feature

maps.

3.1. Notations and Formulation

Let I denote the benign image. We denote Fθ as the map-

ping function of the Region Proposal Network (RPN) with pa-

rameters θ. {b̄i = (x̄i, ȳi, w̄i, h̄i)}ni=1 denotes the n ground truth

bounding boxes {b̄i} for the objects of interest in imageI, where

(x̄i, ȳi) are the box center coordinates, (w̄i, h̄i) are their widths

and heights, respectively. Denote I
′

as the adversarial image.

Let {(s
′

j, b
′

j)}
m
j=1 = Fθ(I

′

) denote the results of RPN on the ad-

versarial image I
′

, where s
′

j denotes the confidence score, b
′

j

denotes the bounding box of the j-th object proposal, and m

is the number of object proposals. Let b
′

j = (x
′

j, y
′

j,w
′

j, h
′

j),

where (x
′

j, y
′

j) are the box center coordinates, and (w
′

j, h
′

j) are

their widths and heights, respectively. Denote the intermediate

feature set of RPN on benign image I and adversarial image I
′

as { fi}ki=1 and { f
′

i }
k
i=1, where fi, f

′

i denote a feature map and k is

the number of feature maps . Our goal is to seek an adversar-

ial image I
′

that can disturb the results of RPN, while retains

imperceptible distortion compared to the benign image I. Thus

it can be defined as an optimization problem of designed loss

function L in a form of

min L(I
′

; θ,I), s.t. ||I
′

− I||∞ ≤ ε. (1)
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Following the works (Goodfellow et al., 2015; Xie et al., 2019),

we use `∞ norm to measure the distortion of adversarial pertur-

bations. ε is the budget of adversarial perturbation distortion.

3.2. Revisiting Task-specific Loss

The task-specific losses aim to disturb the final results of

RPN. We propose two loss terms – confidence loss and shape

loss, to disturb the confidence score and bounding box regres-

sion of object proposals respectively.

Confidence Loss. Note the larger the confidence score, the gen-

erated proposal is more like an object. Thus this loss aims to re-

duce the confidence score of correct object proposals, such that

they can not be selected in final results. To be more effective,

we only attack a set of proposal candidates that are potentially

correct. We use z j = 1 to denote the proposal b j is potentially

correct if the IoU overlapping of b j with its ground truth box

is greater than threshold 0.5, z j = 0 otherwise. Thus the confi-

dence loss can be defined as

Lc(I
′

; θ,I) =
∑m

j=1 z j log(s
′

j). (2)

Minimizing Eq.(2) decreases the confidence score of selected

object proposals.

Shape Loss. Besides confidence score prediction, bounding

box regression is also an important step to refine the localiza-

tion of proposals, where the locations of anchor (predefined)

boxes are adjusted to match the corresponding ground truth

boxes. Therefore, we design a shape loss to explicitly disturb

the bounding box shape regression, such that the correct object

proposals will be pushed away from their desired locations. Let

∆x
′

j,∆y
′

j,∆w
′

j,∆h
′

j denote the predicted offset in terms of object

center and bounding box size. Let ∆x̄ j,∆ȳ j,∆w̄ j,∆h̄ j denote the

true offset between the corresponding anchor boxes and ground

truth boxes. Similar to confidence loss, we only consider the

set of potentially correct object proposals. Thus the shape loss

can be defined as

Ls(I
′

; θ,I) = exp{−
∑m

j=1 z j ·[
(∆x

′

j − ∆x̄ j)2 + (∆y
′

j − ∆ȳ j)2

+(∆w
′

j − ∆w̄ j)2 + (∆h
′

j − ∆h̄ j)2
]
}.

(3)

Minimizing Eq.(3) encourages pushing the predicted offsets

away from the true offsets

3.3. TransRPN

In contrast to the task-specific loss in preliminary conference

paper, we propose a task-agnostic loss – the feature loss to dis-

turb the intermediate feature maps of RPN for improving the

transferability among different object detectors. To do so, we

increase the difference between the feature maps of adversarial

image and benign image. Thus the feature loss can be formu-

lated as

L f (I
′

; θ,I) = 1
k ·
∑k

i=1
f T
i · f

′

i

|| fi ||·|| f
′

i ||
(4)

We use cosine distance to measure the similarity of features

{ fi}ki=1 and { f
′

i }
k
i=1 as it can normalize the distance to a range

[−1, 1]. Minimizing the Eq.(4) can enlarge the errors between

two sets.

