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Abstract

A desirable smart traffic-monitoring and street-safety
system can elicit and support the intervention of law en-
forcement agencies or medical staff. Recently, there has
been a dramatically higher demand for such smart systems.
To this end, the International Workshop on Traffic and Street
Surveillance for Safety and Security (IWT4S) was orga-
nized in conjunction with the 15th IEEE International Con-
ference on Advanced Video and Signal-based Surveillance
(AVSS 2018). Our goal is to advance the state-of-the-art de-
tection and tracking algorithms and provide a comprehen-
sive performance evaluation for them. We evaluate 5 sub-
mitted detection and 7 submitted tracking methods on the
large-scale UA-DETRAC benchmark, and the results are
shared publicly on the website http://detrac-db.
rit.albany.edu. We expect this challenge to advance
the research and development of new detection and tracking
methods for transportation applications.

1. Introduction

With the advent of ubiquitous smart camera systems,
traffic surveillance becomes the major method that is low-
cost and effective to alleviate the inefficient and ineffective
transportation systems. The basic expectation for a desir-
able traffic surveillance system is to provide the accurate

Figure 1. Examples of annotated frames in the UA-DETRAC
datasets. Colors of the boundary of the bounding boxes reflect
the occlusion property, as fully visible (red), partially occluded by
other vehicles (blue), or partially occluded by objects from the site
(pink). Black opaque regions are ignored, green opaque boxes are
regions occluded by other vehicles, and orange opaque boxes are
regions occluded by objects from the site. White arrow over the
vehicle shows its orientation angle.

and consistent trajectory of objects of interest in the scene.
Therefore, effective object detection and multi-target track-
ing methods are the basic building blocks for a reliable traf-
fic surveillance system.

The past few years have witnessed a great deal of
progress on object detection performance, thanks to a num-
ber of state-of-the-art visual detection algorithms [18, 13, 5,
16, 2, 21, 24]. Leveraging the advance in detections, track-
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ers based on the tracking-by-detection paradigm have also
achieved significantly better performance [3, 23, 11].

Traffic surveillance based on visual detection and track-
ing is still considered unsolved due to several factors, e.g.,
scale changes, occlusions, and background clutters. Apart
from these difficulties, more insights can be found in the
previous IWT4S challenge held at Leece, Italy [14]: The
best available methods still yield mediocre performance on
two widely used metrics, i.e., ID switches (PR-IDS) and
fragmentation (PR-FM), not to mention the additional com-
plications and requirements that will arise when applying to
real-world traffic surveillance use cases.

The use of deep learning and deep neural networks in de-
tection and tracking continues to dominate the front, which
accelerates the development with fast pace, thanks to many
breakthroughs including the low-cost high-performance
GPUs. Evaluation and benchmark of the state-of-the-art
methods on a large-scale dataset will enable a fair ‘com-
parison of apples and oranges’ and provide valuable in-
sight for future developments. Is it true that the object
detection performance will determine the upper bound of
the tracker performance? Will hybrid methods outperform
detect-by-tracking? To answer these questions, we held
the AVSS2018 Challenge on Advanced Traffic Monitoring
in conjunction with the International Workshop on Traffic
and Street Surveillance for Safety and Security (IWT4S)
using the large-scale UA-DETRAC benchmark [22] (Fig-
ure 1) as the evaluation platform. This paper summarizes
the challenge results, with observations and discussions that
can shed lights on the next generation of traffic video anal-
ysis advancements.

2. AVSS2018 Challenge
This challenge is a continuation from last year, the

AVSS2017 Challenge on Advanced Traffic Monitoring [14],
with an aim to to find the most powerful object detection
and tracking methods for traffic and street video analy-
sis. Again the UA-DETRAC benchmark evaluation [22] is
used, which consists of 100 video sequences, which is di-
vided into a training set (60 sequences) and a test set (40
sequences). There are more than 140, 000 frames in the
UA-DETRAC benchmark that are manually annotated cor-
responding to 8, 250 different vehicles. Participant teams
are allowed to use additional training data to optimize their
performance without constraint.

