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Abstract— We present the sequential correlation network
(SCN) to improve concurrent activity detection. SCN combines
a recurrent neural network and a correlation model hierarchi-
cally to model the complex correlations and temporal dynamics
of concurrent activities. SCN has several advantages that enable
effective learning even from a small dataset for real-world
deployment. Unlike the majority of approaches assuming that
each subject performs one activity at a time, SCN is end-to-
end trainable, i.e., it can automatically learn the inclusive or
exclusive relations of concurrent activities. SCN is lightweight in
design using only a small set of learnable parameters to model
the spatio-temporal correlations of activities. This also enhances
the explainability of the learned parameters. Furthermore,
the learning of SCN can benefit from the initialization using
semantically meaningful priors. We evaluate the proposed
method against the state-of-the-art method on two benchmark
datasets with human skeletal data, SCN achieves comparable
performance to the SOTA but with much faster inference speed
and less memory usage.

I. INTRODUCTION

Activity recognition is useful to robots, especially in
scenarios involving interactions with humans. Detecting ac-
tivities in the wild and on device is challenging due to three
aspects, i.e., the physical, semantic, and efficiency issues.

For the physical aspect, detecting activities in the spatio-
temporal volume is usually formulated as a complicated
three-step pipeline: the localization of the person and/or body
parts, the segmentation of temporal intervals of activities
(which may be of variable lengths), and the classification
of activity types. Several challenging factors (i.e., viewpoint
variations, occlusions, scale and context variability) associ-
ated with such a complex pipeline further complicate the
activity detection problem. For the semantic aspect, how
to conceptually define or describe an activity is often less
addressed, which leads to the category confusion problem
[1]. Moreover, real-world activities can occur concurrently
[2] or hierarchically [3], for a single or multiple subjects.
For the efficiency, it remains an open problem how to model
activities’ complexities in a lightweight fashion.

The activity recognition techniques have progressed
greatly for the past few years in resolving the physical issues.
Early works focused on the classification of a ‘trimmed’
video with a single activity [4], and later on, the focuses were
gradually shifted to ‘untrimmed’ videos where the temporal
segmentation of activities is required [5]. The attentions
of researchers are also migrating from a single person to
multiple individuals [1], from a single view to multiple
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Fig. 1: We aim to robustly detect (i.e., segment and classify) com-
plex concurrent activities. Taking human pose skeletal sequences
as input, the underlying activities are rich in context, fine-grained
and concurrent in nature. The proposed SCN can recognize fine-
grained concurrent activities via LSTM and a correlation model. It
is lightweight in design, end-to-end trainable, and explainable.

views [6], and from 2D images to 3D (RGB-D) sequences
[7]. Albeit these advances, most existing activity recognition
methods are still based on an assumption that is not very
practical, i.e., one subject (a person or a group) can only
perform one activity at a time. In other words, they assume
that different activity classes are mutually exclusive for one
subject. The same situation also exists in the existing multi-
label activity detection datasets, e.g., MultiTHUMOS [8].
Because the motion of a subject is usually multi-purpose
by nature, this assumption reduces the practicability of the
activity detection algorithms. The main goal of this work is
to remove this assumption to develop a more effective and
efficient method toward real-world deployment.

In this paper, we proposed a sequential correlation net-
work (SCN) model to detect the concurrent activities per-
formed by a single person from a streaming sequence. For
instance, in Figure 1(a), a person is sitting with leg crossed
and making a phone call, where our goal is to detect all three
labels (‘sit’, ‘cross leg’, ‘make phone call’). We study three
correlations between any two concurrent activities: positive,
negative and neutral. By “positive”, it means that these two
activities tend to co-occur. The “negative” and “neutral” cor-
relations represent the mutual exclusion and independence,



respectively. Since we are studying the concurrent activity
detection from the streaming sequence, we further extend
these three correlations from the spatial domain (within the
same time interval) to the temporal (in order). We note that
the correlation of activities (spatially, temporally, or causally)
can be a good feature to leverage to improve event detection
robustness. For example, in Figure 1(b), the ‘wear shoes’
activity should correlate strongly with ‘bend’.