3.4. Optimization

We use the feature loss of Eq.(4) in TransRPN for example.

We optimize the loss function using the iterative gradient de-

scent scheme. Inspired by (Dong et al., 2018), we use the sign

of gradient with the momentum at each iteration to maintain

the running efficiency and efficacy. Let t denote iteration num-

ber and I
′

t denote the adversarial image at iteration t. The initial

image is set as I
′

0 = I. The gradient at iteration t + 1 can be

calculated as

gt+1 = λ · gt +
∇I′t

(L f (I
′

t; θ,I))

||∇I′t
(L f (I

′

t; θ,I))||1
, (5)

where ∇I′t denotes the gradient of loss function with respect to

the input image I
′

t at iteration t, λ is the decay factor of momen-

tum and gt is accumulated gradient with the momentum. Then

the adversarial image I
′

t+1 can be updated as

I
′

t+1 = clip{I
′

t − α · sign(gt+1)}, (6)

where “sign” takes the sign of gradient and α is the step size,

“clip” puts the pixel value of image I
′

t+1 to [0, 255]. The pro-

cess is repeated until (1) the maximum iteration number T
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Algorithm 1 Overview of TransRPN generation.

Input: Region proposal network Fθ; benign image I; maxi-

mum iteration number T ; Distortion budget ε

1: I
′

0 = I, t = 0

2: while t < T do

3: gt+1 = λ · gt +
∇
I
′

t
(L f (I

′

t ;θ,I))

||∇
I
′

t
(L f (I′t ;θ,I))||1

;

4: I
′

t+1 = clip{I
′

t − α · sign(gt+1)}

5: if ||I′t+1 − I|| > ε then

6: Break

7: t = t + 1

Output: Adversarial image I
′

t

is reached, or (2) the budget of adversarial perturbation ε is

reached. The overview of TransRPN generation is shown in

Algorithm 1.

4. Experiments

In this section, we focus on validating the effectiveness of

TransRPN towards transferability with several main-steam ob-

ject detectors, instance segmentation methods as well as real-

world APIs. We also conduct ablation study on the effect of

the confidence loss, shape loss, and their combinations with the

feature loss as well as other strategies. We then study the ro-

bustness against defence strategies.

4.1. Experimental Settings

4.1.1. Dataset

We evaluate the performance of our method on the MSCOCO

dataset (Lin et al., 2014). In our experiments, we randomly se-

lect 1000 images from the validation set. The detection perfor-

mance is evaluated using “mean average precision” (mAP) met-

ric (Everingham et al., 2010) at Intersection-over-Union (IoU)

threshold 0.5. The range of mAP is [0, 1], where less score

denotes worse detection performance, i.e., better attacking per-

formance.

4.1.2. Networks

We investigate four RPNs, which are based on VGG16

(RPN-vgg16), ResNet50 (RPN-res50), ResNet101 (RPN-

FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn0.0

0.2

0.4

0.6

m
AP

 0
.5

Original
Random
RPN-v16
RPN-r50
RPN-r101
RPN-r152

Fig. 2: Illustration of the performance of TransRPN on different object

detectors. Each group denotes the performance of different TransRPN

attack to corresponding object detector.

res101) and ResNet152 (RPN-res152) respectively. Then we

attack three type of object detectors, Faster-RCNN, SSD and

YOLO. Each type of object detectors includes several vari-

ants based on different base networks. For Faster-RCNN, we

study four variants with VGG16 (FR-vgg16), ResNet50 (FR-

res50), ResNet101 (FR-res101) and ResNet152 (FR-res152)

as base networks respectively. For SSD, we study three vari-

ants based on VGG16 (SSD-vgg16) , ResNet50 (SSD-res50)

and MobileNet (SSD-mn). For YOLO, we study two ver-

sions: YOLOv2 and YOLOv3 based on Mobilenet (YOLOv2-

mn, YOLOv3-mn).