Similar to [14], teams can participate the challenges in
two difficulty levels, i.e., the beginner and experienced lev-
els. The beginner level is based on the “easy” subset (10
sequences) in the UA-DETRAC benchmark [22], while the
experienced level contains the whole test set (40 sequences)
for detection or the test-medium and test-hard set (30 se-
quences) for tracking. Besides, we further analyze the per-
formance of submitted algorithms under the 4 weather con-

ditions provided in the UA-DETRAC dataset, i.e., cloudy,
night, sunny, and rainy. In terms of evaluation, we use
the Average Precision (AP) score [19], the precision-recall
curve for tracking and DETRAC metrics [22] for tracking.
Refer to the challenge website1 for more information.

Table 1. Average running speed of the detection algorithms (in
FPS) when running on the UA-DETRAC-test set. “×” indicates
that GPU is not used. “n/a” indicates that the result is not provided
by the participant team.

Detectors GPU RAM Implementation Speed
RD2 (A.1) Tesla P40 n/a Python n/a

ExtendNet (A.2) TitanX 32GB C/C++ 45.45
MSVD SPP (A.3) TitanX 64GB Python n/a
IMIVD-TF (A.4) n/a n/a Tensorflow 1
MYOLO (A.5) n/a n/a C/C++ 7

DPM [7] × 8GB Matlab,C++ 0.17
ACF [6] × 64GB Matlab 0.67

R-CNN [8] Tesla K40 64GB Matlab,C++ 0.10
CompACT [4] Tesla K40 64GB Matlab,C++ 0.22

GP-FRCNN [14] Tesla K40 256GB Python, C++ 4.00

3. T4S 2018 Performance Evaluation
In this section, we compare all submitted methods this

year against the baseline and the best performers in the
T4S2017 Challenge. We start with overview of the sub-
mission methods and then present the evaluation results.

3.1. Object Detection

We received 5 object detection submissions in the T4S
2018 challenge (1 submission in the beginner level, and 5
submissions in the experienced level). The submitted meth-
ods are evaluated against the winner GP-FRCNN [14] in the
T4S 2017 challenge and 4 baseline detection methods (i.e.,
DPM [7], ACF [6], R-CNN [8], and CompACT [4]). Thus,
totally 10 methods are included in the T4S 2018 detection
challenge. Refer to Appendix A for the technical details of
the submission methods and Table 1 for speed comparison.

All submissions are improvements from the state-of-the-
art deep learning object detection methods, including Faster
R-CNN [17] (e.g., IMIVD-TF (A.4)), YOLOv3 [16] (e.g.,
MSVD SPP (A.3) and MYOLO (A.5)), and RefineDet [24]
(e.g., RD2 (A.1)). Moreover, the results show good perfor-
mance of methods such as the SENet [10] and SPP Net-
work.

Table 2 summarizes the detection benchmark of this
T4S2018 challenge. All submitted methods outperform the
GP-FRCNN [14], which is the winner of the T4S 2017 chal-
lenge, by at least 7% in the AP score. We found that such
an improvement mainly comes from better performance in
difficult weather conditions, i.e., rainy and night.

In the beginner level, the best submitted method is RD2

(A.1), which achieves 96.03% AP score with a 5% improve-
1https://iwt4s2018.wordpress.com/
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Table 2. AP scores of submitted object detection algorithms on the UA-DETRAC-test set in the beginner / experienced levels in various
environmental conditions. “−” indicates the data is not available. Bold faces are the top performers.