SCN consists of two major components as in Figure 1: (i)
a base LSTM for generating raw per-frame detection results,
and (ii) a graphical correlation model to refine the raw results
by considering the correlations among activity classes. In
practice, we propose two types of correlation models, to
handle concurrent activities that are either spatially or spatio-
temporally correlated. Figure 2 illustrates the pipeline, in
which the dotted arrows indicate the model choice. The
spatio-temporally correlation model is designed as a re-
current architecture. But unlike most recurrent networks in
which the neurons within a recurrent layer only interact with
themselves along the time axis, neurons in the correlation
model can interact with each other (spatially and temporally).
Such fully connectivity enables efficient message passing
among neurons, and thus improve the capacity to model
complex correlations among concurrent activities.

We design the correlation model to be lightweight in such
a way that the correlation type between any two activity
classes is explained by a learnable parameter. This character-
istic enables the initialization of the correlation model with
the statistical prior, which boosts the trainability of SCN.
In addition, the lightweight design enables the fast inference
speed and efficient memory usage. SCN achieves comparable
performance to the state-of-the-art method in benchmark
evaluations but with minimal resource consumption.

II. RELATED WORK

Activity recognition is a fundamental problem in computer
vision. Numerous advances have been achieved in activity
recognition for the past decade, see [9] for a survey. We
only review the most relevant methods herein.

Concurrent activity detection. The introduction of con-
currency relaxes the constraint that one subject (a person or a
group) can only perform one activity at a time, and there are
only a few works addressing this more general problem. Wei
et al. [2] designed hand-crafted features to represent activities
and their correlations, manually segmented sequences using
sliding windows, and classify activities for each interval
using a local detector. Recently, Wei et al. [9] proposed SRN,
a two-stage relation network, for this topic, and achieves the
state-of-the-art performance. The correlations of activities
at both the posture level and class level are modeled by
Transformer-like [10] relation layers which brings heavy
computational overhead. This makes us wonder if we can
design a more efficient model but with similar performance.
To this end, we propose SCN which relieves the burden of the
neural network in modeling the correlations. For the posture
level, we relieve the burden by using correlation-encoded
hand-crafted features as input, which contradicts SRN [9]

Fig. 2: Overall pipeline of SCN for concurrent activity detection,
taking a human skeleton sequence as input. The noisy, unreliable
multi-labeling of activities generated from the base LSTM can be
refined and corrected in the proposed SCM or STCM models via
message passing. Color represents individual activity class.

that takes raw input and use relation layers to model the
correlations. For the class level, we propose a lightweight
correlation model to capture the correlations at the logits
level, which is much more efficient than the relation layers.

Graph neural network. The correlation model of SCN
resembles a complete graph in which each node corresponds
to an activity class, and each edge corresponds to the correla-
tion between two activity classes. It is designed as a message
passing network which belongs to the category of graph
neural network (GNN). GNN refers to a wide spectrum of
models, e.g., graph convolutional neural networks [11], non-
local neural network [12], Transformer [10], structural RNN
(SRNN) [13], message passing neural network [14], etc. .
See [15] for a survey. Most GNNs aim to learn expressive
node-wise features based on the correlations captured by
the semantically-vague edges. Only a few methods model
the semantically meaningful edges, e.g., SRNN. For the
sake of explainability, the edges in our correlation model
are also semantically meaningful. The differences between
SRNN and our model are two-fold: (i) SRNN models the
correlations among human, object and scene which comprise
an activity, while our correlation model captures the inter-
activity correlations which are higher-level; (ii) due to the
adherence to the RNN properties, SRNN only models the
temporal correlations between the corresponding neurons
along the time axis, while our correlation model captures
the fully correlations via a complete graph both spatially
and temporally.

