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ABSTRACT

We present a video analytics system combining railcar de-
tection, classification, Federal Railroad Admin. (FRA) text
identification, and logo detection into a system for locomotive
transportation and yard management. Existing RFID-based
systems are limited by sensor deployment and cannot visually
identify railcars when they are away. As there are typically
tens of tracks and hundreds of railcars in a yard, an automatic
vision system is desirable. The proposed AI system is devel-
oped for autonomous yard inventory checking, such that the
arrival, departure, and movement of individual railcars can
be automatically monitored and managed in the facility. Our
system consists of multiple cameras with edge computing de-
vices installed at check points (track entrances and branches),
such that visual detection and tracking of railcars can be per-
formed and meta-data can be exchanged. After knowing the
railcar locations and types, scene text detection is performed
to search and recognize FRA ID markings and logos that can
uniquely identify each railcar. Information fusion a database
in the central hub can further improve railcar identification
and reduce errors. Early results on real-world field collected
data demonstrate the efficacy of the proposed approach.

Keywords: railcar, detection, tracking, scene text detec-
tion, OCR, Federal Railroad Administration, FRA, locomo-
tive transportation, yard management, edge computing.

1. INTRODUCTION

With the raise of AI visual analytics, deep neural network
(DNN) based vision systems can now achieve high technical
readiness for industrial use in logistics and asset management
[2]. In this paper, we present a video system for locomo-
tive yard inventory management applications (Fig.1), by in-
tegrating multiple modules including railcar detection, clas-
sification, Federal Railroad Administration (FRA) text iden-
tification, logo detection, message passing, and control cen-
ter database logger. The development is related to recent ad-
vancements in autonomous driving cars [16], car license plate
recognition (LPR) [1], and smart transportation systems [10],
however the use case and problem scenarios for railcar appli-
cations are different, as discussed in the following.
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Fig. 1. Overview. (a) A busy rail yard close to Atlanta. (b)
Graffiti on a boxcar makes the FRA texts hard to recognize.
(c) Yard layout and camera deployment in our experimental
setup. Top two views show railcar detections, FRA text iden-
tifications, and logo detections from the two edge devices.

(a) from www.reddit.com/r/Atlanta/comments/8099iu/from csx terminal west to the city/

Todays locomotive yard uses RFID tag readers at yard en-
trance to detect train come/leave, by reading each RFID tag
attached on individual railcars. RFID tags may be damaged
or missing, and causing missed detections. In a yard, there
are typically tens of tracks and hundreds of railcars awaiting
sorting or switching, where the ‘switching operations’ (as-
sembly/disassembly of railcars) optimize for the least times
of coupling operations and less distance traveled, to achieve
sooner new configurations for the next outbound train. In
practice, RFID tag reading stations are only available at track
entrances or branches, since it is not practical to install RFID
reader at every track. Nowadays, yard rolling stock switch
and inventory management still rely on manual processes,
which is tedious, time consuming and error prone.

In US, FRA regulations enforce that operating railcars on
railroads must be labeled with a Standard Carrier Alpha Code
(SCAC), which consists of two to four letters. In practice,
each railcar is typically labeled with a unique ID consisting



Fig. 2. System architecture and workflow for automatic railcar detection, FRA ID identifi-
cation and tracking for locomotive yard management applications.

Fig. 3. Rail track localization
using semantic segmentation.

of SCAC and/or 1-6 digits, the FRA ID, that uniquely iden-
tifies each railcar (an analogy to the license plate for street
vehicles). A major goal of this study is to detect and identify
such FRA ID for each rail car. Typical rail car types include
tank, hopper, boxcar, gondola, flatcar, etc. (Fig.4). FRA ID
may appear in different font type, size, at different locations
and layouts there-in. Graffiti, paint peeling off, or wearings
can cause challenges for the visual detection and recognition
of FRA texts.

We develop an autonomous visual railcar detection, iden-
tification, and tracking system for yard management, with an
aim to automatically identify the arrivals, departures, and lo-
cations of railcars in the yard. Our vision system consists of
one or more edge devices deployed at check points (yard en-
trances or track branches) and a control center hub (Fig.1c).
The RGB video input are fed into two branches of pipeline.
and exits of the yard. Workflow at each edge device consists
of two branches of pipeline (Fig.2): the first branch performs
rail car detection, logo detection and tracking, and the sec-
ond deals with scene text detection and recognition for FRA
text identification. State-of-the-art AI computer vision tech-
niques including YOLACT [5] object detection and segmen-
tation, and CRAFT [4] scene text detection, MORAN [8] text
recognition, among the others [11, 15, 17, 12, 13, 3] are eval-
uated, adopted and integrated into the pipeline.

