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Abstract—This paper proposes the Parallel Residual Bi-Fusion
Feature Pyramid Network (PRB-FPN) for fast and accurate
single-shot object detection. Feature Pyramid (FP) is widely used
in recent visual detection, however the top-down pathway of FP
cannot preserve accurate localization due to pooling shifting. The
advantage of FP is weakened as deeper backbones with more
layers are used. In addition, it cannot keep up accurate detection
of both small and large objects at the same time. To address these
issues, we propose a new parallel FP structure with bi-directional
(top-down and bottom-up) fusion and associated improvements to
retain high-quality features for accurate localization. We provide
the following design improvements: (1) A parallel bifusion FP
structure with a bottom-up fusion module (BFM) to detect
both small and large objects at once with high accuracy. (2)
A concatenation and re-organization (CORE) module provides a
bottom-up pathway for feature fusion, which leads to the bi-
directional fusion FP that can recover lost information from
lower-layer feature maps. (3) The CORE feature is further
purified to retain richer contextual information. Such CORE
purification in both top-down and bottom-up pathways can be
finished in only a few iterations. (4) The adding of a residual
design to CORE leads to a new Re-CORE module that enables
easy training and integration with a wide range of deeper or
lighter backbones. The proposed network achieves state-of-the-
art performance on the UAVDT17 and MS COCO datasets.

Index Terms—Feature pyramid network, parallel residual bi-
fusion, object detection, single-shot, CNN, feature fusion.

I. INTRODUCTION

V ISUAL object detection has improved significantly in
the state-of-the-art (SoTA) models. Recent deep models

including FPN [1], YOLOv3 [2], and SSD [3] typically consist
of three components: (1) a deep feature extraction backbone
e.g. DarkNet-53 [4] or ResNet-101 [5], (2) a feature pyramid
(FP), and (3) an object classifier. To ensure high detection
accuracy, most SoTA object detectors adopt deep CNN struc-
tures that can achieve impressive performance in detecting
large and medium sized objects. However the performance
for detecting smaller objects are still inferior [6]. This is
mainly because the feature map resolution is reduced after
simple pooling in the FP. Tiny objects (< 32 × 32 pixels)
can turn into about a single-pixel feature vector in the last
layer of FP, causing insufficient spatial resolution for accurate
discrimination. On the other hand, using a shallow backbone
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increases the computational efficiency. This comes with the
drawback of reduced detection performance, as the capability
to retain contextual and semantic features also decreases
directly.

In general, detecting small objects is more difficult than
detecting large objects. Both high-level and low-level features
are required to discriminate and localize objects among back-
ground and other objects. YOLOv3 [2] maintains detailed grid
features to retain detection accuracy of small objects. However,
the effectiveness is limited, as accurate detection of both small
and large objects cannot be kept together at the same time.
The best performing method from LPIRC 2019 challenge [7]
shows improvement on detecting general-sized objects but not
small objects on the COCO dataset [8].

How to design fast and accurate network that can effectively
detect all object sizes is still an open question. One solution
to retain accurate feature localization is to add a bottom-up
pathway to offset the lost information from low-level feature
maps. In [9], the adding of a gating module on the SSD
frame leads to a gated bi-directional FP; however such gated
network is not easily trainable. In [10], a bottom-up path
aggregation network was proposed for object segmentation.
The bi-directional network of [6] can efficiently circulate both
low-level and high-level semantic information for small object
detection. In [11], a BiFPN was proposed based on NAS-
FPN [12] to better detect small objects with high efficiency.
In YOLOv4 [13], path aggregation [10] was modified by
replacing the addition with concatenation for better detection
of small objects. However, such BiFPN structure still cannot
keep up accurate detections of both small and large objects all
together.

We propose a new Parallel Residual Bi-Fusion Fea-
ture Pyramid Network (PRB-FPN) with a parallel design
and multiple improvements that can retain both deeper and
shallower features for fast and accurate single-shot object
detection. Different from other bi-fusion FPN structures such
as PANet [10], NAS-FPN [12], and BiFPN [11], we create
a parallel bi-fusion structure to fuse three-layers of feature
maps in parallel to generate three prediction maps at the same
time, see Fig. 1. Without losing efficiency, these three-way
prediction maps can retain more accurate semantic and local-
ization information to better detect both tiny and large objects.
In this parallel structure, we introduce a new concatenation
and re-organization (CORE) module for data fusion, where
output features can be further purified to retain contextual
information. We introduce a “residual” design (motivated
from the spirit of ResNet [5]) into our bi-fusion pipeline,
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Fig. 1. Overview of the proposed Parallel Residual Bi-Fusion Feature Pyramid Network (PRB-FPN).

which enables easy training and integration with a number
of popular backbones. We will show that our residual FP
design outperforms other bi-directional methods [6], [14] in
Section IV. In comparison, methods based on traditional FPs
[1], [2], [3], [4] can only learn un-referenced features, thus
they are not suitable for detecting both large and small objects.
Our residual FP retains semantic richer features in higher
layers that can better detect small objects.

A key novelty in our design is the adding of parallelization
to the bi-fusion FPN architecture. This parallel design is
more effective in feature representation, i.e. for capturing
features to identify and localize objects in either small or
large sizes without losing efficiency. In comparison, most
existing bi-directional FP methods [6], [15], [14], [16] directly
concatenate large feature maps in a memory-consuming way,
which ends up with an even larger feature map.

The proposed PRB-FPN is simple, efficient, and suitable
for generic object detection for multiple object classes and
sizes (small, mid, and large). We will show in Section IV that
our approach is generalizable in combining with mainstream
backbones including Pelee [17] and DarkNet53 [2]. It can run
in real-time and is easily deployable to edge devices. Main
contributions of this paper are summarized in the following:

• We propose a new Parallel Residual Bi-Fusion Feature
Pyramid Network (PRB-FPN) that can effectively fuse
both deep and shallow feature layers in parallel for fast
and accurate one-shot object detection.

• The parallel design of PRB-FPN makes it well-suited for
detecting objects in both small and large sizes with higher
accuracy.

