Simultaneous Multi-Person Tracking and Activity Recognition based on Cohesive Cluster Search

Wenbo Li, Yi Wei, Siwei Lyu, Ming-Ching Chang

Submission to CVIU

In the supplementary material, we provide the full notation of video activities, problem formulation and visual tracking (Table A.1); notations for instance, graph and hypergraph (Table A.2); component probabilities for the pairwise interaction activities (Table A.3); probabilistic formulation for the pairwise interactions (Table A.4).

Table A.1: Notations for video activities, problem formulation and visual tracking.

	Symbol	Description
	x	a target trajectory
	a	an individual activity label, e.g. $\in\{$ standing, walking, running \}
	i	a pairwise interaction label, e.g. approaching (AP), facing-each-other (FE), standing-in-a-row (SR), ...
	c	a collective activity label, e.g., CROSSING, WALKING, GATHERING, ...
	b	number of observed targets (tracklets)
	T	video time window of length τ prior to time t, i.e., $T=[t-\tau, t]$
	D	person detections (bounding boxes)
	X	target trajectories, $X_{T}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{b}\right\}$
	A	individual activity classes, $A_{T}=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{b}\right\}$
	I	pairwise interaction classes, $I_{T}=\left\{\dot{i}_{1,2}, \mathrm{i}_{1,3}, \ldots, \mathrm{i}_{2,3}, \ldots, \mathrm{i}_{b-1, b}\right\}$
	C	collective activity classes, $C_{T}=\left\{\mathrm{c}_{t-\tau}, \ldots, \mathrm{c}_{t}\right\}$
	$T^{\prime}, X^{\prime}, A^{\prime}, I^{\prime}, C^{\prime}$	existing entities prior to time window $T, X^{\prime}=X_{T^{\prime}}, A^{\prime}=A_{T^{\prime}}, I^{\prime}=I_{T^{\prime}}, C^{\prime}=C_{T^{\prime}}$
	n_{A}	number of individual activity classes, $n_{A}=2$ in the CAD and Augmented-CAD datasets, $n_{A}=3$ in the New-CAD dataset
	n_{I}	number of interaction classes, which is also the number of sub-hypergraphs used in our method, $n_{I}=8$ in the CAD and Augmented-CAD datasets, $n_{I}=9$ in the New-CAD dataset
	n_{C}	number of collective activity classes, $n_{C}=5$ in CAD, $n_{C}=6$ in Augmented-CAD, $n_{C}=6$ in New-CAD datasets
\%	Pr	a joint distribution
	f_{1}, f_{2}, f_{3}	confidence terms from the decomposition of $\mathbf{P r}$
	$\varphi_{1}, \varphi_{2}, \varphi_{3}$	clique potential functions in the Markov random field
	$X^{*}, A^{*}, I^{*}, C^{*}$	updated terms of X, A, I, C after an optimization stage, respectively
	$X^{\ddagger}, A^{\ddagger}$	updated terms of X^{*}, A^{*} after an optimization stage, respectively
	$p_{\text {ds }}$	the distance likelihood term for estimating the interaction between two targets
	$p_{g c}$	the group connectivity term for estimating the interaction between two targets
	$p_{a a}$	the individual activity agreement term for estimating the interaction between two targets
	$p_{d c}$	the distance change type likelihood term for estimating the interaction between two targets
	$p_{d r}$	the facing direction likelihood term for estimating the interaction between two targets
	$p_{f s}$	the frontness/sideness likelihood term for estimating the interaction between two targets
$\begin{aligned} & \text { on } \\ & \text { 曹 } \\ & \text { y } \end{aligned}$	$\overline{\mathrm{x}}$	a candidate tracklet
	\bar{X}	the set of all candidate tracklets
	$\overline{\bar{a}}$	a (putative) individual activity of a candidate tracklet
	\bar{A}	the set of (putative) individual activities for all candidate tracklets
	θ_{a}	the appearance similarity for tracklet linking
	τ_{a}	time threshold for appearance-based tracklet linking
	\oplus	operator \oplus represents the association of two tracklets
	h	the number of hypothetical tracklets to generate from an existing tracklet $\mathrm{x}_{i}^{\prime}, h=9$

Table A.2: Graph and hypergraph notations.

