Simultaneous Multi-Person Tracking and Activity Recognition based on Cohesive Cluster Search

Wenbo Li, Yi Wei, Siwei Lyu, Ming-Ching Chang

Submission to CVIU

In the supplementary material, we provide the full notation of video activities, problem formulation and visual tracking (Table A.1); notations for instance, graph and hypergraph (Table A.2); component probabilities for the pairwise interaction activities (Table A.3); probabilistic formulation for the pairwise interactions (Table A.4).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
aan individual activity label, $e.g. \in \{standing, walking, running\}$ ia pairwise interaction label, $e.g.$ approaching (AP), facing-each-other (FE), standing-in-a-ro (SR),ca collective activity label, $e.g.$, CROSSING, WALKING, GATHERING,bnumber of observed targets (tracklets)Tvideo time window of length τ prior to time $t, i.e., T = [t - \tau, t]$ Dperson detections (bounding boxes)Xtarget trajectories, $X_T = \{x_1, \dots, x_b\}$ Aindividual activity classes, $A_T = \{a_1, \dots, a_b\}$
ia pairwise interaction label, e.g. approaching (AP), facing-each-other (FE), standing-in-a-ro (SR),ca collective activity label, e.g., CROSSING, WALKING, GATHERING,bnumber of observed targets (tracklets)Tvideo time window of length τ prior to time $t, i.e., T = [t - \tau, t]$ Dperson detections (bounding boxes)Xtarget trajectories, $X_T = \{x_1, \dots, x_b\}$ Aindividual activity classes, $A_T = \{a_1, \dots, a_b\}$
Image: Second systemImage: Construct of the second systemImage: Construct of the second systemSecond systemSe
ca collective activity label, e.g., CROSSING, WALKING, GATHERING,bnumber of observed targets (tracklets)Tvideo time window of length τ prior to time $t, i.e., T = [t - \tau, t]$ Dperson detections (bounding boxes)Xtarget trajectories, $X_T = \{x_1, \dots, x_b\}$ Aindividual activity classes, $A_T = \{a_1, \dots, a_b\}$
bnumber of observed targets (tracklets)Tvideo time window of length τ prior to time $t, i.e., T = [t - \tau, t]$ Dperson detections (bounding boxes)Xtarget trajectories, $X_T = \{x_1, \dots, x_b\}$ Aindividual activity classes, $A_T = \{a_1, \dots, a_b\}$
Tvideo time window of length τ prior to time $t, i.e., T = [t - \tau, t]$ Dperson detections (bounding boxes)Xtarget trajectories, $X_T = \{x_1, \dots, x_b\}$ Aindividual activity classes, $A_T = \{a_1, \dots, a_b\}$
Dperson detections (bounding boxes)Xtarget trajectories, $X_T = \{x_1, \dots, x_b\}$ Aindividual activity classes, $A_T = \{a_1, \dots, a_b\}$
$\begin{array}{c c} 3 \\ \hline X \\ \hline \end{array} & \begin{array}{c} \text{target trajectories, } X_T = \{x_1, \dots, x_b\} \\ \hline \end{array} \\ \hline A \\ \hline \text{individual activity classes, } A_T = \{a_1, \dots, a_b\} \end{array}$
$\vec{\mathbf{z}}$ A individual activity classes, $A_T = \{a_1, \dots, a_b\}$
I pairwise interaction classes, $I_T = \{i_{1,2}, i_{1,3}, \dots, i_{2,3}, \dots, i_{b-1,b}\}$
$C \qquad \qquad \text{collective activity classes, } C_T = \{c_{t-\tau}, \dots, c_t\}$
T', X', A', I', C' existing entities prior to time window $T, X' = X_{T'}, A' = A_{T'}, I' = I_{T'}, C' = C_{T'}$
number of individual activity classes, $n_A = 2$ in the CAD and Augmented-CAD dataset
$n_A = 3$ in the New-CAD dataset
number of interaction classes, which is also the number of sub-hypergraphs used in our method
$n_I = 8$ in the CAD and Augmented-CAD datasets, $n_I = 9$ in the New-CAD dataset
number of collective activity classes, $n_C = 5$ in CAD, $n_C = 6$ in Augmented-CAD, $n_C = 6$
in New-CAD datasets
Pr a joint distribution
f_1, f_2, f_3 confidence terms from the decomposition of Pr
$\cdot \underline{5}$ $\varphi_1, \varphi_2, \varphi_3$ clique potential functions in the Markov random field
$\frac{\overline{a}}{2}$ X^*, A^*, I^*, C^* updated terms of X, A, I, C after an optimization stage, respectively
$\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ $X^{\ddagger}, A^{\ddagger}$ updated terms of X^*, A^* after an optimization stage, respectively
μ_{ds} the <i>distance</i> likelihood term for estimating the interaction between two targets
$\underline{5}$ p_{gc} the group connectivity term for estimating the interaction between two targets
p_{aa} the <i>individual activity agreement</i> term for estimating the interaction between two targets
p_{dc} the <i>distance change type</i> likelihood term for estimating the interaction between two targets
p_{dr} the <i>facing direction</i> likelihood term for estimating the interaction between two targets
p_{fs} the <i>frontness/sideness</i> likelihood term for estimating the interaction between two targets
\overline{x} a candidate tracklet
\bar{X} the set of all candidate tracklets
a (putative) individual activity of a candidate tracklet
$\frac{3}{3}$ \bar{A} the set of (putative) individual activities for all candidate tracklets
θ_a the <i>appearance</i> similarity for tracklet linking
τ_a time threshold for appearance-based tracklet linking
\oplus operator \oplus represents the association of two tracklets
h the number of hypothetical tracklets to generate from an existing tracklet x'_i , $h = 9$

Table A.1: Notations for video activities, problem formulation and visual tracking.