Detectors Overall Easy Medium Hard Cloudy Night Rainy Sunny
RD2 (A.1) 96.03/85.35 96.03/95.80 −/89.84 −/76.64 98.64/89.67 96.24/86.59 88.30/78.17 95.03/90.49

ExtendNet (A.2) −/83.59 −/95.46 −/88.75 −/73.36 −/86.89 −/85.05 −/76.75 −/90.77
MSVD SPP (A.3) −/84.96 −/95.59 −/89.95 −/75.34 −/88.12 −/88.81 −/77.46 −/89.46
IMIVD-TF (A.4) −/85.67 −/96.32 −/91.17 −/75.45 −/87.02 −/88.93 −/80.60 −/89.69

MYOLO (A.5) −/83.50 −/95.15 −/88.18 −/73.99 −/88.58 −/83.38 −/77.06 −/88.37
GP-FRCNN [14] 91.90/76.57 91.90/91.79 −/80.85 −/66.05 92.77/81.23 92.91/77.20 82.77/68.59 93.96/85.16

DPM [7] 34.63/25.70 34.63/34.42 −/30.29 −/17.62 32.54/24.78 36.71/30.91 40.26/25.55 50.53/31.77
ACF [6] 54.80/46.35 54.80/54.27 −/51.52 −/38.07 71.95/58.30 45.20/35.29 43.76/37.09 73.07/66.58

R-CNN [8] 59.71/48.95 59.71/59.31 −/54.06 −/39.47 74.14/59.73 94.46/39.32 90.81/39.06 76.64/67.52
CompACT [4] 65.50/53.23 65.50/64.84 −/58.70 −/43.16 77.27/63.23 61.98/46.37 57.68/44.21 77.35/71.16

Table 3. PR-DETRAC metrics of tracking algorithms on the UA-DETRAC-test set in the beginner/ experienced levels“−” indicates the
data is not available. Bold faces are the top performers.

Trackers Detection PR-MOTA↑ PR-MOTP↑ PR-MT↑ PR-ML↓ PR-IDS↓ PR-FM↓ PR-FP↓ PR-FN↓
GOG [15] CompACT [4] 23.9/11.7 47.4/34.4 20.5%/10.8% 21.0%/21.1% 829.9/2571.2 776.2/2463.8 6276.5/25352.8 36738.3/145257.5
IOUT [3] EB [21] 34.0/16.4 37.8/26.7 27.9%/14.8% 20.4%/18.2% 573.6/1743.2 603.7/1846.3 1617.0/12627.0 33760.8/136077.8

JTEGCTD [14] CompACT [4] 28.4/14.2 47.1/34.4 23.1%/13.5% 18.3%/18.7% 69.4/415.3 260.6/1345.7 5034.0/26221.8 33093.8/133867.4
JDTIF (B.1) GP-FRCNN [2] −/28.0 −/41.8 −/34.2% −/20.9% −/697.5 −/3431.8 −/55801.3 −/150493.4

MFOMOT (B.2) R-CNN [8] 34.6/14.8 46.6/35.6 30.2%/11.9% 12.0%/20.8% 210.6/870.0 477.0/2035.2 3828.3/21277.4 27232.5/151788.2
KF-IOU (B.4) RD2 (A.1) 40.1/31.0 49.8/49.9 42.3%/37.4% 5.8%/10.4% 111.4/724.8 125.2/995.6 8674.4/52243.0 13153.4/94728.1
V-IOU (B.3) FRCNN [17] 37.9/29.0 41.7/35.8 38.1%/30.1% 24.7%/22.2% 18.7/142.0 39.8/244.0 3855.1/14177.0 34738.5/143879.6
DMC (B.5) CompACT [4] −/14.6 −/34.1 −/11.6% −/20.6% −/908.3 −/1287.4 −/16056.7 −/141463.2

GMMA (B.6) CompACT [4] −/12.3 −/34.3 −/10.8% −/21.0% −/627.5 −/2423.7 −/25577.4 −/144148.9
SCTrack-3L (B.7) CompACT [4] 25.9/12.1 47.2/35.0 15.0%/7.7% 20.6%/24.8% 91.8/378.3 323.7/947.5 2485.2/8241.0 38820.9/162937.6

ment compared to GP-FRCNN [14]. In the experienced
level, IMIVD-TF (A.3) performs the best in most attributes
among all the detection methods, which combines Faster
R-CNN [17] with Neural Architecture Search (NAS) frame-
work [25] as a base network. RD2 (A.1) performs the best
in the rainy and night conditions. This is attributed to the
combination of RefineDet and SENet for more robustness.
Notably, the ExtendNet (A.2) achieve fast detection speed
of 22 ms, due to the combined forward of the network and
NMS in the GPU processing.

