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Abstract

The rapid advances of transportation infrastructure have
led to a dramatic increase in the demand for smart system-
s capable of monitoring traffic and street safety. Funda-
mental to these applications are a community-based evalua-
tion platform and benchmark for object detection and multi-
object tracking. To this end, we organize the AVSS2017
Challenge on Advance Traffic Monitoring, in conjunc-
tion with the International Workshop on Traffic and Street
Surveillance for Safety and Security (IWT4S), to evalu-
ate the state-of-the-art object detection and multi-object
tracking algorithms in the relevance of traffic surveillance.
Submitted algorithms are evaluated using the large-scale
UA-DETRAC benchmark and evaluation protocol. The
benchmark, the evaluation toolkit and the algorithm per-
formance are publicly available from the website http:
//detrac—db.rit.albany.edu

1. Introduction

One problem plaguing most modern urban areas is the
inefficient and ineffective transportation systems. With the
advent of ubiquitous, inexpensive and smart camera system-
s, there is an urgent demand for efficient and effective video
analysis technologies for the purpose of safety and security

in traffic and street surveillance. Fundamental to these tasks
are reliable object detection and multi-object tracking algo-
rithms, and large-scale traffic surveillance benchmarks and
evaluation protocols.

Over the past two decades, a large number of detection
and tracking methods have been proposed [17, 12, 20, 5,
30, 1, 2, 11, 34, 3]. However, many challenging factors still
affect the performance including scale changes, occlusions,
and background clutters. It is crucial to evaluate the per-
formance of the state-of-the-art algorithms to understand
their strength/weakness and facilitate the development of
improved algorithms.

Several benchmarks have been constructed to provide
a unified platform to evaluate and compare various algo-
rithms, which can be organized into two main categories:
(1) detection benchmarks (e.g., INRIA [9], ETH [15], Cal-
tech [13], KAIST [24]) and (2) tracking benchmarks (e.g.,
PETS2009 [18], MOT15 [25], and MOT16 [28]). Most ex-
isting detection benchmarks focus on person detection (i.e.,
pedestrians). However, vehicles are rather central to smart
transportation, traffic control and surveillance. The KIT-
TI benchmark suite [19] provides evaluation on vehicle de-
tection and tracking, however the views are collected from
the viewpoint of (first person) moving cars rather than typ-
ical surveillance views. Finally, we note that high-quality
groundtruth annotation may be labor extensive but is cru-
cial for evaluations.
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To this end, in conjunction with the International Work-
shop on Traffic and Street Surveillance for Safety and Se-
curity IWT4S), we organize the AVSS2017 Challenge on
Advance Traffic Monitoring to evaluate the state-of-the-art
object detection and multi-object tracking algorithms in the
relevance of traffic surveillance. The challenge is based
on the University at Albany DEtection and TRACking
(UA-DETRAC), which is a large scale traffic surveillance
benchmark and dataset and the DETRAC evaluation pro-
tocol [33]. A dedicated website (http://detrac—db.
rit.albany.edu) for the challenge was built and main-
tained by the Computer Vision and Machine Learning Lab'
at University at Albany, State University of New York, US-
A, where the benchmark and evaluation toolkits are avail-
able to the public. This challenge will help advancing the
state-of-the-art of detection and tracking algorithms, and
motivate new applications of traffic surveillance video anal-
ysis.

2. The Challenge

The goal of the AVSS2017 Challenge on Advance Traf-
fic Monitoring is to provide a comprehensive performance
evaluation to the state-of-the-art detection and multi-object
tracking algorithms for traffic and street surveillance appli-
cations. Participants of the challenge are required to inte-
grate their algorithms into the DETRAC toolkit and perfor-
m the corresponding evaluations. Once the required data
are received on the DETRAC submission website (http:
//detrac—-db.rit.albany.edu), the DETRAC e-
valuation protocol will then be automatically executed,
and results will be sent to the participant team. De-
tails on the dataset and evaluation protocol are available
in [33], and challenge results are available at the chal-
lenge website (https://iwtds.wordpress.com/
challenge/).

To ensure fair evaluations, we request that parameter
tuning can only be done on the training data of the UA-
DETRAC benchmark. Only the best performing setting of
a participant method can be submitted for testing evalua-
tion on the UA-DETRAC server. Exploiting the evaluation
server for parameter tuning on the test set is strictly for-
bidden by enforcing that (1) annotations of the testing data
are not made available and (2) all submitted algorithms are
required to run with fixed parameters on all experiments.
Specifically, each individual algorithm is allowed to change
its parameters internally. Yet the parameters have to be set
automatically, e.g., the aspect ratio of objects and the length
of trajectories. Notably, parameters are not to be hand-tuned
for a specific sequence.

http://www.cs.albany.edu/cvml.