In this study, we constrain the FRA ID search space to be
a known, limited set of railcars that are scheduled to visit the
targeted yard. This problem setup aligns with business usage,
as the rail yard control center typically has access to customer
train schedules. With such known anticipated railcars that will
appear, our video analytics results i.e. recognized railcar texts
can be matched against the scheduled railcar lists to refine
toward the final FRA ID lists. Experiments are performed
on a railcar dataset collected from a real-world locomotive
yard in the US. Evaluations of railcar FRA identification pre-
cision/recall (PR) are performed on this dataset in § 4. Results
show that our method can achieve accuracy of 80.54%. To the
best of our knowledge, this is the first video analytics system
of the kind for rail car management applications.

2. BACKGROUND

Railcar inventory management. Traditionally railway in-
dustry relies on Radio Frequency Identification (RFID) for
rail car logistic management [9]. With the rise of AI tech-
nologies, video analytic systems now have growing impact
for the next-generation rail yard inventory control.

Visual object detection has been studied extensively.
Two-stage detectors such as Faster-RCNN and Mask-RCNN
[6] are generally more accurate but slower. Single-stage de-
tectors such as SSD are faster but less accurate. YOLOv3
[11] is a popular real-time object detection model based on
improvements on previous YOLO generations. YOLACT [5]
is a simple fully-convolutional model that can achieve real-
time instance segmentation, with a design of prototype mask
set generation and per-instance mask coefficient prediction.
Object detection with high-quality instance mask can be ob-
tained by linearly combining the mask prototypes with the
coefficients, without the dependency of repooling.

Multiple object tracking approaches typically rely on the
tracking-by-detection paradigm. Given per-frame detection
results in bounding boxes, visual tracker performs match-
ing (based on appearance similarity or geometric consistency,
tracklet association and update. Popular methods include
Kalman filtering, DeepSORT [15], or data-driven tracking
methods such as the TrackletNet [14].

Scene text detection and recognition. Recent advances
can be organized into three broad categories (see survey [18]):
(1) scene text detection [17, 12, 4], concerning the discovery
and localize texts from natural images, (2) scene text recogni-
tion [13, 3, 8], focusing on understanding the texts from the
detected character regions, and (3) end-to-end scene text spot-
ting using a single network such as [7].

Scene text detection. SegLink [12] uses a FCN that de-
composes scene texts into locally detectable segments (ori-
ented box covering a part of a word) and links (which connect
adjacent segments). Recently, CRAFT [4] can effectively de-
tect text area by exploring each character with region aware-
ness and modeling the affinity between characters, without
the need of individual character level annotations.

Scene text recognition (STR). CRNN [13] is among the
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Fig. 4. YOLACT railcar and logo detection (type classification) with instance segmentation results. (a) Detected 2 engines and
1 logo. (b) Detected 3 flatcars. Note that the leftmost is only partially observed but can still be detected. (c) Detected 1 hopper
and 1 flatcar. (d) Detected 1 hopper and 2 gondola cars. (e) Detected 2 hoppers and 1 logo. (f) Detected 1 tank and 1 hopper.

earliest end-to-end trainable methods for image-based se-
quence recognition. MORAN [8] consists of a multi-object
rectification network and an attention-based sequence recog-
nition network, which can effectively recognize irregular
scene texts. The work of [3] introduce a unified four-stage
framework that allows for consistent training and evaluation
of STR methods. Google Tesseract designed for document
OCR 1is not suitable for scene text recognition.

3. METHOD

The proposed video analytics system consists of a set of fixed
RGB cameras at the both ends of the yard as in Fig.1c. As
the train enters the yard they can be detected using standard
foreground/background (FGBG) analysis. We use OpenCV to
detect any train passing. We further combine this train detec-
tion approach with semantic segmentation (Fig.3). This effec-
tively narrows down the ROI to speed up analysis. This way
the train-passing detection can run on long hours of videos,
and determine if it is necessary to continue the pipeline.

For the video frames with train(s), further pipeline of two
branches in Fig.2 are carried out and then a fusion is per-
formed to uniquely identify each railcar: (1) The railcar
branch performs per-car detection, segmentation, logo de-
tection/tracking (if found) and railcar tracking. (2) The text
branch performs scene text detection and recognition. (3)
The FRA fusion module then take results from both branches
to robustly determine the FRA ID that uniquely identify each
railcar. (4) Per-frame results generated at each edge device are
sent to the control center via message passing for database
logging, inventory update, and user front-end. Note the two
branches can be run in parallel asynchronously to maximize
the processing frame rate at the edge device.