• The PRB-FPN can be easily trained and integrated with
different backbone thanks to the residual design. A newly
proposed bottom-up fusion module (BFM) can improve
the detection accuracy of both small and large objects.

• Extensive experiments on Pascal VOC [18] and MS
COCO [8] datasets show that PRB-FPN achieves the
SoTA results for accurate and efficient object detection.
Results also show great generalization ability on various
object sizes and types.

II. RELATED WORKS

Object detection is a very active field in computer vision
since the blooming of deep learning. The extensive amount of
literature can be organized into two categories based on their
network architectures: two-stage proposal-driven and one-
stage (single-shot) approaches. In general, two-stage methods
can achieve high detection accuracy but with longer compu-
tation time, while one-stage methods run faster with inferior
accuracy. We focus on the survey of one-stage object detectors.
RefineDet [19] employs an encode-decode structure in the
deeper network with the use of up-sampling deeper scale
features to enrich contextual information. PeLee [17] is a
variant of DenseNet [20] that outperforms SSD+MobileNet
by 6.53% on the Stanford Dogs dataset [21] based on a
much shallower network. However, PeLee [17] does not detect
small objects well on MS COCO [8]. PFPN [15] adopts the
VGGNet-16 backbone [22] and SPP to generate a feature
pyramid by concatenating multi-scale features.

One-stage object detectors mostly consist of a backbone
network and a predictor. The backbone is a stacked feature
map representing the input image in high feature resolution
(but low spatial resolution for abstraction). The backbone
network can be pre-trained as an image classifier on a large
dataset such as ImageNet. OverFeat [9] was the first CNN-
based one-stage object detector developed in 2013 with a
sliding-window paradigm. Two years later, the first version
of YOLO [23] achieved state-of-the-art performance by inte-
grating bounding box proposals and subsequent feature re-
sampling in a single stage. SSD [3] employed in-network
multiple feature maps for detecting objects with varying
shapes and sizes. The multi-map design enabled SSD with
better robustness over YOLOv1 [23]. For better detection
of small objects, The Feature Pyramid Network (FPN) [1]
based on FP can achieve higher detection accuracy for small
objects. YOLOv3 [2] was developed by adopting the con-
cept of FPN. By changing the backbone from DarkNet-19
[4] to DarkNet-53, YOLOv3 achieves superior performance
in 2018. Similarly, RetinaNet [24] combines FPN [1] and
ResNet [5] as the backbone. RetinaNet used focal loss to
significantly reduce false positives in a single stage, such that
the weights of each anchor box can be dynamically adjusted.
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Fig. 2. Detailed network architecture for the proposed modules (refer to Fig. 1 for the overall architecture of PRB-FPN): (a) the Bi-Fusion module for
concurrent fusion of contextual features from adjacent layers, (b) the concatenation and re-organization (CORE) module for recursively fusion of contextual
features from adjacent layers, and (c) the Residual CORE (Re-CORE) design in combining CORE with the residual design inspired from ResNet.

Shift-invariance in CNNs was originally achieved using sub-
sampling layers. The work of [25] evaluated the effect of
small geometry perturbations on CNN and suggested that max-
pooling is more effective in object detection and classification.
In [26], a pooling-after-blurred technique was proposed by
combing blurring and sub-sampling techniques to ensure shift-
invariance.

Feature pyramid (FP) is widely used in SoTA detectors
for detecting objects at different scales, where spatial and
contextual features are extracted from the last layer of the
top-down path for accurate object detection. This top-down
aggregation is now a common practice for improving scale
invariance in both two-stage and one-stage detectors. Popular
FPs used for this purpose include the pyramidal feature
hierarchy (bottom-up), hourglass (bottom-up and top-down),
FPN [1], SPP [27], and PFPN [15]. It is also well-known that
the top-down pathway in FP cannot preserve accurate object
localization due to the shift-effect of pooling.

Bi-directional FP can recover lost information from shal-
low layers to improve small object detection in several
works [6], [14], [16]. A gating module was used to control
the feature flow direction in [14]. A light-weight scratch
network and a bi-directional network were constructed in [6]
to efficiently circulate both low- and high-level semantic infor-
mation. M2Det [28] is a one-stage detector that outperforms
most 2019 methods on all multi-scale categories on MS COCO
[8]. However, the M2Det model is complicated and time-
consuming, thus is not suitable for real-time object detection.
Inspirited by NAS-FPN [12], a BiFPN was proposed in [11] to
better detect small objects with higher efficiency. The recent
YOLOv4 [13] modified the path aggregation method [10] by
replacing the addition with concatenation to better detect small

objects. However, this BiFPN structure still cannot keep up
accurate detection of both small and large objects all together.

Multi-Scale Object Detectors face the challenge of small-
size false positives due to the inadequacy of low-level features,
which result in small receptive field size and weak semantic
capabilities. The work of [29] demonstrates that independent
predictions from different feature layers on the same region are
beneficial in reducing false positives. In [30], a novel paradigm
of multi-scale deep network is developed to model the spatial
contexts surrounding different pixels at various scales. In [31],
deep convolutional networks are used to obtain multi-scaled
features, where deformable convolutional structures are added
to overcome geometric transformations.

Anchor-free methods [32], [16], [33], [34] do not reply
on handcrafted anchors, thus are free of issues commonly
associated with anchor-based designs. In [32], corner features
are detected for object detection. By inheriting the architecture
of R-CNN, ME R-CNN [35] used multiple stream pipelines for
accurate anchor-free object detection, where one pipeline is an
expert for processing a certain type of ROIs and controlled by
an expert assignment network. A cascade anchor refinement
module is proposed in [16] to refine pre-designed anchors.
This is then injected into a bidirectional FP, which can detect
objects with highly accurate localization. However, one pass of
regression during training is not accurate enough for detection
in this anchor-free approach. In [36], an attention CoupleNet
was proposed by designing a cascade attention structure to
generate class-agnostic attention maps of target regions so that
a discriminative feature representation can be formulated for
part-based object detection. In [37], Jin et al. used an adaptive
anchor generator to generate all possible anchor boxes. They
then proposed a semi-anchor-free network for object detection
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with an enhanced feature pyramid which consists of two
modules, i.e., adaptive feature fusion module (AFFM) and self-
enhanced module (SEM). In [33], a number of low-quality
bounding boxes are predicted and further verified with a
centerness branch that can detect objects without using any
pre-defined anchor boxes. In [38], a hierarchical shot detector
is used to predict detection bounding boxes via regression.
These regression based methods are more accurate but less
efficient. Compared with CornerNet [32], FoveaBox [39] does
not require any embedding or grouping techniques at post-
processing stage to locate real bounding boxes. However, its
latency is higher and results in lower efficiency.