	Symbol Description					
Hypergraph	\mathcal{H}	hypergraph $\mathcal{H} = (V, E, W)$				
	$\mathcal{H}_{\mathcal{T}}$	tracking hypergraph $\mathcal{H}_{\mathcal{T}} = (V_{\mathcal{T}}, E_{\mathcal{T}}, W_{\mathcal{T}})$				
	$\mathcal{H}_{\mathcal{R}}$	activity recognition hypergraph $\mathcal{H}_{\mathcal{R}} = (V_{\mathcal{R}}, E_{\mathcal{R}}, W_{\mathcal{R}})$				
	V	the vertex set of a hypergraph				
	E	the hyperedge set of a hypergraph				
	W	the hyperedge weights of a hypergraph				
	W_a	the <i>appearance</i> hyperedge weight, working with control parameter $\lambda_a = 30$				
	W_d	the <i>facing-airection</i> hyperedge weight, working with control parameter $\lambda_d = 1$				
	Wg	the geometric similarity hyperedge weight, working with control parameter $\lambda_g = 0.5$				
		the hyperedge degree, <i>i.e.</i> , the number of incident vertices of the hyperedge				
	e ^m	a <i>m</i> -degree hyperedge, $\mathbf{e}^m = \{v_1^{\circ}, \dots, v_m^{\circ}\}$				
	C	a hyperedge cluster, which is a vertex set with interconnected hyperedges				
	κ	number of vertes in a hypergraph cluster C , $\kappa = C $				
	$E^{\mathcal{C}}$	the set of all incident hyperedges of a cluster C				
	Ψ	weighting function operated on a hypergraph cluster C				
	У	the indicator vector to denote the vertex selection from $V \in \mathcal{H}$ to be included in \mathcal{C}				
	ϵ	$\epsilon = \frac{1}{\kappa}$ used in weight normalization				
	δ	$\delta_p = \frac{y_p}{\kappa}$ used in weight normalization				
	\mathbf{p}_{ij}	image coordinate vector between two positions at <i>i</i> and <i>j</i>				
	Ŭ	a sub-hypergraph indexed by β , <i>i.e.</i> , $\breve{\mathcal{H}}_{\beta}$				
	\breve{E}_{β}	the hyperedges of the sub-hypergraph $\breve{\mathcal{H}}_{\beta}$ corresponding to the β -th interaction class				
	\breve{W}_{β}	the hyperedge weights of the sub-hypergraph $\breve{\mathcal{H}}_{\beta}$ corresponding to the β -th interaction class				
Graph	$\tilde{\mathcal{G}}$	$ $ graph $ ilde{\mathcal{G}} = (ilde{V}, ilde{E}, ilde{W})$				
	\tilde{V}	the vertex set of a graph; \tilde{V} is associated with X' in this paper				
	\tilde{E}	the edge set of a graph				
	\tilde{W}	the edge weights of a graph				
	e_{ij}	a graph edge connecting two vertices v_i and v_j				
	p_{corr}	the correlation between the activities of two targets x_i and x_j used to calculate weight $\tilde{W}(e_{ij})$				
	g	a function to calculate the correlation between the activities of two targets				
	d	Eucludean distance between two targets in the image coordinate.				
	ϕ_{ij}	the angle between the facing direction of x_i and the relative vector from x_i to x_j .				
	$ ilde{\mathcal{G}}_s$	sparse graph by discarding edges with small weights from $\tilde{\mathcal{G}}$				
	t, τ, f	video frame indices				
s	i, j, k, l	target tracklet indices				
Indice	p, q, r	hypergraph vertex indices				
	α	the index for hypergraph clusters <i>e.g.</i> C_{α} , C_{α}^{T} from \mathcal{H}_{T}				
	β	the index for interaction classes <i>e.g.</i> I_{β} ; β is also the index for sub-hypergraphs <i>e.g.</i> $\breve{\mathcal{H}}_{\beta}$				
	c	the index for collective activity classes C				

Table A.2: Graph and hypergraph notations.

Table A.3: Component probabilities for the pairwise interaction activities. The parameters used in these component probabilities, e.g, the means and standard deviations are calculated from the training dataset.

