Exploring the Vulnerability of Single Shot Module in Object Detectors via Imperceptible Background Patches

Yuezun Li ¹ Xiao Bian ² Ming-Ching Chang ¹ Siwei Lyu ¹

¹ University at Albany, State University of New York, Albany, New York, USA ² GE Global Research Center, Niskayuna, New York, USA

Abstract

We explore vulnerability of the **Single Shot Module (SSM)** commonly used in recent object detectors, by adding small perturbations to patches in the background outside object of interest to attack the object detection task.

Backgrounds

- Single Shot Module (SSM) refers to (1) the Region Proposal Network (RPN) commonly used in two-stage object detectors, or (2) the single-stage object detector itself.
- Adversarial perturbations are intentionally designed noises that are imperceptible to human observers yet can seriously harm the performance of a deep neural network.

Overview

Visual illustration of the SSM background patch attack on object detectors.

- (a) Input image.
- (b) Background patches generated from our method.
- (c) SSM base-network (RPN of two-stage detectors or the single-stage detector).
- (d) Output of SSM. Our attack can effectively disrupt the top ranked results by decreasing true positives (black) and increasing false positives (red).
- (e) Top ranked object proposals (for two-stage detectors) or detection results (for single-stage detectors).
- (f) Sub-network of two-stage object detectors for class labels prediction and shape refinements.

This material is based upon work supported by, or in part by, the U. S. Army Research

Laboratory and the U. S. Army Research Office under contract/grant number 73042CS.

Methods

Problem Formulation

The proposed SSM adversarial attack is to search for suitable background patches in terms of *geometry* (*location, size and shape*) and *pixel changes* to be altered.

Given input image \mathcal{I} , we formulate this optimization as the minimization of three loss terms:

- (1) True Positive Class (**TPC**) loss: L_{tpc}
- (2) True Positive Shape (**TPS**) loss: L_{shape}
- (3) False Positive Class (**FPC**) loss: L_{fpc}

$$\min_{\mathcal{I} \odot \mathcal{Q}} \left\{ L_{tpc}(\mathcal{I} \odot \mathcal{Q}; \mathcal{F}) + L_{shape}(\mathcal{I} \odot \mathcal{Q}; \mathcal{F}) + L_{fpc}(\mathcal{I} \odot \mathcal{Q}; \mathcal{F}) \right\},$$
s.t. PSNR($\mathcal{I} \odot \mathcal{Q}$) $\geq \varepsilon$,
$$Location \ and \ shape \ of \ the$$

$$Threshold: 35 dB \quad background \ patches \ \mathcal{Q} \ and \ the \quad SSM \quad included \ pixel \ value \ in \ image \ \mathcal{I}$$

Background Patches Generation

Algorithm 1 Background Patch GenerationRequire: SSM model \mathcal{F} ; input image \mathcal{I} ; maximal iteration T1: $\mathcal{I}_0 = \mathcal{I}, t = 0$ 2: while t < T and $\sum_{j=1}^M z_j \neq 0$ do3: $\mathcal{G}_t = \nabla_{\mathcal{I}_t} \left[L_{tpc}(\mathcal{I}_t; \mathcal{F}) + L_{shape}(\mathcal{I}_t; \mathcal{F}) + L_{fpc}(\mathcal{I}_t; \mathcal{F}) \right]$ 4: if t = 0 then5: $\mathcal{Q}_0 \leftarrow$ initial background patches6: else7: $\mathcal{Q}_t \leftarrow$ expanded background patches8: $\mathcal{P}_t = \mathcal{G}_t \odot \mathcal{Q}_t$ 9: $\hat{\mathcal{P}}_t = \frac{\lambda}{\|\mathcal{P}_t\|_2} \cdot \mathcal{P}_t$ 10: $\mathcal{I}_{t+1} = \text{clip}(\mathcal{I}_t - \hat{\mathcal{P}}_t)$ 11: if $PSNR(\mathcal{I}_{t+1} \odot \mathcal{Q}_t) < \varepsilon$ then12: break13: t = t+1Ensure: Adversarial perturbed image \mathcal{I}_t

Prefer: (1) distance
between background patch
and objects greater than a
threshold, (2) patch with
largest sum of gradient
intensities, (3) no overlap
between selected patches.

Expanding in one of the 4
possible directions (left,

possible directions (left, right, top, down) and the expanding direction is determined by whose gradient intensity increases the most for the patch.

Results

Conclusion

- The proposed **SSM background-patch attack** can effectively harm mainstream deep object detection networks *by only altering imperceptible pixels in the background* that results in significantly decreased true positives and increased false positives.
- Experiments on mainstream object detectors expose such vulnerability.