III. METHOD

Our approach is based on a hypothesis that the unstable
modeling of concurrent activities by RNN can be improved



by explicitly modeling the activity correlations using a
message-passing refining layer. The intuition is that errors
from the state-of-the-art RNN/LSTM activity detections can
be further corrected or recovered. Specifically, we propose
SCN, which consists of two main modules (Figure 2): (i)
a base LSTM taking a skeleton sequence as input and
producing raw classification scores, (ii) a correlation model,
which is implemented as a message passing layer that
corrects and refines the LSTM’s predictions, by leveraging
the learned inter-activity correlations. We design two types of
correlation models: (i) the spatial correlation model (SCM)
for activities with high simultaneous correlations, and (ii)
the spatio-temporal correlation model (STCM) for activities
with strong spatio-temporal correlations.

The correlation model is generic that can work on top of
any concurrent activity detectors. The correlation between
any pair of activities can be represented by a single nor-
malized scalar value (1 for positive, 0 for neutral, and −1
for negative correlations), which is essentially a first-order
representation of correlations. The parameters of both SCM
and STCM are lightweighted, such that (1) The SCN model
is explainable by the learned parameters of SCM/STCM, via
checking their semantic meanings for the activity classes,
e.g., ‘wear shoes’ and ‘bend’ in Figure 1 should have positive
correlation weight. (2) Both SCM and STCM only induce a
small amount of parameters overhead for training, thus SCN
is end-to-end trainable on a small sample set, despite that
concurrent activity detection is supposed to require a large
training set. (3) The parameters of both SCM and STCM can
be easily initialized with the statistical priors.

We review the formulation of the spatial message passing
network of [16] in § III-A, which we adapt in § III-B for
concurrent activity detection. We then explain in § III-C
how we endow recurrence to the formulation, such that both
spatial and temporal dynamic correlations can be modeled.
§ III-D describes how we train our model with weights
initialization from the statistical prior knowledge.

A. Spatial message passing network

A MRF-like spatial network model was originally de-
signed to model the correlations of body parts’ positions in
[16] for human pose estimation, which we termed the spatial
message passing network (SMPN). Specifically, the location
distribution of a part a is formulated as a marginal likelihood:

p̄a =
1

Z

∏
v∈V

(pa|v · pv + bv→a), (1)

where V represents the set of all body parts. pa|v represents
the pairwise conditional distribution of the location of one
body part to another. bv→a is a bias term used to describe
the background probability for the message from part v to
a. Z is the partition function. When v = a, the message is
passed from a body part to itself, where (pa|v · pv + bv→a)
represents the unary potential; otherwise, it represents the
binary message.

The above formulation in [16] is implemented as a
message passing network. The marginal likelihood in (1)

Fig. 3: STCM. Unique colors represent neurons for each activity
classes. The orange neural connections represent the spatial corre-
lation connections, and the black and blue connections represent
the temporal correlation connections. Note that blue and orange
connections does not exist in the RNN models.

is reformulated as an energy function by abandoning the
evaluation of Z for efficiency:

ēa = exp

(∑
v∈V

[
log
(
s(ea|v) · r(ev) + s(bv→a)

)])
, (2)

where s(·) and r(·) are SoftPlus and ReLU functions, respec-
tively. The inclusion of the SoftPlus and ReLU maintains a
strictly greater than zero output, which prevents numerical
issues for the values leading into the log stage.