Network Transferring The above detectors can be trained
well enough from a large set of sufficiently representative
data. However, as there exists numerous application scenarios
in which only a few training samples (e.g. tumor images in
medical applications) are available, transfer learning can be
used to customize the model and adopt to the tasks [40]. For
example, in [41], a weakly-shared Deep Transfer Network
(DTN) was proposed to hierarchically learn and transfer
semantic knowledge from web texts to images for image
classification. In [42], a novel generalized DTNs was pro-
posed to solve the problem of insufficient training images by
transferring label information across heterogeneous domains,
such as transferring from the textual to visual domain for
image classification. Moreover, in [43], a transfer learning
system named GAIA was proposed to provide powerful pre-
trained weights, select models, and collect relevant data for
object detection when only a few training samples were given.
However, although network transferring methods can provide
performance improvements, they cannot outperform ordinary
methods trained with sufficient samples.

III. METHOD

We first motivate the design of our proposed network archi-
tecture by addressing the limitation of the Feature Pyramid
(FP) for visual object detection. In Section III-A, details
of our new parallel bi-fusion scheme are described. The
adding of parallelization to the bi-fusion FPN architecture
can better capture features for both small and large objects
without degrading efficiency. Section III-B describes our new
feature concatenation and re-organization scheme that can
effectively circulate semantic and localization information.
Section III-C further adopts a residual recursive formulation
into our pipeline, which enables easier training and better
performance for small object detection. Finally, Section III-D
adds one more design of bottom-up location feature fusion that
can further improve object localization. Figs. 1, 2 and 3 depict
the complete pipeline of our proposed network architecture.
Details are provided in the following sessions.

A. Parallel Concatenation and Re-organization Feature Bi-
Fusion Architecture

Feature Pyramid (FP) is widely-used in top-down feature
aggregation that can collect semantically rich features to ef-
fectively discriminate objects with scale invariance. However,
it is well-known that FP cannot preserve accurate localization

for small objects due to pooling and quantization. The winning
methods of LPIRC 2019 challenge [7] show improvements
on detecting general-sized objects but not on small objects.
There object prediction was carried out using information
from both each pyramid layer and the respective lower layers.
This coincide with thoughts from several SoTA bi-directional
methods [25], [15], [14] in leveraging new feature streams
from lower feature layers (or the raw image itself) to keep track
of features from smaller objects and achieve more accurate
localization. Such bi-fusion modules specially designed for
improving small object detection still lack capabilities in
detecting larger objects.

In this paper, we propose an effective parallel FP fusion
design to tackle this difficult problem of object detection
considering all object scales. This is done by creating multiple
bi-fusion paths to keep tracks of features that are suitable to
detect objects of all sizes (including tiny and large objects).
Each bi-fusion path keeps track of size-dependent features to
represent objects at a specific scale. Assume that there are N
prediction maps (where N = 3 for YOLOv4), we propose to
execute the N different concurrent fusion paths to generate
N fused feature maps for the N prediction maps. We use n
to index the bi-fusion modules (thus n ≤ N ). Let L be the
level of the top layer in the FP. As shown in Fig. 1, the nth bi-
fusion module will bi-fuse feature maps from the (L−n+1)th

layer to the (L − n − N + 2)th layer in the backbone. The
sth output will be fed into the sth prediction map for object
detection, which will integrate feature maps from the sth layer
of all bi-fusion modules. Noticeably, the 1st bi-fusion module
in our model corresponds to the sole bi-fusion module in SoTA
bi-directional methods [25], [15], [14].

B. Concatenation and Re-organization for Feature Bi-Fusion

In Fig. 2, each bi-fusion module consists of three concate-
nation and re-organization (CORE) blocks and two skip
connections. Details of the bi-fusion module are shown in
Fig. 2(a). The CORE design in Fig. 2(b) brings a major
advantage that feature fusion can be recursively applied in
both top-down and bottom-up fashions to: (1) concatenate
semantic features from top layers (top-down), and (2) re-
organize spatially rich localization features from bottom layers
(bottom-up). To avoid using too many dithering operations
(i.e., point-wise convolutions) and to avoid computationally
expensive operations (i.e., pooling and addition), we adopt
an 1 × 1 depth-wise convolution in the CORE module. This
enables effective fusion of pathways coming from deeper and
shallower layers in each layer of the FP. Our 1×1 depth-wise
convolution in CORE is very different from most of SoTA bi-
directional methods [25], [15], [14], [16], where feature fusion
is carried out by concatenating all feature maps. Their simple
concatenations result in a large feature map proportional to the
total feature size. In contrast, our 1 × 1 conv filter in CORE
is automatically learned, such that features can be fused more
effectively via a feature map of fixed size.

In each layer of the used backbone, CORE fuses features of
each layer with its two adjacent (immediately shallower and
deeper) layers. In other words, feature bi-fusion is performed
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Fig. 3. (a) Details of the proposed Re-CORE architecture. (b) The Re-Org block for feature re-organization. (c) The bottom-up fusion module (BFM).

in the feature pyramid of CORE. In the bottom-up fusion
with the shallower layer, similar to YOLOv2 [4], a Re-Org
block from Fig. 3(b) is adopted in Fig. 2(b) to re-organize
the feature map into 4 channels. However, instead of using a
concatenation operation, the 1 × 1 convolution filter is then
performed to fuse all feature maps as the output.