Moreover, our method is validated on two state-of-the-art

instance segmentation methods: Mask-RCNN and YOLACT.

The Mask-RCNN is a proposal-based method which is firstly

based on RPN to provide object proposals. The YOLACT is a

real-time method which does not reply on RPN and utilize the

RetinaNet (Lin et al., 2017b) as base network.

4.1.3. Implementation Details

We select three feature maps (k = 3) over each type of RPN

to calculate the loss. For RPN-vgg16, we select the feature

maps after Conv3-3, Conv4-3 and Conv5-3. For RPN-res50,

RPN-r101 and RPN-r152, we select the feature maps after first

three residual blocks.

Our experiments are conducted using PyTorch (Paszke et al.,

2019) on Ubuntu 16.04 with one Nvidia GPU TITANX. Fol-

lowing works (Luo et al., 2015; Xie et al., 2019), the pertur-

bation budget is set as ε = 15. Other parameters are set as

λ = 0.5, α = 1,T = 20.
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Table 1: Performance of our method on attacking different object detectors on MSCOCO dataset. “Original” denotes no perturbations added on input image.

“Random” denotes random noises added on input image.

Attacks FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn

Original 0.47 0.58 0.62 0.63 0.41 0.42 0.34 0.37 0.40

Random 0.45 0.55 0.60 0.61 0.39 0.41 0.33 0.35 0.38

TransRPN

RPN-v16 0.00 0.02 0.03 0.04 0.06 0.16 0.11 0.04 0.05

RPN-r50 0.06 0.00 0.02 0.03 0.21 0.31 0.23 0.16 0.17

RPN-r101 0.08 0.02 0.00 0.02 0.21 0.31 0.23 0.17 0.19

RPN-r152 0.08 0.02 0.02 0.00 0.20 0.31 0.23 0.15 0.17

4.2. Performance on Object Detectors

The performance of our method is shown in Table 1. The

leftmost column denotes the attacking methods. The top row

denotes different object detectors. “Original” denotes no per-

turbations added on input image. “Random” denotes random

noises with same distortion budget in our method added on in-

put image. The results reveal the randomly added noises merely

have effect to object detectors, yet our method can notably de-

grade the performance of all object detectors. Since the RPN

is the core component of Faster-RCNN, our method can greatly

reduce their mAP scores, especially for the ones with same base

networks as in PRNs, e.g., the mAP score is reduced to approx-

imate zero in FR-v16 and FR-50 based on RPN-v16 and FR-

50 respectively. For SSD and YOLO, the performance is also

reduced notably as the SSD and YOLO share common prop-

erties with PRNs even though the base networks are different.

Another observation is the performance of TransRPN is differ-

ent in terms of different RPNs. The TransPRN on RPN-v16

has the best transferability compared to the other RPNs. It is

probably due to the complex structure in ResNet such as Resid-

ual block and skip connection may reduce the generalization of

gradient compared to VGG16. The performance comparison

of our method on different object detectors is shown in Fig. 2.

Each group denotes the performance of different TransRPN at-

tack to corresponding object detector. Fig. 3 illustrates several

examples of our method based on RPN-v16 on attacking differ-

ent object detectors, where most objects are mis-detected and

several false detections are raised.

Table 2: The performance of our method compared with UEA on

VOC07 dataset. Note the Faster-RCNN and SSD300 are both VGG16

based as in UEA. The image size is 300 × 300.

Attacks Faster-RCNN SSD300 Iterations

Original 0.70 0.68 -

DAG 0.05 0.64 150 ∼ 200

UEA 0.05 0.20 -

TransRPN 0.04 0.26 ≤ 20

4.2.1. Comparisons with the State-of-the-art Methods

We compare our TransRPN based on RPN-vgg16 with three

state-of-the-art methods: DAG (Xie et al., 2017), UEA (Wei

et al., 2019) and DR (Lu et al., 2020). Despite DAG tests the

transferability among object detectors, it focuses on white-box

attacks to object detectors. The UEA is dedicated to transfer

the adversarial perturbation across Faster-RCNN and SSD on

VGG16 base network using a GAN. To fairly compare with

UEA, our method is tested in the same setting as described

in UEA (Wei et al., 2019). Specifically, the Faster-RCNN and

SSD object detectors in UEA are based on VGG16 and trained

on VOC0712 dataset (Everingham et al., 2010) using the im-

plementation Simple Faster-RCNN1 and Torch-SSD3002. Since

UEA requires to construct and train an extra GAN model to

generate adversarial perturbation, the image size has to be fixed.