B. SCM for concurrent activity detection

We exploit the idea of SMPN in § III-A to model
inter-activity correlations within a specific temporal interval.
This model is termed as spatial correlation model (SCM).
The adaptation of SMPN to concurrent activity correlation
modeling involves several issues, and we present how to
resolve them in the following. (i) First, the pairwise condition
s(ea|v) in (2) is restricted to be greater than or equal
to zero, so only the positive (s(ea|v) > 0) and neutral
correlations (s(ea|v) = 0) are considered in this formulation.
The ignorance of negative correlations in (2) is because of
its applied pose estimation task. In pose estimation, a target
person is supposed to have all joints, so there should not exist
exclusive (or negative) correlations among different joints.
However, concerning our concurrent activity detection task,
there obviously tend to exist negative correlations among
the activity classes of interest, e.g., sit vs. stand. As such,
the pairwise condition in our formulation is allowed to be
negative. (ii) A negative pairwise condition might lead to the
numerical issues in the log stage. Thus we replace the log
and exp with tanh in our formulation to keep the model
parameters’ range consistent. We also bound the pairwise
condition by the range [−1, 1] for better explainability. (iii)
The pairwise condition pa|a for the unary potential (pa|a·pa+
ba→a) should always indicate the positive correlation. Thus,
we disentangle the computation of unary potential from that
of pairwise one, and force its “pairwise condition” pa|a to
be 1 and bias ba|a to be 0.



As a result, we reformulate the marginal likelihood in (1),
take the three aforementioned modifications into account, and
derive the following potential function:

z̄a = tanh

za + α
∑

c∈C, c6=a

[
ψ(ωa|c) · zc + bc→a

] , (3)

where C is the set of all classes. za is the disentangled unary
potential, and we use za to denote the logit for activity class a
which is the output of the base LSTM in SCN. z̄a represents
the refined logit for class a, which is output by SCM. ωa|c is
the pairwise condition, and ψ(·) is a clipping function that
restricts the range of ωa|c to be [−1, 1]. We employ α as
a learnable parameter to control the overall influence of the
messages passed from the other classes.

C. Spatio-temporal correlation model

Although SCM can model the correlation of activities
for each time step, it does not directly model the temporal
dynamics of activities. To this end, we introduce the spatio-
temporal correlation model (STCM) by adding the recurrent
connections into SCM to learn the temporal inter-activity cor-
relations. Refer to Figure 3. In the existing RNN structures,
recurrent connections within a recurrent layer only appear
in-between the corresponding neurons along the time axis
(black arrows). In contrast, the connections in STCM appear
in-between all neurons within the same layer, such that
messages can be passed along the time axis without barriers.
Consequently, the temporal message passing connections
(black and blue arrows in Figure 3) coupled with spatial
ones (orange arrows in Figure 3) are able to encode fully
spatio-temporal correlations among different activity classes.
As such, we extend (3) to include the temporal potentials:

z̄ta = tanh
(
zta + α

∑
c∈C,c6=a

[
ψ(ωa|c) · ztc + bc→a

]
+ β

∑
c∈C

[
ψ(ω̂a|c) · z̄t−1c + b̂c→a

])
,

(4)

where ω̂a|c and b̂c→a represent the parameters brought in by
the temporal message passing connections and t indicates
the time step. β is a learnable parameter (similar to α)
that controls the overall influence of the messages passed
from the previous activity classes. Note that we treat ω̂a|a
as a pairwise condition instead of a unary one, because the
previous activities and the current ones are treated separately.
This endows STCM with more flexibility to detect the ending
of activity intervals.

D. Training and initialization with priors

Given the predicted logits Z̄ = (Z̄1, . . . , Z̄t, . . . , Z̄T )
for each time step, where Z̄t = (z̄t1, . . . , z̄

t
c, . . . , z̄

t
|C|) and

z̄tc ∈ [−1, 1], we train SCN by minimizing the mean squared
error between Z̄ and the ground-truth logits Z. Specifically,
a ground-truth logit ztc = 1 indicates that activity class c
occurs at time t, and ztc = −1 indicates the absence of class

c at time t. The objective function is written as:

L =

T∑
t

|C|∑
c

(z̄tc − ztc). (5)

(5) can be minimized using back-propagation with ADAM
optimizer with learning rate 0.005 and betas (0.9, 0.999).