1 https://github.com/tesseract-ocr/tesseract

3.1. Railcar and logo detection, segmentation, tracking

The railcar branch pipeline in Fig.2 start with fast YOLACT
[5] detection that can localize 11 types of railcars and 15 logo
classes. Logo detection are useful in joint improvement of
railcar identification when combined with recognized FRA
texts. The YOLACT detection results come with instance seg-
mentation (Fig.4), which can be used to estimate a rectified
mask via affine transformation that can normalize the local-
ization of FRA ID texts within the railcar mask. Note that par-
tially appearing railcars are properly annotated in our training
set, such that our YOLACT model can detect partly observed
railcars as in Fig.4b,d. This is a major difference compared to
standard street car detection methods (e.g. Mask-RCNN [6]),
as railcars are much longer in shape. There is a trade-off be-
tween setting a wider camera view in order to capture the full
railcar, or a narrower view to assure enough pixel resolution
for FRA text detection.

We also experimented other object detectors including
YOLOv3 [11]. However the 2D detection boxes is less
useful compared to the segmentation masks obtained from
YOLACT, which can help localizing FRA texts and filtering
out possible graffitis or unwanted texts after the rail car type
is known.

Tracking. All detected railcars and logos are fed into a
DeepSORT [15] tracker to construct respective tracklets for
robustly tracking and counting. Logo(s) inside a railcar mask
associated with it for identification.

3.2. FRA text detection and tracking

The text branch pipeline in Fig.2 adopts CRAFT [4] scene
text detection followed by MORAN [8] text recognition for
FRA ID determination. We have also investigated other scene
text detection [17, 12] and recognition [13, 3] approaches, and
found the aforementioned pipeline is most effective.

https://github.com/tesseract-ocr/tesseract
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Fig. 5. Visual results. Recognized FRA ID with railcar type are shown on upper-left. In several cases the noisy CRAFT text
detection and MORAN recognition results are successfully filtered out using the FRA determination rules described in §3.3.

3.3. FRA ID text identification

The FRA ID consists of 6 to 8 characters or digits in one or
two rows. In some case it contains only 6 digits in a single
row, and in other cases there are two rows with 4 characters
and 6 digits. FRA text identification can be challenging due
to character fade out, graffitis, clutter backgrounds, blurring
from fast moving training, and environmental variations.

We perform tracking of each individual character across
frame for robust aggregation, and then filter texts using a ROI
calculated from YOLACT railcar segmentation mask. For
example, as in Fig.5, for gondola or box car the FRA texts
can only appear at the left side of the railcar body. Detected
scene texts are grouped and associated according to the FRA
ID string formats, and in several cases OCR errors can be re-
covered. For example, for an ID with 5 digits and 1 character,
the character is likely incorrect (such as ‘I’ vs ‘1’, ‘B’ vs ‘8’).

The next step is the re-assembly of the FRA ID via group-
ing texts. Challenges here include the mix of ID texts with
other texts printed on the car body as in Fig.5d,e,f. The spac-
ing between individual characters can vary, and the same FRA
ID can appear at multiple locations of the car. All text candi-
dates are properly filtered, assembled, and organized to match
the FRA IDs from a known list of anticipating cars. Texts that
are far off, too large or too small are ruled out.

3.4. Control center and database

The identified railcars with FRA IDs, types and logos at
each edge device are sent to the control center using mes-
sage passing for database logging and user front-end. The
database stores detected train and railcar information for in-
ventory queries. Railcar identification information are aggre-
gated, and until the train moves completely out of the view,
we then determine the FRA ID based on majority voting from
the tracklet. One can further consider the matching order of
railcars to refine identification results.

4. EXPERIMENTAL RESULTS

We have collected a field dataset using Dahua 59430UNI and
6CE230UNI wide-angle PTZ cameras set at heights ranging
from 4 to 12 feet, at distances ranging from 10 to 30 feet to the
rail tracks. Videos from day and night and in various weather
conditions are collected. We selected 6, 112 frames for dense
annotation, which includes 26, 899 railcars of 11 types, 4, 003
logos in 14 types, and 8, 921 FRA IDs. The YOLACT dataset
is split into 70% for training, 15% validation, and 15% test-
ing sets. The YOLACT, CRAFT, and MORAN models are
implemented in PyTorch.

The end-to-end speed of our system (including video cap-
turing and processing) running on NVIDIA AGX XAVIER
varies from 4 to 7 frames per second. Speed bottleneck is at
the FRA text detection module, since some cars such as Fig.5f
contain many texts unrelated to FRA however our pipeline has
to detect them before they can be ruled out as in § 3.3.

Results. We compare the detected FRA ID against man-
ual groundtruth labeling for two sets of test video containing
about 50 railcars. Only cases where the whole detected FRA
ID string match the groundtruth are considered true positives.
We obtain Precision-recall (PR) accuracy of 80.54%. Note
the intermediate YOLACT car type and logo detection accu-
racy are close to 95%. FRA text detection and recognition is
relatively more difficult.

5. CONCLUSIONS

We present a video analytics system combining railcar detec-
tion, type classification, FRA ID text identification, and logo
detection into a system for locomotive transportation and yard
management. Future work includes thorough real-time, on-
line evaluation and extension with image re-identification for
site-wide asset tracking.
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