We follow UEA to set the input size as 300 × 300 and perform

our method to attack the same implementation of Faster-RCNN

1https://github.com/chenyuntc/simple-faster-rcnn-pytorch
2https://github.com/kuangliu/torchcv
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Fig. 3: Visual examples of our method based on RPN-v16 on different object detectors.

Table 3: The performance of our method compared with DR method on MSCOCO dataset. The image size is 224 × 224.

Attacks FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn Iterations

Original 0.22 0.28 0.28 0.28 0.23 0.24 0.22 0.18 0.18 -

Random 0.22 0.26 0.26 0.28 0.21 0.21 0.19 0.16 0.16 -

DR 0.12 0.17 0.18 0.19 0.08 0.10 0.08 0.06 0.06 1000

TransRPN 0.00 0.02 0.03 0.03 0.04 0.05 0.03 0.03 0.03 ≤ 20

and SSD, then we test our method using VOC07 testing set as

in UEA. The results of TransRPN and other methods including

the iteration numbers are shown in Table 2. The DAG method

takes 150 ∼ 200 iterations (referred from (Wei et al., 2019))

while our method takes less than 20 iterations and has much

better performance. Compared to UEA, our method is quite

simple and can also achieve the competitive performance on

both Faster-RCNN and SSD. More importantly, our method can

be effective on more different object detectors, see Table 1.

The DR method transfers the adversarial perturbation from

ImageNet image classifier to object detectors. Thus the image

size has to be fixed as 224 × 224. To fairly compare with DR,

we perform our method with same input size as DR. Since the

DR method has released the code3, we apply this method to the

MSCOCO dataset with nine object detectors used in our exper-

iment for comparison. As shown in Table 3, our method out-

performs DR in all object detectors. Moreover, the DR method

requires 1000 iterations per image, which is notably slower than

our method.

Therefore, compared to the existing methods, our method

3https://github.com/erbloo/dr_cvpr20
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Fig. 4: Visual examples of our method based on RPN-v16 on different instance segmentation methods.

(1) achieves competitive even better performance in their re-

spect settings, (2) can directly attack the original image without

changing the size, (3) is effective on more different object de-

tectors.

4.3. Ablation Studies

4.3.1. Different attack settings

To further understand the transferability of RPNs, we inves-

tigate the performance of different attack settings regarding the

white-box and black-box attacks. Specifically, we study the

impact of different loss functions and their combinations, as

well as the strategies for improving transferability such as in-

put transformation and optimization schemes mixture in DIM

(Xie et al., 2019).

- Different Loss Functions. We study the effect of confi-

dence loss, shape loss and feature loss, as well as their the

combinations.

- Input Transformation. The DIM method discovered

the image transformation such as random resizing and
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Fig. 5: Ablation study of our method regarding step size.
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Fig. 6: Ablation study of our method regarding iteration number.

padding with zero can improve the transferability of adver-

sarial perturbations on attacking image classifiers. Thus

we apply this strategy to our method and observe the ef-

fect to the transferability among different object detectors.

- Optimization Schemes Mixture. The DIM method also

observed the mixture of different optimization schemes

can improve the transferability on attacking image classi-

fiers. Thus we adapt the iterative fast gradient sign method

(Goodfellow et al., 2015) together with our method to at-

tack object detectors.

For simplicity, we denote the confidence loss as Lc, shape

loss as Ls and the feature loss used in our method as L f . We

use Υ to denote whether input transformation is applied andM

to denote whether mixture of multiple optimization scheme is

applied. Thus different attack settings can be represented by the

combination of these symbols. For example, {Ls, L f ,Υ} denotes

the loss function is composed by confidence loss and feature

loss, and the input transformation is applied. The ablation study

of our method on all RPNs is shown in Table 4. The results re-

veal the transferability of using confidence loss or shape loss or

their combination is weaker than solely using the feature loss.