The work of [17] proposed a methodology where domain
knowledge can be integrated into RNN via a low-dimensional
abstract layer, to enhance the consciousness of RNN. The de-
sign of our correlation model, can be regarded as an instance
of such a theory for activity detection. Because of this, the
learned correlation parameters in SCN are more semantically
meaningful, and they can be effectively initialized with the
Bayesian statistics in a similar way as indicated in [17].

Recall in § III-B, the correlation model parameters are
semantically meaningful (i.e., 1 for the positive, 0 for neutral,
and −1 for negative correlations). Such parameters can be
initialized with the prior knowledge based on the coefficient
of colligation [18], which represents the correlation ρ of two
activities by the following formulation:

ρ =
µ11µ00 − µ10µ01

µ11µ00 + µ10µ01
, (6)

where µ11 / µ00 represent the number of occurrences that
both activity class A and B get 1 (occur) / −1 (not-occur).
µ10 represents the times that activity class A occur and B
not-occur; the case is reversed for µ01. Obviously, when ρ
approaches 1 (or −1), it indicates that A and B are positively
(or negatively) correlated. When ρ→ 0, there does not exist
a specific pattern regarding the co-occurrence of A and B,
thus their correlation is neutral.

IV. EXPERIMENTS

A. Dataset and experiment setup

We conduct experiments on the UCLA concurrent activity
dataset [2] and UA concurrent activity dataset [9], which
provide 3D skeleton data. The UCLA dataset contains 12
indoor activity classes, and 61 sequences in total. The UA
dataset is much larger dataset which provides 35 indoor
activity classes and 201 sequences.
Feature extraction is performed as in [19] from the skeletal
joints. Four types of features (positions, angles, offsets,
pairwise joint distances) are concatenated together to form a
310 dimension feature vector for each frame.
Implementation details. We implemented the proposed
SCNs in Pytorch. The base LSTM takes the 310 dimension
feature sequence as input. Initial weight for the learnable
parameter α and β in (4) is set to 0.05. We followed the
training and testing procedure as in [2], where sequences
with even indices are used for training and the remaining
are used for test. For the newly collected dataset, we take
two thirds of sequences are training data and the remaining
for test. All experiments are conducted on a machine with
an NVIDIA TITAN-X GPU with 12GB on-board memory.



Fig. 4: Visualization of the learned pairwise condition parameters:
spatial related parameters ω and the temporal ones ω̂ for each pair of
classes extracted from the STCM model. We denote activity classes
with number axis: drink (1), make a call (2), turn on monitor (3),
type on keyboard (4), fetch water (5), pour water (6), press button
(7), pick trash (8), throw trash (9), bend (10), sit (11), stand (12).

TABLE I: Comparisons on the UCLA dataset. ↑ (↓) means the
higher (lower) the better. See § IV-B for criteria descriptions.

Activity ALE MIP COA LSTM3 LSTM4 AGCN SRN SCM STCM
make a call 0.85 0.93 0.97 0.71 0.69 0.82 0.97 0.78 0.79
sit 0.99 0.98 0.98 0.78 0.79 0.87 0.96 0.82 0.80
stand 0.99 0.98 0.98 0.83 0.90 0.91 0.94 0.93 0.91
drink 0.91 0.92 0.96 0.95 0.92 0.90 0.90 0.94 0.96
type on keyboard 0.92 0.91 0.93 0.99 0.93 0.98 0.97 0.99 0.99
turn on monitor 0.55 0.42 0.43 0.86 0.84 0.88 1.00 0.92 0.90
fetch water 0.58 0.59 0.60 0.99 0.95 0.91 0.95 0.91 0.98
pour water 0.71 0.58 0.71 0.85 0.81 0.92 0.95 0.92 0.88
press button 0.66 0.22 0.33 0.92 0.79 0.86 0.99 0.83 0.96
pick up trash 0.39 0.40 0.55 0.72 0.80 0.66 0.82 0.73 0.91
throw trash 0.21 0.29 0.59 0.91 0.77 0.76 0.84 0.90 0.89
bend down 0.47 0.58 0.67 0.85 0.89 0.87 0.86 0.85 0.82
MAP ↑ 0.69 0.65 0.73 0.87 0.84 0.86 0.93 0.88 0.90
± std ↓ 0.25 0.28 0.23 0.10 0.08 0.08 0.06 0.08 0.07
OAP ↑ 0.84 0.86 0.88 0.86 0.86 0.88 0.91 0.88 0.90
ER ↓ n/a n/a n/a 0.29 0.30 0.31 0.22 0.25 0.23