Component	Probability
Distance	$p_{ds}(within-effective-range x_i, x_j) = \delta(\frac{d_{ij} - \mu_{ds}}{\sigma_{ds}} \le b), d_{ij} \sim \mathcal{N}(\mu_{ds}, \sigma_{ds}), \text{ where } \mathcal{N} \text{ denotes}$ normal distribution
Group connectivity	$p_{gc}(GC x_i, x_j), \text{ where } GC \in \{connect, not-connect\} \\ p_{gc}(connect x_i, x_j) = g(d_{ij}, \phi_{ij}, \ \nu_i\ , \ \nu_j\), \text{ where } g(\cdot) \text{ is defined in Eq.10} \\ p_{gc}(not-connect x_i, x_j) = 1 - g(d_{ij}, \phi_{ij}, \ \nu_i\ , \ \nu_j\) \\ \end{cases}$
Individual activity agreement	$p_{aa}(a_i = AA_1, a_j = AA_2) = \sqrt{p(AA_1 \nu_i) \cdot p(AA_2 \nu_j)}, \text{ where } AA_1, AA_2 \in \{\text{standing}, \text{walking}, \text{running}\}$
Distance-change type	$ \begin{array}{l} p_{dc}(\mathrm{DC} x_i,x_j), \text{ where } \mathrm{DC} \in \{ decreasing, unchanging, increasing \} \\ p_{dc}(decreasing x_i,x_j) = 1 - sigmoid(d_{ij}^g, \mu_{d2u}, \sigma_{d2u}), \text{ where } d_{ij}^g = d_{ij} - d_{ij}' \\ p_{dc}(unchanging x_i,x_j) = \lambda * sigmoid(d_{ij}^g, \mu_{d2u}, \sigma_{d2u}) + (1 - \lambda) * (1 - sigmoid(d_{ij}^g, \mu_{u2i}, \sigma_{u2i})); \\ \text{ if } d_{ij}^g < \mu_{d2u}, \lambda = 1; \text{ if } d_{ij}^g \ge \mu_{u2i}, \lambda = 0; \text{ otherwise, } \lambda = 1 - \frac{d_{ij}^g - \mu_{d2u}}{\mu_{u2i} - \mu_{d2u}} \\ p_{dc}(increasing x_i,x_j) = sigmoid(d_{ij}^g, \mu_{u2i}, \sigma_{u2i}) \end{array} $
Facing direction	$p_{dr}(DR x_i, x_j) \in \{0, 1\}$, where $DR \in \{same, opposite, frequent-changing\}$
Frontness/sideness	$p_{fs}(FS x_i, x_j), \text{ where } FS \in \{frontness, sideness\} \\ p_{fs}(frontness x_i, x_j) = \max(cos(\mathbf{p}_{ij}, x_i), cos(\mathbf{p}_{ij}, x_j)) \\ p_{fs}(sideness x_i, x_j) = 1 - p_{fs}(frontness x_i, x_j)$

Table A.4: Probabilistic formulations for the pairwise interactions $p(i_{ij} = \beta)$. We define dancing-together (DT) as a new interaction activity class to deal with the new collective activity "dancing" in the Augmented-CAD.

Pairwise Interaction $p(i_{ij} = \beta)$	Associated Collective Activity (C)	Probabilistic Formulation
$ \begin{array}{c} facing-each-other \\ (\beta = FE) \end{array} $	TALKING	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(standing, standing) \cdot p_{dc}(unchanging) \cdot p_{dr}(opposite) \cdot p_{fs}(frontness)$
standing-in-a-row $(\beta = SR)$	QUEUING	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(standing, standing) \cdot p_{dc}(unchanging) \cdot p_{dr}(same) \cdot p_{fs}(frontness)$
standing-side-by-side $(\beta = SS)$	WAITING	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(standing, standing) \cdot p_{dc}(unchanging) \cdot p_{dr}(same) \cdot p_{fs}(sideness)$
$dancing-together (\beta = DT)$	DANCING	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(walking, walking) \cdot p_{dc}(unchanging) \cdot p_{dr}(frequent-chaning) \cdot p_{fs}(sideness)$
$\begin{array}{c} approaching\\ (\beta = AP) \end{array}$	GATHERING	$p_{ds}(within-effective-range) \cdot p_{gc}(not-connect) \cdot p_{aa}(walking, walking) \cdot p_{dc}(decreasing) \cdot p_{dr}(opposite) \cdot p_{fs}(frontness)$
walking-in-opposite- directions (β =WO), leaving (β =LV)	DISMISSAL	$p_{ds}(within-effective-range) \cdot p_{gc}(not-connect) \cdot p_{aa}(walking, walking) \cdot p_{dc}(increasing) \cdot p_{dr}(opposite) \cdot p_{fs}(frontness)$
walking-side-by-side ($\beta = WS$)	CROSSING WALKING (TOGETHER)	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(walking, walking) \cdot p_{dc}(unchanging) \cdot p_{dr}(same) \cdot p_{fs}(sideness)$
running-side-by-side $(\beta = RS)$	JOGGING	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(running, running) \cdot p_{dc}(unchanging) \cdot p_{dr}(same) \cdot p_{fs}(sideness)$
running-one-after-the- other $(\beta = RR)$	CHASING	$p_{ds}(within-effective-range) \cdot p_{gc}(connect) \cdot p_{aa}(running, running) \cdot p_{dc}(unchanging) \cdot p_{dr}(same) \cdot p_{fs}(frontness)$