It is because the confidence loss or shape loss target the final

prediction, which is likely to overfit to the RPN architecture.

Moreover, combining confidence loss or shape loss with fea-

ture loss can also reduce the transferability, as the combination

distracts a portion of gradient. We also discover the strategies

effect in attacking image classifiers such as input transforma-

tion and mixture of multiple optimization scheme have merely

effect on improving the transferability among the object detec-

tors, which is probably due to the mechanism of object detec-

tion is more sophisticated than image classifiers.

4.3.2. Step Size

We investigate the influence of the step size to our method.

We set the step size in range [0.2, 2] and disable the limitation

of maximum iteration number. The performance of our method

on attacking nine object detectors is shown in Fig.5. We can

observe the mAP score is stable with step size changing, which

indicates our method is not sensitive to the step size.

4.3.3. Maximum Iteration Number

We then study the impact of iteration number to our method.

The iteration number is set in range [5, 30]. The Fig.6 illustrates
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Fig. 7: The performance of our method on adversarial images towards adversarial defense.
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Fig. 8: The performance of our method on adversarial images towards image compression.

the performance trend of our method on nine object detectors

with maximum iteration number increasing. This figure reveals

the mAP score decreases as the maximum iteration number in-

creasing, but the curve becomes flat after approximate 20 itera-

tion number as more iterations does not improve extra attacking

performance as the budget of adversarial perturbation has been

reached.

4.4. Robustness

We study the robustness of our method under two scenarios:

Adversarial defense and image compression.

4.4.1. Adversarial Defense

We investigate the robustness of our method with regards to

the adversarial defense4. Note the existing works to defend the

adversarial perturbations are dedicated to image classifiers such

as Defense-GAN (Samangouei et al., 2018), HPG (Liao et al.,

2018), which are generation-based such that they are not trivial

to directly be applied to object detectors. Therefore, we adapt

4Adversarial defense is the strategy that can mitigate the effect of adversarial

perturbations.

the image transformation based method proposed in (Xie et al.,

2018), which applies random resizing and padding around with

zero to mitigate the adversarial effect, to our task. Specifically,

we set the resizing ratio varying from [0.75, 1] and see the re-

sponse of our method. The result of our method against the

defense is shown in Fig. 7. We can observe the detection per-

formance only slightly increases with the resize ratio reducing.

4.4.2. Image Compression

We study the robustness of our method with regards to im-

age compression. Specifically, we change the quality of images

from 20 to 100 using OpenCV tool, where the larger value de-

notes the higher image quality, the 100 denotes no compression

is applied. Fig. 8 shows the performance of our method with

regards to the image compression. Our method reveals the sim-

ilar trend on all RPNs that the mAP performance only slightly

increases as the image quality decreases, e.g., the mAP score at

image quality 20 is less than 0.25 on RPN-v16.

4.5. Discussion

Table 1 reveals that our method based on RPN-v16 has better

transferability performance compared to the methods based on
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Table 4: Ablation study of different attack settings based on RPN-v16,

RPN-r50, RPN-r101 and RPN-r152 respectively. Note {L f } denotes

the setting used in TransRPN.