B. Evaluation criteria

Average precision (AP) is proposed in [2] to measure
the localization accuracy for activity intervals. A detected
activity interval is considered to be correct if the overlap
between it and a ground-truth interval is greater than or equal
to 60%. We use both the mean class-wise AP (MAP) and
overall AP (OAP) over all classes as metrics.
Error rate (ER). In addition to the per-interval evaluation,
we also evaluate the per-frame activity detection performance
in terms of Error Rate which is proposed in [9]. It computes
the false positive and false negative area among all test se-
quences which measures the frame-level detection accuracy.

C. Results and analysis

Compared methods. We compare the proposed SCNs –
SCM and STCM with three SVM-based methods (namely
ALE, MIP and COA) described in [2], two LSTM-based
baselines named LSTM3 and LSTM4, respectively and one
graph CNN model - Adaptive Graph Convolutional Network
(AGCN) [20] and one state-of-the-art method on concurrent
activity detection namely SRN [9]. LSTM3 is a 3-layer
LSTM with 128 hidden units for each layer, followed by a
linear classifier. Compared to LSTM3, LSTM4 has a larger
parameter capacity, i.e., 4 layers with 256 hidden units for
each layer. Both LSTM3 and LSTM4 take a sequence of

TABLE II: Comparisons on the UA dataset. ↑ (↓) means the higher
(lower) the better. See § IV-B for criteria descriptions.

Method OAP ↑ MAP ↑ ± std ↓ ER ↓
LSTM3 0.56 0.44 ± 0.30 1.24
LSTM4 0.57 0.43 ± 0.31 1.31
AGCN 0.55 0.44 ± 0.34 1.30
SRN 0.61 0.48 ± 0.31 1.20
SCM 0.59 0.47±0.36 1.18
STCM 0.60 0.48±0.33 1.21

310 dimensional feature vector as input, the input features
are described in IV-A. SCM and STCM are applying our two
variants of correlation model - SCM, STCM on top of the
base LSTM respectively. In this experiment, we adopt the
LSTM3 as our base LSTM as its amount of parameters is
not too large to cause overfitting.
Results analysis. As shown in Table I, the two variants of
SCN work well on most of the activities with high mean
AP and low variation. In comparison, ALE, MIP and COA
overfit on a few classes, e.g., sit, stand, drink, which are
frequently appeared in the dataset. This indicates that our
methods are more robust than the other methods in handling
the biased dataset. In addition, SCM and STCM outperform
LSTM3 on high correlated activity classes. We argue that
SCM and STCM can recover/correct some missing/wrong
detections with the help of spatio-temporal inter-activity
correlations. For example, STCM has a great improvement
on detecting pick up trash, since pick up trash usually occurs
simultaneously with or after bend down. STCM learns the
intrinsic spatio-temporal inter-activity correlations, increase
the confidence of pick up trash when bend down happens.
The performances of SCM and STCM are comparable to the
state-of-the-art method SRN. But SCM and STCM have less
parameters which are efficient to train.

We also compares LSTM baselines, AGCN, SRN and our
proposed SCM, STCM on the UA dataset in terms of OAP,
MAP, ER. The SCM and STCM adopt LSTM4 as their base
LSTM to fit for the increasing training data. From table II,
we observe that both SCM and STCM outperform LSTM4
on OAP, MAP and ER, which is consistent with the results
on the UCLA dataset. The experimental results confirm the
effectiveness of our correlation model.