	Symbol	Description
	\mathcal{H}	hypergraph $\mathcal{H}=(V, E, W)$
	$\mathcal{H}_{\mathcal{T}}$	tracking hypergraph $\mathcal{H}_{\mathcal{T}}=\left(V_{\mathcal{T}}, E_{\mathcal{T}}, W_{\mathcal{T}}\right)$
	$\mathcal{H}_{\mathcal{R}}$	activity recognition hypergraph $\mathcal{H}_{\mathcal{R}}=\left(V_{\mathcal{R}}, E_{\mathcal{R}}, W_{\mathcal{R}}\right)$
	V	the vertex set of a hypergraph
	E	the hyperedge set of a hypergraph
	W	the hyperedge weights of a hypergraph
	W_{a}	the appearance hyperedge weight, working with control parameter $\lambda_{a}=30$
	W_{d}	the facing-direction hyperedge weight, working with control parameter $\lambda_{d}=1$
	W_{g}	the geometric similarity hyperedge weight, working with control parameter $\lambda_{g}=0.5$
	m	the hyperedge degree, i.e., the number of incident vertices of the hyperedge
	\mathbf{e}^{m}	a m-degree hyperedge, $\mathbf{e}^{m}=\left\{v_{1}^{\mathbf{e}}, \ldots, v_{m}^{\mathbf{e}}\right\}$
	\mathcal{C}	a hyperedge cluster, which is a vertex set with interconnected hyperedges
	κ	number of vertes in a hypergraph cluster $\mathcal{C}, \kappa=\|\mathcal{C}\|$
	$E^{\mathcal{C}}$	the set of all incident hyperedges of a cluster \mathcal{C}
	Ψ	weighting function operated on a hypergraph cluster \mathcal{C}
	y	the indicator vector to denote the vertex selection from $V \in \mathcal{H}$ to be included in \mathcal{C}
	ϵ	$\epsilon=\frac{1}{\kappa}$ used in weight normalization
	δ	$\delta_{p}=\frac{y_{p}}{\kappa}$ used in weight normalization
	$\mathbf{p}_{i j}$	image coordinate vector between two positions at i and j
	$\breve{\mathcal{H}}$	a sub-hypergraph indexed by β, i.e., $\breve{\mathcal{H}}_{\beta}$
	\breve{E}_{β}	the hyperedges of the sub-hypergraph $\breve{\mathcal{H}}_{\beta}$ corresponding to the β-th interaction class
	\breve{W}_{β}	the hyperedge weights of the sub-hypergraph $\breve{\mathcal{H}}_{\beta}$ corresponding to the β-th interaction class
$\begin{aligned} & \text { Ĩ } \\ & \text { تٌ } \end{aligned}$	$\tilde{\mathcal{G}}$	$\operatorname{graph} \tilde{\mathcal{G}}=(\tilde{V}, \tilde{E}, \tilde{W})$
	\tilde{V}	the vertex set of a graph; \tilde{V} is associated with X^{\prime} in this paper
	\tilde{E}	the edge set of a graph
	\tilde{W}	the edge weights of a graph
	$e_{i j}$	a graph edge connecting two vertices v_{i} and v_{j}
	$p_{\text {corr }}$	the correlation between the activities of two targets x_{i} and x_{j} used to calculate weight $\tilde{W}\left(e_{i j}\right)$
	g	a function to calculate the correlation between the activities of two targets
	d	Eucludean distance between two targets in the image coordinate.
	$\phi_{i j}$	the angle between the facing direction of x_{i} and the relative vector from x_{i} to x_{j}.
	$\tilde{\mathcal{G}}_{s}$	sparse graph by discarding edges with small weights from $\tilde{\mathcal{G}}$
$\begin{aligned} & \text { U } \\ & .0 .7 \\ & \Xi \end{aligned}$	t, τ, f	video frame indices
	i, j, k, l	target tracklet indices
	p, q, r	hypergraph vertex indices
	α	the index for hypergraph clusters e.g. $\mathcal{C}_{\alpha}, \mathcal{C}_{\alpha}^{\mathcal{T}}$ from $\mathcal{H}_{\mathcal{T}}$
	β	the index for interaction classes e.g. $I_{\beta} ; \beta$ is also the index for sub-hypergraphs e.g. $\breve{\mathcal{H}}_{\beta}$
	c	the index for collective activity classes C