RPN-v16
Attacks FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn

{Lc} 0.02 0.36 0.42 0.43 0.34 0.39 0.31 0.32 0.34

{Ls} 0.02 0.22 0.28 0.32 0.29 0.36 0.27 0.26 0.27

{Ls, L f } 0.00 0.02 0.04 0.05 0.09 0.22 0.15 0.06 0.07

{Lc, L f } 0.00 0.08 0.10 0.11 0.14 0.27 0.20 0.13 0.15

{Lc, Ls} 0.02 0.36 0.42 0.44 0.34 0.39 0.32 0.32 0.34

{L f ,Υ} 0.03 0.11 0.12 0.13 0.11 0.20 0.14 0.10 0.11

{L f ,M,Υ} 0.04 0.10 0.12 0.13 0.10 0.20 0.14 0.09 0.10

{Ls, L f ,M,Υ} 0.03 0.08 0.10 0.11 0.10 0.22 0.14 0.08 0.09

{Lc, L f ,M,Υ} 0.02 0.12 0.14 0.15 0.13 0.25 0.19 0.13 0.14

{Lc, Ls, L f ,M,Υ} 0.02 0.12 0.14 0.15 0.14 0.26 0.18 0.13 0.14

{L f } 0.00 0.02 0.03 0.04 0.06 0.16 0.11 0.04 0.05

RPN-r50
Attacks FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn

{Lc} 0.40 0.05 0.46 0.49 0.39 0.41 0.33 0.35 0.38

{Ls} 0.38 0.01 0.34 0.41 0.37 0.41 0.32 0.33 0.36

{Ls, L f } 0.18 0.00 0.07 0.10 0.30 0.37 0.29 0.25 0.27

{Lc, L f } 0.22 0.00 0.14 0.17 0.31 0.38 0.30 0.29 0.32

{Lc, Ls} 0.41 0.05 0.46 0.49 0.38 0.41 0.33 0.35 0.38

{L f ,Υ} 0.15 0.05 0.11 0.13 0.23 0.32 0.24 0.19 0.21

{L f ,M,Υ} 0.14 0.05 0.10 0.12 0.21 0.30 0.23 0.17 0.19

{Ls, L f ,M,Υ} 0.19 0.05 0.13 0.16 0.25 0.33 0.25 0.21 0.23

{Lc, L f ,M,Υ} 0.22 0.04 0.18 0.20 0.28 0.35 0.27 0.25 0.27

{Lc, Ls, L f ,M,Υ} 0.21 0.04 0.18 0.20 0.28 0.35 0.27 0.24 0.28

{L f } 0.06 0.00 0.02 0.03 0.21 0.31 0.23 0.16 0.17

RPN-r101
Attacks FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn

{Lc} 0.40 0.40 0.03 0.41 0.38 0.41 0.33 0.34 0.38

{Ls} 0.38 0.31 0.01 0.36 0.37 0.41 0.33 0.34 0.36

{Ls, L f } 0.22 0.09 0.00 0.09 0.31 0.37 0.30 0.27 0.29

{Lc, L f } 0.33 0.23 0.00 0.23 0.35 0.40 0.32 0.33 0.35

{Lc, Ls} 0.40 0.39 0.02 0.41 0.38 0.41 0.33 0.35 0.38

{L f ,Υ} 0.17 0.11 0.06 0.12 0.23 0.32 0.25 0.19 0.22

{L f ,M,Υ} 0.15 0.10 0.05 0.10 0.22 0.31 0.23 0.18 0.21

{Ls, L f ,M,Υ} 0.20 0.13 0.05 0.13 0.27 0.34 0.26 0.23 0.25

{Lc, L f ,M,Υ} 0.28 0.22 0.06 0.22 0.31 0.37 0.29 0.28 0.30

{Lc, Ls, L f ,M,Υ} 0.30 0.24 0.06 0.24 0.31 0.36 0.29 0.28 0.31

{L f } 0.08 0.02 0.00 0.02 0.21 0.31 0.23 0.17 0.19

RPN-r152
Attacks FR-v16 FR-r50 FR-r101 FR-r152 SSD-v16 SSD-r50 SSD-mn YOLOv2-mn YOLOv3-mn