3.2. Multi-Object Tracking

We received 7 object tracking submissions in the T4S
2018 challenge (4 submissions in the beginner level, and 7
submissions in the experienced level). The submitted meth-
ods are evaluated against with 3 best trackers (with the best
detection input) from T4S 2017. Thus, a total of 10 trackers
are evaluated in this challenge. Refer to Appendix B for the
technical details of the submission methods and Table 4 for
speed comparison.

The JDTIF (B.1) tracker performs joint detection and
tracking by an end-to-end CNN model. The two trackers
DMC (B.5) and SCTrack-3L (B.7) combine various features
to increase discriminability. The four trackers, MFOMOT
(B.2), V-IOU (B.3), KF-IOU (B.4), and GMMA (B.6), in-
troduce the use of a single object tracking module to facili-
tate multiple object tracking.

Table 3 summarizes the performance of all submitted
trackers. Compared to the best performer (with the Com-
pACT detection) in the T4S 2017 challenge, the majority
of the submitted methods achieves better accuracy in both

the beginner and experienced levels. In the beginner level,
V-IOU (B.3) achieves the best performance in terms of PR-
MOTA, PR-MT, PR-IDS, and PR-FM, with the use of the
state-of-the-art detector FRCNN [17]. In the experienced
level, KF-IOU (B.4) performs the best in PR-MOTA, PR-
MOTP, PR-MT and PR-ML metrics with the use of private
detections from RD2 (A.1). It can be concluded that bet-
ter detection input generally achieves better tracking per-
formance.

4. Discussions
Based on the above analysis, many submitted detectors

and trackers perform significantly well against the baseline
methods in T4S 2017 challenge. However, the best achieved
AP score is 85.67% for detection and PR-MOTA score is
31.0 for tracking, which indicates that there is still room
for improvement. We highlight some insights that might be
useful for the improvement of the frontier of traffic video
analysis, as well as the general visual object detection and
tracking.

• Model ensemble. To deal with various scales of ob-
jects, a viable solution is to train different sub-models
for different object scales. For example, MSVD SPP
(A.3) improve the YOLOv3 model [16] by adding two
more object prediction layers to detect all sizes (large,
medium, small) of objects.

• Joint detection and tracking. Currently, most object
detection methods are designed for used in a still im-
age. To deal with video sequences, detection and track-



ing modules can be learned jointly to exploit the spatio-
temporal cues that can improve robustness. For exam-
ple, JDTIF (B.1) proposes a new CNN model for the
joint feature learning of a combined task of detection,
tracking and identification.

• Feature enhancement. To improve the discriminabil-
ity of similar objects, a recent approach is to com-
bine multi-model features (e.g., shape, color and deep
features) that can provide a compact representation of
target appearance. For example, DMC (B.5) employs
multi-channel features (that includes three color chan-
nels and seven gradient channels) in order to calculate
the similarity between the detections and tracklets.

• Single object tracking for multiple object track-
ing. Tracking-by-detection based multi-object methods
heavily rely on the quality of input detections. When the
detector fails, most tracking algorithms recover miss-
ing detections by a simple interpolation step that is per-
formed within the trajectories. To reduce false nega-
tives, one solution is to combine single object tracking
with multiple object tracking that can construct a more
discriminative appearance model to improve robustness
(e.g., KF-IOU (B.4) and GMMA (B.6)).