Table A.3: Component probabilities for the pairwise interaction activities. The parameters used in these component probabilities, e.g, the means and standard deviations are calculated from the training dataset.

| Component | Probability |
| :---: | :--- | :--- |
| Distance | $p_{d s}\left(\right.$ within-effective-range $\left.\mid x_{i}, x_{j}\right)=\delta\left(\left\|\frac{d_{i j}-\mu_{d s}}{\sigma_{d s}}\right\| \leq b\right), d_{i j} \sim \mathcal{N}\left(\mu_{d s}, \sigma_{d s}\right)$, where \mathcal{N} denotes |
| normal distribution | |

Table A.4: Probabilistic formulations for the pairwise interactions $p\left(i_{i j}=\beta\right)$. We define dancing-together (DT) as a new interaction activity class to deal with the new collective activity "dancing" in the Augmented-CAD.

Pairwise Interaction $p\left(\mathrm{i}_{i j}=\beta\right)$	Associated Collective Activity (C)	Probabilistic Formulation
facing-each-other $(\beta=\mathrm{FE})$	TALKING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { standing }, \text { standing }) \cdot \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { opposite }) \cdot p_{f s}(\text { frontness }) \end{aligned}$
standing-in-a-row $(\beta=\mathrm{SR})$	QUEUING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { standing }, \text { standing }) . \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { same }) \cdot p_{f s}(\text { frontness }) \end{aligned}$
standing-side-by-side $(\beta=\mathbf{S S})$	WAITING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { standing }, \text { standing }) \cdot \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { same }) \cdot p_{f s}(\text { sideness }) \end{aligned}$
dancing-together $(\beta=\mathrm{DT})$	DANCING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { walking, walking }) \cdot \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { frequent-chaning }) \cdot p_{f s}(\text { sideness }) \end{aligned}$
approaching $(\beta=\mathrm{AP})$	GATHERING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { not-connect }) \cdot p_{a a}(\text { walking }, \text { walking }) . \\ & p_{d c}(\text { decreasing }) \cdot p_{d r}(\text { opposite }) \cdot p_{f s}(\text { frontness }) \end{aligned}$
walking-in-oppositedirections ($\beta=\mathrm{WO}$), leaving ($\beta=\mathrm{LV}$)	DISMISSAL	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { not-connect }) \cdot p_{a a}(\text { walking }, \text { walking }) . \\ & p_{d c}(\text { increasing }) \cdot p_{d r}(\text { opposite }) \cdot p_{f s}(\text { frontness }) \end{aligned}$
walking-side-by-side $(\beta=\mathrm{WS})$	CROSSING WALKING (TOGETHER)	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { walking }, \text { walking }) \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { same }) \cdot p_{f s}(\text { sideness }) \end{aligned}$
running-side-by-side ($\beta=\mathrm{RS}$)	JOGGING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { running }, \text { running }) \cdot \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { same }) \cdot p_{f s}(\text { sideness }) \end{aligned}$
running-one-after-theother $(\beta=\mathrm{RR})$	CHASING	$\begin{aligned} & p_{d s}(\text { within-effective-range }) \cdot p_{g c}(\text { connect }) \cdot p_{a a}(\text { running }, \text { running }) . \\ & p_{d c}(\text { unchanging }) \cdot p_{d r}(\text { same }) \cdot p_{f s}(\text { frontness }) \end{aligned}$