C. Residual Bi-Fusion Feature Pyramid

We further adopt the residual concept inspired from
ResNet [5] to the CORE block in our design, and created a new
Residual CORE (Re-CORE) block. Re-CORE enables the
fusion of four adjacent scales (namely, the shallow, current,
deep, and deeper layers) for better detection of small objects.
Specifically, by recursively injecting the output of the (i+1)th

CORE module to the ith CORE module, the Bi-Fusion FP
becomes a fully-featured Residual Bi-Fusion FPN as in
Fig. 3(a). Fig. 2(c) depicts the connection between the Re-
CORE and Convolution modules, in which F i and ∆F i denote
the outputs of the i-th Re-CORE and Convolution modules,
respectively.

Fig. 3(a) shows the detailed Re-CORE architecture. The Re-
CORE module performs bi-fusion to integrate features from
the four input layers with residual design. The output of the
previous Re-CORE module becomes the input of the current
Re-CORE module via a skip connection, which is depicted
as a red line in Fig. 2(c) and Fig. 3(a), respectively. Features
from the ith, (i − 1)th, and (i + 1)th layers are fused by an
1×1 convolution and then added to an up-sampled version of
the skip connection to produce a new feature map. This map
is then fed into a convolution block to produce the final output
of this Re-CORE module.

Working with popular backbones: Similar to ResNet [5],
the residual nature of our Re-CORE module enables easy
training and integration of the FP with a wide range of back-
bones that works particularly well for small object detection.
Instead of learning un-referenced features, Re-CORE obtains
better accuracy from the largely increased feature depths when

compared with traditional FPs [1], [2], [4], [3]. Note that SoTA
FPs [1], [27], [15] often learn redundant features and perform
poorly on small object detection.

The Re-CORE module provides a new effective fusion
approach for collecting localization information from bottom
layers that can improve the accuracy of small object detection.
In comparison, the naive approach in [44] detects small objects
by generating high-resolution images as inputs to the detection
module, which comes with a cost of large computational
burden. Another approach for small object detection is to
leverage contextual information, by sending semantic features
from a top-down way via a FP as in YOLOv3 [2]. However, in
these methods without the use of residual property, the learning
will include un-referenced features and thus bound the number
of FP layers that can actually contribute to object detection. In
comparison to the FP proposed in [7], our Re-CORE module
can capture richer semantic features from deeper layers that
can directly improve small object detection.

In summary, our residual design and bi-directional fusion
make the Re-CORE module suitable for detecting small and
even tiny objects without notable computation overheads.

D. Bottom-up Feature Fusion

As aforementioned, the top winning method in LPIRC 2019
[7] improved detection on large and medium-sized objects,
but not able to keep up the performance for small objects.
To address this issue, we propose the adding of a bottom-up
fusion module (BFM) to the PRB-FPN network to further
improve the localization of both small and large objects.
Fig. 3(c) depicts the proposed BFM architecture. Instead of
using convolution with stride 2 (adopted in PANet [10], Bi-
FPN [11], or YOLOv4 [13]), the BFM adopts a Re-Org
block to split C channels of feature map into 4C channels
to better preserve spatial information and generate robust
semantic features via 1×1 convolution, which improves small
object detection. As for the bidirectional FPN-BPN work [16],
convolutions with stride 2 are used for down-sampling, while
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(a) an image fron the COCO-test-dev

(b) YOLOv3 512 × 512

(c) YOLOv3 with BFM 512 × 512

(d) YOLOv3 with Re-CORE 512 × 512

(e) PRB-FPN 512 × 512

(f) M2Det [28] 512 × 512

Fig. 4. Small object detection results on the MS COCO test set.

de-convolutions are adopted for up-sampling. However, this
design results in lower accuracy for small object detection due
to the stride 2 operator, and the use of de-convolution leads
to low efficiency in object detection.

In summary, in our design: (1) Section III-A describes the
use of parallel bi-fusion paths that run concurrently for effec-
tive detection of both small and large objects; (2) Section III-C
describes the adding of the Re-CORE module for improving
the detection of small objects; and finally, (3) the BFM in
Section III-D can bring specific local information from a
bottom-up pathway to localize the objects more accurately.
The BFM pathway works particularly well for detecting both
large and mid-sized objects. Experimental results in this regard
are shown in Table III.

TABLE I
ABLATION STUDY OF BFM AMONG DIFFERENT BACKBONES.

Backbone BFM FPS AP AP50 AP75 APs APM APL

DarkNet53 28.9 28.6 50.7 29.6 15.5 30.4 35.3
512x512 X 28.4 34.9 57.2 37.7 18.6 37.1 45.3

Pelee 85.8 26.7 49.9 26.2 13.5 27.8 33.5
512x512 X 84.5 28.3 51.8 28.4 14.0 30.1 35.6

VGG16 31.8 34.1 58.3 35.8 17.9 35.9 44.1
512x512 X 31.4 34.6 58.6 36.7 18.6 36.5 44.3

DenseNet201 30.5 30.1 54.5 32.5 15.7 33.8 40.8
512x512 X 39.4 31.5 54.7 33.3 15.9 33.9 41.1

IV. EXPERIMENTAL RESULTS

We evaluate the PRB-FPN against SoTA object detection
methods on MS COCO benchmark [8] and UAVDT [45] using
machines with nVidia Titan X GPU and V100. Accuracy is
evaluated in the metric of Average Precision (AP). Compu-
tational efficiency is evaluated in the processing frames per
second (FPS).

Backbones. Our pipeline is not limited to any feature
extraction backbone. We evaluated the following backbones:
PeLee [17], MobileNet-V2 [46], DarkNet-53 [2], VGG16 [22],
ResNet-50 [5], DenseNet [20], CSPnet [47].

A. Implementation Details and Evaluation Configures

Implementation details: For performance evaluations on
MS COCO dataset, the default hyper-parameters are set as
follows. Total training steps are 500, 500 with the step decay
learning rate 0.001. The learning rate is further multiplied
by a factor 0.01 at the 400, 000 steps and 450, 000 steps,
respectively. Momentum and weight decay rate are set to be
0.9 and 0.0005, respectively. All various PRB models were
trained on a single V100 with batch size 64, and mini-batch
size 16, 8, or 4 depended on the used model size for fitting
the limitation of the available GPU RAM.