5. Conclusion
This paper summarizes the IWT4S 2018 challenge with

evaluation results. Overall, 5 submitted detectors and 7
trackers are evaluated on the UA-DETRAC benchmark.
The winners of the challenge are the following. The top
detectors in the beginner and experienced levels are RD2

(A.1) and IMIVD-TF (A.4), which achieves 96.03%, and
85.67% AP scores, respectively. The top trackers in the
beginner and experienced levels are V-IOU (B.3) and KF-
IOU (B.4), which achieves 37.9%, and 31.0% PR-MOTA
scores, respectively. In general the 2018 T4S submissions
are stronger than the 2017 contest, and there are still room
for improvement. Insights and potential research directions
are provided in the discussions. Looking forward, we plan
to improve the UA-DETRAC benchmark with richer anno-
tations that can be further used by additional real-world ap-
plications.

Acknowledgements. This work is partly supported by
the National Science Foundation under Grant No. IIS-
1537257, and the Nvidia Corporation.

A. Appendix A: Detection Submissions
A.1. Ensemble of two RefineDet models (RD2)

Oliver Acatay, Lars Sommer, Arne Schumann
{oliver.acatay,lars.sommer,arne.schumann}@iosb.fraunhofer.de
RD2 is a variant of the RefineDet [24] detector using the novel

Table 4. Average running speed (in FPS) of tracking algorithms
on the UA-DETRAC-test set. “−” indicates that the data is not
available, and “×” indicates that GPU is not used.

Trackers Codes CPU RAM Frequency GPU Speed
JDTIF (B.1) - E5-2690 256GB 2.60GHz Quadro P6000 -

MFOMOT (B.2) Python i5-6200U 4GB 2.30GHz × -
V-IOU (B.3) Python i7-6700 32GB - × -

KF-IOU (B.4) Python i7-2670QM - 2.20GHz × -
DMC (B.5) C++ i7-7740K 32GB 4.30GHz × -

GMMA (B.6) C++ i7-7700K 32GB 4.20GHz × 84.43
SCTrack-3L (B.7) Matlab i7-4720 16GB 2.60GHz GTX960M -

IOUT [3] Python i7-6700 32GB 3.40GHz × 6902.07
JTEGCTD [14] Matlab i7-3720QM 8GB 2.70GHz × 60.38

CEM Matlab i7-3520M 16GB 2.90GHz × 4.62
GOG Matlab i7-3520M 16GB 2.90GHz × 389.51
DCT Matlab,C++ i7-3520M 16GB 2.90GHz × 0.71

IHTLS Matlab i7-3520M 16GB 2.90GHz × 19.79

H2T C++ i7-3520M 16GB 2.90GHz × 3.02
CMOT Matlab i7-3520M 16GB 2.90GHz × 3.79

Squeeze-and-Excitation Network (SENet) [10] as base network.
Two variants of the detector are trained: one with SEResNeXt-
50 and one with ResNet-50 as base network, each with the same
set of anchor sizes. The detection results of the two detectors are
combined via averaging, where each detector is weighted equally.

A.2. Object Detection Network based on Single Ex-
tended Feature Map (ExtendNet)

Min-Sung Kang, Young-Chul Lim∗

{mskang,linolyc}@dgist.ac.kr
ExtendNet is modified from the work in [12] published in conjunc-
tion with the 2018 IEEE Intelligent Vehicle Symposium. The pa-
per describes a method for detecting three classes of street objects
(cars, pedestrians, cyclists). This method is modified to detect the
four types of vehicles in this challenge.

A.3. Multi-Stage Vehicle Detection with Spatial-
Pyramid-Pooling (MSVD SPP)

Kwang-Ju Kim, Pyong-Kun Kim, Yun-Su Chung, Doo-Hyun
Choi∗

{kwangju,iros,yoonsu}@etri.re.kr, dhc@ee.knu.ac.kr
MSVD SPP is a multi-scale vehicle detection method with spatial
pyramid pooling based on YOLOv3 [16]. Major improvements
are summarized in the following. First, two more object prediction
layers are introduced. Specifically, one additional prediction layer
is added between the large-size and mid-size object perdition lay-
ers. The other prediction layer is added between the mid-size and
small-size object prediction layers. Second, the Spatial Pyramid
Pooling (SPP) networks are implemented before each prediction
layer after the feature pyramid network.