{Lc} 0.39 0.41 0.41 0.02 0.38 0.41 0.34 0.35 0.37

{Ls} 0.38 0.34 0.32 0.02 0.38 0.41 0.33 0.34 0.36

{Ls, L f } 0.23 0.12 0.09 0.00 0.31 0.38 0.29 0.27 0.28

{Lc, L f } 0.34 0.29 0.25 0.00 0.36 0.40 0.32 0.32 0.35

{Lc, Ls} 0.40 0.41 0.40 0.02 0.38 0.41 0.34 0.34 0.37

{L f ,Υ} 0.17 0.13 0.12 0.06 0.22 0.31 0.23 0.18 0.21

{L f ,M,Υ} 0.16 0.12 0.11 0.06 0.22 0.31 0.23 0.18 0.21

{Ls, L f ,M,Υ} 0.23 0.18 0.15 0.07 0.28 0.35 0.26 0.24 0.25

{Lc, L f ,M,Υ} 0.30 0.27 0.23 0.07 0.32 0.37 0.29 0.28 0.31

{Lc, Ls, L f ,M,Υ} 0.30 0.27 0.24 0.07 0.32 0.37 0.29 0.28 0.31

{L f } 0.08 0.02 0.02 0.00 0.20 0.31 0.23 0.15 0.17

RPN-r50, RPN-r101 and RPN-r152. For example, TransRPN

on RPN-v16 can reduce the mAP score of YOLOv2-mn from

0.37 to 0.04, while others can only reduce the mAP score to

0.16, 0.17, 0.15 respectively. Furthermore, Fig. 7 and Fig. 8

shows our method on RPN-v16 is more robust against adver-

sarial defense and image compression than others. These re-

sults indicate that the performance of transferable adversarial

Table 5: The performance of our method on attacking two state-of-the-

art instance segmentation methods.

Attacks Mask-RCNN YOLACT

Original 0.54 0.49

TransRPN 0.02 0.07

attack probably relates to network architecture, and complex

networks such as ResNet may have weaker transferability than

simple ones such as VGG16.

4.6. Performance on Instance Segmentation

We also use our method to attack two state-of-the-art in-

stance segmentation methods: Mask-RCNN and YOLACT. We

directly attack these two methods using the adversarial images

generated by our method on RPN-vgg16. The performance of

instance segmentation is evaluated using the mAP metric, re-

placing the IoU of detection boxes with the IoU of masks. We

use threshold 0.5 in this experiment. Table 5 shows the per-

formance of these methods on original images and adversarial

images. We can observe the performance is notably degraded

to almost zero for both instance segmentation methods, which

demonstrates the strong transferability of our method on in-

stance segmentation task. Fig. 4 illustrates several examples

of our method on attacking Mask-RCNN and YOLACT.

4.7. Real-world API

We further validate our method on a real-world API re-

leased by Facebook named Detectron25, which implements

the state-of-the-art object detection and instance segmentation

methods. We select the Mask-RCNN option with ResNet50-

FPN (Lin et al., 2017a) base network. To evaluate the perfor-

mance of our method, we use the predicted results of Detec-

tron2 on original images as the ground truth. Since the API only

returns the final results after post processing, the mAP metric is

not suitable in this case. Therefore, we calculate the accuracy

instead. Specifically, the detection is correct if the overlap (IoU)

between the detection and corresponding ground truth is greater

5https://github.com/facebookresearch/detectron2



13

O
ri

gi
na

l
A

dv
er

sa
ri

al
O

ri
gi

na
l

A
dv

er
sa

ri
al

Fig. 9: Visual examples of our method on Detectron2.

than a threshold 0.5 (same in instance segmentation evaluation).

Our method can achieve accuracy 0 in both detection and in-

stance segmentation. On one hand, it demonstrates the strong

transferability of our method. On the other hand, it also reveals

that the robustness against adversarial attack is not fully con-

sidered in Detectron2. Fig. 9 shows several examples of our

method on attacking Detectron2.

5. Conclusion

We describe a new method, namely TransRPN, to gener-

ate adversarial perturbations transferring among different ob-

ject detectors – different categories (e.g., SSD, Faster-RCNN,

YOLO) as well as different base networks (e.g., VGG16,

ResNet, MobileNet), and also in other tasks such as instance

segmentation methods. Our method focus on attacking the Re-

gion Proposal Network (RPN) by disrupting the intermediate

feature. Thanks to the property of RPNs that can take images

with arbitrary size, our method can directly attack the original

input image without changing the size. The experiments are

conducted on MSCOCO dataset with nine object detectors and

two instance segmentation methods, as well as one real-world

API Detectron2, which demonstrate the strong transferability

of our method.

The future work will focus on exploring the transferable ad-

versarial attack on the most recent anchor-free object detectors

such as (Zhou et al., 2019; Duan et al., 2019; Tian et al., 2020;

Kong et al., 2020). The anchor-free object detectors directly

regress the center location of each object, which does not pre-

dict the offset of each anchor box used in RPN. Inspired by

TransRPN, we would like to investigate the effect of intermedi-

ate features to different anchor-free object detectors.
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