Evaluation details: We next evaluate the newly introduced
designs of PRB-FPN in terms of how each design effectively
fuse both deep and shallow feature layers in parallel for fast
and accurate one-shot object detection. The first major design
in the parallel structure of PRB-FPN is the new residual con-
catenation and re-organization (ReCORE) module proposed
for effective and efficient data fusion. The second major design
is the bottom-up fusion module (BFM) added after ReCORE in
PRB-FPN as shown in Fig. 2, which can further improve the
localization of both small and large objects. To evaluate the
effect of each module, accuracy improvement based on BFM
is first evaluated in § IV-B. The effect of BFM with ReCORE
module for accuracy improvements is evaluated in § IV-C.
Evaluation of the RB-FPN module against the original RPN
is provided in § IV-D. Finally, comparisons between PRB-FPN
and other SoTA methods are provided in § IV-E.

B. BFM Accuracy Improvements

Since the BFM in PRB-FPN is designed to detect both small
and large objects, we evaluate the effectiveness of BFM on
object detection based on the MS COCO dataset across four
backbones, namely PeLee [17], DarkNet-53 [2], VGG16 [22],
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(a) (b)

(c) (d)

Fig. 5. Small object detection results on the UAVDT17 benchmark [45]. (a) and (c): LRFNet [6]. (b) and (d): The proposed PRB-FPN. Black boxes indicate
don’t-care regions that come with the original UAVDT17 dataset.

TABLE II
COMPARISONS BETWEEN OUR BFM AND OTHER SOTA BI-DIRECTIONAL

FUSION METHODS.

Method Backbone Input size FPS AP AP50 AP75 APs APM APL

GBFPN-SSD [14] VGG16 512×512 - - 33 - - - -
FPN-BPN [16] VGG16 320×320 32.4 29.6 48.4 32.3 9.6 32.5 44.3
FPN-BPN [16] VGG16 512×512 18.9 33.1 53.1 36.3 15.7 37 44.2

EfficientDet-D0 [11] EfficientNet [49] 512×512 - 34.6 53.0 37.1 - - -
NAS-FPN [12] ResNet-50 1024×1024 - 44.2 - - - - -

BFM [Ours] VGG16 512×512 31.4 34.6 58.6 36.7 18.6 36.5 44.3
RB-FPN [Ours] ResNet-50 512×512 32.1 44.3 65.1 48.2 25.1 47.3 56.8

TABLE III
ABLATION STUDY OF RE-CORE AND BFM; RB DENOTES THE PROPOSED

RESIDUAL BI-FUSION DESIGN AS IN FIG.3(A).

Method Backbone Re-CORE BFM FPS AP AP50 AP75 APs APM APL

Pelee∗ Pelee∗ 85.8 26.7 49.9 26.2 13.5 27.8 33.5
Pelee with BFM Pelee X 84.5 28.3 51.8 28.4 14.0 30.1 35.6

Pelee with RB-FPN Pelee X X 84.2 29.5 52.9 30.2 14.9 33.1 36.7

Yolov3† Darknet53† 28.9 32 56.5 33 17.4 34 41.4
Yolov3-SPP† Darknet53† 28.7 35.3 59.2 37.4 16.9 37.1 48

Yolov3‡ Darknet53‡ 28.9 28.6 50.7 29.6 15.5 30.4 35.3
Yolov3 with Re-CORE Darknet53 X 27.6 36 59.5 38.2 18.9 37.3 47.1

Yolov3 with BFM Darknet53 X 28.4 34.9 57.2 37.7 18.6 37.1 45.3
Yolov3 with RB-FPN Darknet53 X X 27.2 36.8 59.7 39.6 19 39.5 48

Yolov4 CSPDarknet53 31 43 64.9 46.5 24.3 46.1 55.2
Yolov4 with Re-CORE CSPDarknet53 X 28.5 44.8 66.5 47.3 26.9 46.3 55.8

Yolov4 with BFM CSPDarknet53 X 30.5 43.7 65.3 47.1 24.5 48.2 55.3
Yolov4 with RB-FPN CSPDarknet53 X X 27.3 45.1 67.2 48.2 27.1 48.5 57

∗ The input size for all backbones is 512x512.
∗ Trained and tested by ourselves according to the paper.
† Test results with weights provided in the YOLOv3 website.
‡ Trained and tested by ourselves according to the instruction.

and DenseNet [20]), to evaluate the generalization capability of
BFM. Table I shows this BFM ablation study results. Observe
that the BFM computational load is very light and can be
ignored for all backbones. Also observe the generalizability
of BFM in maintaining high AP across these backbones for
detecting different object sizes. Table I also shows another

TABLE IV
IMPROVEMENTS BY PARALLEL AND RESIDUAL FPNS ON UAVDT [45]

BENCHMARK.

UAVDT-Benchmark-TestSet

Methods Backbone input size AP FPS

Faster-RCNN VGG-16 1024x540 22.32 2.8
R-FCN ResNet-50 1024x540 34.35 4.7

SSD VGG-16 512x512 33.62 41.56
RON** VGG-16 512x512 21.59 11.1

RetinaNet ResNet-101-FPN 512x512 33.95 25
LRFNet VGG-16 512x512 37.81 91
SpotNet Hourglass-104 512x512 52.8 -

CenterNet Hourglass-104 512x512 51.18 -

BFM MobileNet-V2 512x512 29.7 113
Re-CORE MobileNet-V2 512x512 34.2 110
PRB-FPN MobileNet-V2 512x512 65.47 75

Yolov4 with BFM CSPDarknet-53 512x512 64.52 30.5
Yolov4 with Re-CORE CSPDarknet-53 512x512 65.41 26.3
Yolov4 with PRB-FPN CSPDarknet-53 512x512 76.55 19.2

TABLE V
ABLATION STUDY OF THE NUMBER OF FEATURE PYRAMIDAL LAYERS FOR
PRB WITH RESNET50 AND RB WITH CSPDARKNET53 ON UAVDT [45]

BENCHMARK.