A.4. Integrating Multiple Inference Instances of on
Image for Vehicle Detection with Temporal
Filtering (IMIVD-TF)

Jong Taek Lee, Jang-Woon Baek, Kiyoung Moon, Kil-Taek
Lim
{jongtaeklee,jwbaek98,kymoon,ktl}@etri.re.kr
IMIVD-TF employs an unsupervised integration of multiple in-
stances of an image by analyzing video sequences. Faster R-
CNN [17] is applied with Neural Architecture Search (NAS)



framework [25] as a base network. Unsupervised integration of
multiple instances of an image is employed by analyzing video se-
quences. Multiple cropped instances from images are generated,
such that these instances become more similar to the images in
the training set. After running the object detection algorithm on
the additional instances, detection results from these runs and the
source images are merged by non-maximum suppression (NMS).

A.5. Modified YOLO (MYOLO)
PyongKun Kim

iros@etri.re.kr
MYOLO is based on the original YOLO method with modifica-
tions in the anchor values w.r.t. the UA-DETRAC dataset.

B. Appendix B: Tracking Submissions
B.1. Joint Detection and Tracking in Videos with

Identification Features (JDTIF)
Bharti Munjal, Sikandar Amin, Meltem Brandlmaier, Fabio

Galasso
{m.bharti,s.amin,m.brandlmaier,f.galasso}@osram.com
An end-to-end neural network is used for the joint tasks of de-
tection, tracking and identification feature learning. The model
takes two consecutive video frames as input, and yields: (1) de-
tections in each frame, along with (2) the identification feature of
each detection, and (3) predictions from the first frame to next.
No separate networks are used for the detection and identification
feature learning. Cosine similarity of the identity feature and the
IoU of detections are used by the tracking algorithm for detection
association.

B.2. Median Flow detection enrichment for Vehicle
Tracking (MFOMOT)

Dinh-Quoc-Trung Dang, Vu-Gia-Hy Che, Tien Dinh
{ddqtrung, cvghy}@apcs.vn, dbtien@fit.hcmus.edu.vn
MFOMOT is a simple extension to the traditional tracking-by-
detection paradigm. A single object tracker is used to obtain addi-
tional detection hypotheses [9], while keeping the whole tracking
process online. This method combines both the shape and color
features to extract information about the appearance of targets. Vi-
sual cues help both in the target association and the elimination of
potential drifting in the Median Flow tracker.

B.3. Visual Intersection-over-union tracker (V-
IOU)

Erik Bochinski, Volker Eiselein, Thomas Sikora
{bochinski,eiselein,sikora}@nue.tu-berlin.de
V-IOU is based on the IOU tracker [3] and improved by track con-
tinuation using the ‘visual tracker’ if no detection is available. If
a valid detection can be associated to the track again, the ‘visual
tracking’ is stopped and the tracker reduces to the original IOU
tracker. Otherwise, the visual tracking is aborted after t frames.
For each new track, the visual tracking is performed backwards
for a maximum of t previous frames or until the track can be
merged with a finished track, if the IOU criteria of [3] is satisfied.
This extension is made to efficiently reduce the high amount of

fragmentation of the tracks produced by the original IOU tracker.
Commonly, the visual trackers can not reliably determine if a track
was lost or if it should end. For multiple object tracking problems,
tracks start and end continuously as objects enter and leave the
scene. This continuation of each track by visual tracking would
therefore produce a high amount of false positive stubs at the end
of each track where visual tracking can not be performed properly.
Therefore, each track is required to start and end with an input
detection. Thus all visually tracked bounding boxes are removed
before reporting to the final tracks.