The SCM and STCM are two variants of the proposed
correlation model regarding spatial correlations and temporal
correlations. It is not guaranteed that STCM should always
outperform SCM, and the selection is application dependent.
If concurrent activities contain high temporal correlations,
STCM should benefit from the formulation by leveraging
temporal correlations.
Efficiency. The design of SCM and STCM is very
lightweight. The amount of trainable parameters for LSTM3,
LSTM4, AGCN, SRN and SCM/STCM are 0.5M, 2.2M,
6.9M, 2.8M and 0.5M, respectively. Given N activity classes,
the parameter overhead of STCM is only 2N2, which is
trivial compared to that of base LSTM3 (0.5M). Such
lightweight design will prevent our model from severe over-
fitting on small dataset. Training SCM or STCM on UCLA
dataset only takes 2 GPU hours with comparison to 10 GPU



Fig. 5: Comparisons of loss convergence regarding the effect of
initialization. Both SCM and STCM converge fast without perfor-
mance degradation, when the prior initialization is applied.

training hours of SRN. The small parameter size enables
model to be deployed on on-board devices. We also compare
the inference time of SCM/STCM and SRN. SCM/STCM
achieves 1200 FPS on a Intel Xeon X5570 @2.93GHz CPU,
which is 12 times faster than SRN (100 FPS). The fast
inference speed makes real-time activity recognition pipeline
available for on-board devices considering skeleton extrac-
tion and feature pre-processing. In addition, the activity pairs
with high correlations are sparse according to observations
in Figure 4, thus less correlated activities will not harm the
original predictions.
Initialization with prior. We evaluate the effectiveness of
the proposed initialization method for pairwise condition
weight on UCLA dataset. The base LSTM of SCM and
SCTM adopts the same architecture of LSTM3.

Figure 5 shows the training loss degradation regarding to
iterations with prior initialization, w.r.t. random initialization.
Four models (SCM and STCM with random initialization,
and SCM and STCM initialized with priors) were trained
for comparison, with identical parameter settings except for
the pairwise condition initialization. The results show that
SCM and STCM initialized with the priors converge much
faster than the random initialization case. Which demonstrate
that the computed statistical priors are closer to the optimal
solution and can thus accelerate the convergence speed.
Explainability. Remind that in § III we argue that the pair-
wise condition parameters can represent the spatial/temporal
correlation between activity pairs. We visualize the learned
pairwise condition parameters of STCM which is trained on
UCLA dataset in Figure 4. The pairwise condition weights
are assigned with different colors according to its value.

In the spatial pairwise condition matrix ω, the following
class pairs (stand, fetch water), (stand, pour water), (sit,
type on keyboard) have large positive values, which indi-
cates positive correlations. On the contrary, the weight of
the activity class pair (sit, stand) is close to −1, which
is obvious that the two activities cannot co-occur. In the
temporal pairwise condition matrix ω̂, fetch water before
pour water is strongly correlated but fetch water after pour
water is mutually exclusive, which is consistent with our
prior knowledge that these two activities always happen in
order. The pairwise conditions may reflect the bias of the

dataset, e.g., make a call and drink are strongly correlated
in spatial domain since the activities always co-occur.

V. CONCLUSION

In this work, we present SCN that can reliably detect
multiple concurrent activities from the streaming video. This
novel model captures the spatio-temporal inter-activity cor-
relations with lightweight learnable parameters. The model
incorporates the advantage of RNN and graphical model by
building a correlation model on top of the RNN, thus making
the framework end-to-end trainable. The lightweight correla-
tion parameters are semantically explainable. Experimental
results demonstrate that SCN achieves comparable perfor-
mance to the state-of-the-art methods on several datasets but
with less model size and much faster inference time.
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