Number of FP layers Method Backbone FPS mAP
3 4 5

X PRB ResNet-50 31.26 70.71
X PRB ResNet-50 27.15 72.32

X PRB ResNet-50 22.30 74.19

X PRB CSPDarknet-53 19.2 76.55
X PRB CSPDarknet-53 12.2 77.82

X PRB CSPDarknet-53 4.7 79.21

important observation that BFM can improve the detection
accuracy of a shallower backbone more than deeper back-
bone. Specifically, the improvements on AP50 with BFM for
DarkNet [2], Pelee [17], and DenseNet [20] are 6.5%, 3.5%,
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(a) (b)

(c) (d)
Fig. 6. Comparisons of object detection between YOLOv4 and our PRB-FPN.(a) and (b) are the results of our home pictures taken from aerial cameras in
Suao, Taiwan; (c) and (d) are the results on the AI City Challenge [48]. (a) : YOLOv4 512× 512, (b) : PRB-FPN w/o 512× 512. (c) : YOLOv4 512× 512,
(d) : PRB-FPN w/o 512× 512.

(a) (b)
Fig. 7. Comparisons of object detection between YOLOv4 and our PRB-FPN.(a) and (b) are the results of our home pictures taken from aerial cameras in
Suao, Taiwan. (a) : YOLOv4 512× 512, (b) : PRB-FPN 512× 512.

and 0.2%, respectively. This indicates that BFM improves
the detection of large objects better than smaller objects.
Thus, BFM can provide a good solution for applications that
demands the detection of arbitrary-sized objects.

In addition to the ablation study of our BFM method among
different backbones, Table II shows the comparisons against
other SoTA bifusion methods in terms of accuracy and effi-
ciency. When the backbones ResNet-50 and EfficientNet are
adopted, our BFM method outperforms EfficientDet-D0 [11]
and NAS-FPN [12]. As for the bidirectional FPN-BPN [16],
their convolutions with stride 2 for down-sampling result in
lower accuracy in small object detection. In addition, their
de-convolution for upsampling results in lower efficiency for
object detection.

C. BFM with Re-CORE Accuracy Improvements

We evaluate the effectiveness of BFM with Re-CORE for
Residual Bi-Fusion object detection. Table III shows the abla-

tion study of the PRB-FPN vs. YOLOv3 and YOLOv4 with or
without BFM Re-CORE. As a result, PRB-FPN outperforms
YOLOv3 in all categories. Note that the frame rates with or
without BFM are very similar. For input size 512 × 512,
YOLOv3 with BFM also outperforms YOLOv3 alone on
all categories. BFM improves the detection of small objects
significantly, with an increasing trend as the input image size
increases. On the contrary, improvements on the large objects
have a decreasing trend as the input size increases.

Fig. 4 shows the ablation study comparisons of object
detectors regarding the effects of BFM and Re-CORE modules
on a selected image from COCO-test-dev. Fig. 4(b) shows
detections obtained by YOLOv3. Fig. 4(c) and (d) show
detections of YOLOv3 with BF and Re-CORE modules,
respectively. Fig. 4(e) shows detections of the proposed PRB-
FPN. In comparison, Fig. 4(f) shows detections obtained by
M2Det [28]. Observe clearly that the proposed PRB-FRN
outperforms YOLOv3, YOLOv4 and M2Det.
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(a) (b)
Fig. 8. Visualization of a failure case of PRB-FPN when compared with (a) YOLOv4 512 × 512. (b) shows the result of PRB-FPN 512 × 512, where a
false negative detection is shown in a red circle.

TABLE VI
COMPARISONS ON THE MS COCO TEST-DEV SET WITH SOTA MODELS ON NVIDIA VOLTA V100.

Method Backbone Input size FPS AP AP50 AP75 APS APM APL

YOLOv4 [13] CSPDarknet-53 [47] 512x512 83 43 64.9 46.5 24.3 46.1 55.2
EfficientDet-D0 [11] Efficient-B0 [49] 512x512 97.0 33.8 52.2 35.8 12 38.3 51.2
EfficientDet-D1 [11] Efficient-B1 [49] 640x640 74.0 39.6 58.6 42.3 17.9 44.3 56
EfficientDet-D2 [11] Efficient-B2 [49] 768x768 57.0 43 62.3 46.2 22.5 47 58.4
EfficientDet-D3 [11] Efficient-B3 [49] 896x896 36.0 47.5 66.2 51.5 27.9 51.4 62.0
SM-NAS: E2 [50] 800x600 25.3 40 58.2 43.4 21.1 42.4 51.7
SM-NAS: E3 [50] 800x600 19.7 42.8 61.2 46.5 23.5 45.5 55.6
SM-NAS: E5 [50] 1333x800 9.3 45.9 64.6 49.6 27.1 49.0 58.0
NAS-FPN [12] ResNet-50 [5] 640 24.4 39.9
NAS-FPN [12] ReNet-50 [5] 1024 12.7 44.2
ATSS [51] ResNet-101 [5] 800x 17.5 43.6 62.1 47.4 26.1 47 53.6
ATSS [51] ReNet-101 [5] 800x 13.7 46.3 64.7 50.4 27.7 49.8 58.4

RB-FPN [Ours] CSPDarknet-53 [47] 512x512 76.9 45.1 67.2 48.2 27.1 48.5 57
PRB-FPN [Ours] CSPDarknet-53 [47] 800x800 37.5 48.9 69.5 55.9 30.8 55.9 60.2

Fig. 5 shows the comparisons of object detection against
LRFNet [6] on a 1024 × 540 image from the UAVDT17
benchmark [45]. Note that the black masks in Fig. 5 come
with the original images in UAVDT for privacy protection.
LRFNet fails to detect the tiny far-away vehicles from the
camera view, while PRB-FPN can successfully detect most of
them.

D. PRB-FPN vs the Original FPN

We compare the performance the proposed PRB-FPN vs.
the original FPN on the UAVDT [45] benchmark. Performance
evaluation on the MS COCO dataset is omitted, as it contains
very few samples of small objects. Table IV shows the perfor-
mance comparisons with and without the proposal parallel or
the residual bi-fusion modules. We adopted two backbones,
namely MobileNet-V2 [46] and CSPDarknet-53 [47] in
this evaluation. CSPDarknet-53 was created in our previous
framework and is now adopted in YOLOv4. The baseline of
FPN is the single bi-fusion module adopted in SoTA bi-fusion
methods [25], [15], [14].