B.4. Kalman position tracker using IoU-matched
detections (KF-IOU)

Oliver Acatay, Lars Sommer, Arne Schumann
{oliver.acatay,lars.sommer,arne.schumann}@iosb.fraunhofer.de
KF-IOU combines the IOU-tracker [3] with a Kalman Filter (KF),
with an aim to reduce the number of fragmented tracks and ID
switches, as well as to decrease the number of false positives and
false negatives. In the first frame, a track is initialized for each de-
tection. For each track, the coordinates of the detections are used
to initialize the KF state. In the next frame, KF performs a pre-
diction step. The estimated coordinates in combination with the
height and width of the previous detection are used to search for
a matching bounding box among all detections in the frame. The
best match is the detection with the highest IoU with the estimated
bounding box. If the IoU is above a manually defined threshold,
the detection is used to update the KF of the track. Otherwise,
the estimated bounding box is used to continue the track. The re-
maining detections of the frame are again used to initialize new
tracks. A track is terminated if no matching detections are found
in five consecutive frames. The detections are generated using Re-
fineDet [24]. Two variants of the RefineDet detector are trained:
one with SEResNeXt-50 [10] and one with ResNet-50 as base net-
work, each with the same set of anchor sizes. Results from the two
detectors are combined via averaging.

B.5. Detection Mean Confidence (DMC)

Young Chul Lim, Minsung Kang
{ninolyc,mskang}@dgist.ac.kr
DMC is based on [11], where multi-channel feature generation,
pedestrian detection, visual tracking, and data association are all
combined to increase the computational efficiency through the
sharing of multi-channel features. Multi-channel features (three
color channels and seven gradient channels) are generated from a
given input image. In the object detector, feature vectors are es-
tablished by aggregating the multi-channel features. The visual
tracker operates on the color channel and gradient channel images
using a multi-channel kernelized correlation filter scheme [10].
Hungarian algorithm-based data association then assigns the de-
tections to the tracks, by calculating the similarity costs based
on: (1) a histogram-based appearance model and (2) the spatial
overlapping between the detections and tracks. Unlike an earlier
method [11], this approach manages various track states such as
track null, track initialization, track activation, and track termina-
tion states using (1) the mean confidence of consecutive detections
and (2) the minimum track length.



B.6. Online and Real-Time Tracking with the GM-
PHD Filter using Group Management and
Relative Motion Analysis (GMMA)

Young-min Song, Moongu Jeon
{kutschbach,eiselein}@nue.tu-berlin.de
GMMA is an online multiple object tracking (MOT) framework,
which includes a two-stage data association strategy with the
Gaussian mixture probability hypothesis density (GM-PHD) fil-
ter [20]. GMMA also includes an occlusion handling method
based on group management and motion analysis. The two-stage
data association aims to solve the inherent limitations of online
tracking. In first stage, a tracker initializes the targets’ states from
the initial detections. Then, the tracking results are stacked into
a set of tracklets. However, because online process inherently is
not able to understand the track assignment in view of global op-
timization, the conventional GM-PHD filter [20] is extended to
handle online MOT.

B.7. Semantic Color Multi-object Tracker in Three
Level Data Association (SCTrack-3L)

Noor M. Al-Shakarji, Filiz Bunyak, Guna Seetharaman, Kan-
nappan Palaniappan
{nmahyd,bunyak}@missouri.edu,
gunasekaran.seetharaman@rl.af.mil, palaniappank@missouri.edu
SCTrack-3L is based on [1] with an extension to include multiple
level of data association. This method includes a time-efficient
detection-based multi-object tracking system based on a three-
component cascaded data association scheme. Specifically, the
three components include: (1) a fast spatial-distance-only short-
term data association, (2) a robust tracklet linking step using dis-
criminative object appearance models, and (3) an explicit occlu-
sions handling unit, which relies on both motion patterns and en-
vironmental constraints (such as presence of potential occluders)
in the scene.
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