When the MobileNet-V2 backbone is used, accuracy of the
baseline method (i.e. single bi-fusion module) is 29.7%. In
comparison, as the Re-CORE module is added, the accuracy
improves from 29.7% to 34.2%. However, the score is still

lower than LRFNet [6], SpotNet [66], and CenterNet [67],
since MobileNet-V2 is a very lightweight network. Finally,
after the parallel FP bi-fusion design is included, the ac-
curacy improves significantly from 34.3% to 65.47%, which
outperform all comparison methods. Note that our PRB-FPN
achieves double the amount of accuracy and triple amount of
efficiency over RetinaNet [24].

Evaluation with the CSPDarknet-53 backbone is shown
in the last three rows of Table IV. Accuracy improvement
is significant from 64.52 % to 76.55 %. These evaluations
suggest that our parallel FP bi-fusion design is general for
accuracy improvement. Table V shows the effects on accuracy
and FPS of the number of feature pyramid layers. Two
backbones, i.e., ResNet-50 and CSPDarknet-53 were
adopted in this evaluation. Clearly, with more FP layers, higher
accuracy can be obtained for both backbones. Also the use of
more FP layers results in lower FPS.

Fig. 6 shows visual comparisons of object detection between
YOLOv4 and PRB-FPN. YOLOv4 cannot detect both large
and small objects well enough. The enlargement of input
image to detect small objects in YOLOv4 often fails in
detecting large objects and undesired inefficiency. In Fig. 6(a),
the cargo truck was missed by YOLOv4 but successfully
detected by our PRB-FPN. In addition, YOLOv4 often detects
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TABLE VII
COMPARISONS ON THE MS COCO TEST-DEV SET WITH SOTA MODELS ON NVIDIA GEFORCE TITAN X.

Method Backbone Input size FPS AP AP50 AP75 APS APM APL

two-stage:
Faster R-CNN w/ FPN [52] VGGNet-16 [22] 1000× 600 7.0 21.9 42.7 - - - -
Faster R-CNN w/ FPN [52] ResNet-101 [5] 1000× 600 6.0 36.2 59.1 39.0 18.2 39.0 48.2
OHEM++ [53] VGGNet-16 [22] 1000× 600 7.0 25.5 45.9 26.1 7.4 27.7 40.3
R-FCN [54] ResNet-101 [5] 1000× 600 9.0 29.9 51.9 - 10.8 32.8 45.0
CoupleNet [55] ResNet-101 [5] 1000× 600 8.2 34.4 54.8 37.2 13.4 38.1 50.8
Cascade R-CNN [56] ResNet-101 [5] 1280× 800 7 42.8 62.1 46.3 23.7 45.5 55.2
Mask-RCNN [57] ResNeXt-101 [5] ∼1280x800 3.3 39.8 62.3 43.4 22.1 43.2 51.2
Deformable R-FCN [58] ResNet-101 [5] 1000× 600 8 34.5 55 - 14 37.7 50.3
Deformable R-FCN [58] Inc-Res-v2 [58] 1000× 600 - 37.5 58 40.8 19.4 40.1 52.5
Fitness-NMS [59] ResNet-101 [5] 1024× 1024 5 41.8 60.9 44.9 21.5 45.0 57.5
SNIP [60] DPN-98 [60] - - 45.7 67.3 51.1 29.3 48.8 57.1

one-stage low resolution:
SSD [3] VGGNet-16 [22] 300x300 43 25.1 43.1 25.8 6.6 25.9 41.4
RON [61] VGGNet-16 [22] 384x384 15 27.4 49.5 27.1 - - -
DSSD [62] ResNet-101 [5] 321x321 9.5 28.0 46.1 29.2 7.4 28.1 47.6
RFBNet [63] VGGNet-16 [22] 300x300 66.7 30.3 49.3 31.8 11.8 31.9 45.9
YOLOv3 [2] DarkNet-53 [2] 416x416 35 31.0 55.3 32.3 15.2 33.2 42.8
PFPNet-R [15] VGG-16 [22] 320x320 33 31.8 52.9 33.6 12 35.3 46.1
RetinaNet [24] ResNet-101 [5] ∼ 640× 400 12.3 31.9 49.5 34.1 11.6 35.8 48.5
RefineDet [19] VGGNet-16 [22] 320x320 38.7 29.4 49.2 31.3 10.0 32.0 44.4
RefineDet [19] ResNet-101 [5] 320x320 - 38.6 59.9 41.7 21.1 41.7 52.3
M2Det [28] VGGNet-16 [22] 320x320 33.4 33.5 52.4 35.6 14.4 37.6 47.6
M2Det [28] ResNet-101 [5] 320x320 21.7 34.3 53.5 36.5 14.8 38.8 47.9
LRFNet [6] VGGNet-16 [22] 300x300 76.9 32.0 51.5 33.8 12.6 34.9 47.0
LRFNet [6] ResNet-101 [5] 300x300 52.6 34.3 54.1 36.6 13.2 38.2 50.7

one-stage high resolution:
LRFNet [6] VGGNet-16 [22] 512x512 38 36.2 56.6 38.7 19 39.9 48.8
LRFNet [6] ResNet-101 [5] 512x512 31 37.3 58.5 39.7 19.7 42.8 50.1
EFIP [64] VGGNet-16 [22] 512x512 34 34.6 55.8 36.8 18.3 38.2 47.1
RFBNet [63] VGGNet-16 [22] 512x512 33 33.8 54.2 35.9 16.2 37.1 47.4
RFBNet-E [63] VGGNet-16 [22] 512x512 30 34.4 55.7 36.4 17.6 37 47.6
SSD [3] ResNet101 [5] 513x513 31.3 31.2 50.4 33.3 10.2 34.5 49.8
SSD [3] VGGNet-16 [22] 512x512 22 28.8 48.5 30.3 10.9 31.8 43.5
DSSD [62] ResNet101 [5] 513x513 5.5 33.2 53.3 35.2 13.0 35.4 51.1
YOLOv2 [4] DarkNet-19 [4] 544x544 40 21.6 44 19.2 5 22.4 35.5
YOLOv4 [13] CSPDarknet-53 [47] 512x512 31 43 64.9 46.5 24.3 46.1 55.2
YOLOv3-SPP [2] DarkNet-53 [2] 608x608 19.8 36.2 60.6 38.2 20.6 37.4 46.1
YOLOv3-SPP [2] DarkNet-53 [2] 608x608 19.8 36.2 60.6 38.2 20.6 37.4 46.1
RefineDet[19] VGGNet-16 [22] 512x512 22.3 33 54.5 35.5 16.3 36.3 44.3
CornerNet [65] Hourglass [65] 512x512 4.4 40.5 57.8 45.3 20.8 44.8 56.7
M2Det [28] VGGNet-16 [22] 512x512 18 37.6 56.6 40.5 18.4 43.4 51.2
M2Det [28] ResNet-101 [5] 512x512 15.8 38.8 59.4 41.7 20.5 43.9 53.4
RetinaNet [24] ResNet-50 [5] ∼832x500 13.9 32.5 50.9 34.8 13.9 35.8 46.7
RetinaNet [24] ResNet-101 [5] ∼832x500 11 34.4 55.7 36.8 14.7 37.1 47.4
RetinaNet+AP-Loss [24] ResNet-101 [5] 512x512 11 37.4 58.6 40.5 17.3 40.8 51.9
ACoupleNet [36] ResNet-101 [5] 600x1000 - 35.4 55.7 37.6 13.2 38.6 52.5
SAFNet [37] ResNet-101 [5] 768x768 - 39.2 60.6 42.3 20.2 44.2 52.6
Cascade R-CNN [56] ResNet-101 [5] ∼1280x800 7 42.8 62.1 46.3 23.7 45.5 55.2
FoveaBox [39] ResNeXt-101 [5] 800x800 - 42.3 62.9 45.4 25.3 46.8 55.0
AB+FSAF [34] ResNet-101 [5] 800 5.6 40.9 61.5 44 24 44.2 51.3
AB+FSAF [34] ResNeXt-101 [5] 800 2.8 42.9 63.8 46.3 26.6 46.2 52.7

RB-FPN [Ours] ResNet-50 [5] 512x512 32.1 44.3 65.1 48.2 25.1 47.3 56.8
PRB-FPN [Ours] ResNet-50 [5] 800x800 15.9 46.1 67.3 49.9 28.5 49.3 59.4
RB-FPN [Ours] CSPDarknet-53 [47] 512x512 27.3 45.1 67.2 48.2 27.1 48.5 57
PRB-FPN [Ours] CSPDarknet-53 [47] 800x800 11.6 48.9 69.5 55.9 30.8 55.9 60.2
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Fig. 9. AP vs. inference time on MS COCO detection.

a large object as several small ones. As shown Fig. 6(c), a
truck was detected as two cars, the PRB-FPN can detect it
successfully in Fig. 6(d). Note that the stop sign in Fig. 6(c)
was missed by YOLOv4. Without the enlargement, YOLOv4
will further miss-detect or incorrectly classify small objects.
For example, the small persons on the playground (highlighted
in a red circle) in Fig. 7(a) were missed by YOLO 4, while
PRB-FPN can successfully detect them in Fig. 7(b). Also, in
Fig. 7(a), a small building was wrongly detected as a bus by
YOLOv4. High detection rate and high recall rate for small
objects are the major characteristics of our PRB model. Fig.
8(b) shows a failure case of our method. A false detection
of a pedestrian (shown with a red circle) occurred due to the
dark background. In comparison, YOLOv4 detection results in
Fig. 8(a) is visually better without a false detection, however
this is due to the weakness of YOLOv4 in identifying small
objects. Such weakness of YOLOv4 can explain the miss
detection of small vehicles and trucks in Fig. 8(a).

E. Comparisons with State-of-The-Art Models

Tables VI and VII compare the PRB-FPN with and without
parallelization design against other SoTA object detectors
in terms of accuracy and efficiency. Here experiments are
conducted on two backbones of CSPDarknet-53 [47] and
ResNet-50 [5] for the performance comparison of PRB-
FPN. To make fair comparisons, we did not evaluate the
performance of anchor-free methods as their efficiency scores
were not reported. Inference time is calculated as the average
of execution time of the network with Non-Maximum Sup-
pression (NMS) from 999 random images.

Fig. 9 plots the inference time vs. mean Average Precision
small (APs) [8] for many evaluated models, where the PRB-
FPN was tested on nVidia Titan X. Observe that PRB-FPN
(green curve in Fig. 9) achieves outstanding speed-accuracy

performance compared to other SoTA models. We highlight
two advantages of the PRB-FPN: (1) the parallel bi-fusion
design for multi-scale feature extraction can detect both small
and large objects at the same time with higher accuracy ,
and (2) the fusion module can effectively fuse both deep
and shallow feature layers in parallel for fast and accurate
one-shot object detection, specially for small objects. Observe
that PRB-FPN outperforms the other SoTA one-stage object
detectors (YOLOv4, YOLOv3, EfficientDet, ATSS, SM NAS,
and NAS-FPN), when taking both the accuracy and speed into
account.

V. CONCLUSIONS

We present a new PRB-FPN model that can effectively
fuse deep and shallow pyramid features for fast and accurate
object detection. Our novel bi-directional residual FP design
enables easy training and integration with popular backbones.
The proposed bottom-up fusion improves the detection of both
small and large objects. Extensive evaluations show that PRB-
FPN outperforms other bi-directional methods and SoTA one-
stage methods, in terms of accuracy and speed.

Future work includes the development of anchor-free meth-
ods that can avoid handcrafted anchors, which might further
improves detection accuracy. Finally, Network Architecture
Search (NAS) can potentially be adopted to find the better
architecture, considering both the backbone and FP structures.
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