2.1. UA-DETRAC Benchmark

The UA-DETRAC benchmark [33] consists of 100 video
sequences, which are selected from over 10 hours of videos
taken with a Canon EOS 550D camera at 24 different lo-
cations in China, representing various common traffic types
and conditions including urban highway, traffic crossings
and junctions. The videos are recorded at 25 frames per
seconds (fps), with a spatial resolution of 960 x 540 pix-
els. In total, there are more than 140,000 frames in the
UA-DETRAC benchmark that are manually annotated cor-
responding to 8, 250 different vehicles. Similar to the PAS-
CAL VOC [16], we delineate do-not-care regions corre-
sponding to far field of the videos where vehicles are s-
mall and with low spatial resolutions. The UA-DETRAC
benchmark is divided into a training set (60 sequences) and
a testing set (40 sequences). Training videos are taken at
different locations from the testing videos, but with similar
traffic conditions and attributes.

2.2. DETRAC Evaluation Protocol

The average precision (AP) score of the precision-recall
(PR) curve is a standard metric used in the literature to indi-
cate the performance of detection algorithms. Larger AP
score indicates better detection performance. The multi-
object tracking accuracy (MOTA) and multi-object tracking
precision (MOTP) are standard tracking metrics. We use the
DETRAC metrics [33], which are the extension and combi-
nation of standard metrics i.e., PR-MOTA, PR-MOTP, PR-
MT, PR-ML, PR-IDS, PR-FM, PR-FP, and PR-FN scores,
to evaluate tracking performance. Note that the PR-MOTA
curve [33] is a three dimension curve characterizing the re-
lation between detection performance (precision and recall)
and object tracking performance (MOTA) from the CLEAR
MOT metrics [4]. From the PR-MOTA curve, we calcu-
late the integral score to rank multi-object tracking method-
s. Specifically, we accumulate the MOTA score in different
normalized detection score threshold?. In this way, we can
compare different multi-object tracking algorithms by inte-
grating the effect of detections. The scores of other seven
metrics, e.g., PR-MOTP and PR-IDS, are calculated simi-
larly. Details are described in [33].

2.3. Challenge Rules

In the AVSS2017 Challenge on Advance Traffic Monitor-
ing, the evaluation set is divided into two difficulty levels
(beginner and experienced):

e Beginner: participants of the ‘beginner’ difficulty

should submit only the (detection or tracking) results
from the evaluation set that are marked as ‘easy’ in the

2We vary the threshold in the range of 0.0 : 0.1 : 1.0. Thus differ-
ent detection inputs can be gradually generated corresponding to different
values of precision and recall.
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Table 1. Detection performance: AP scores of submitted vehicle detection algorithms on the UA-DETRAC-test set in the beginner (easy)

/ experienced (medium and hard) levels in various environmental conditions.
top performer and underlines corresponds to second runner-up.

«

" indicates the data is not available. Bold faces are the

Methods Overall Easy Medium Hard Cloudy Night Rainy Sunny

GP-FRCNN (D.1) | 91.90/76.57 | 91.90/91.79 | —/80.85 | —/66.05 | 92.77/81.23 | 92.91/77.20 | 82.77/68.59 | 93.96/85.16
EB (D.2) 89.57/67.99 | 89.57/87.77 | —/73.03 | —/54.74 | 94.68/75.13 | 90.26/71.80 | 71.34/52.99 | 90.57/82.04
SSDR (D.3) 79.47/59.07 | 79.47/77.84 | —/64.41 | —/45.98 | 88.86/62.79 | 75.27/60.88 | 70.26/48.55 | 86.36/74.32

RCNN-SC (D.4) 93.43/— 93.43/— —-/= —/- 96.69/— 92.54/— 87.30/— 94.47/—
FRCNN-Res (D.5) | 82.90/61.65 | 82.90/82.90 | —/66.89 | —/48.14 | 82.93/61.97 | 82.49/65.88 | 86.44/59.13 | 83.14/59.17
DFCN (D.6) 86.86/65.82 | 86.86/86.83 | —/72.96 | —/50.47 | 98.05/69.90 | 83.96/69.41 | 70.71/54.11 | 88.45/80.79
DPM 34.63/25.70 | 34.63/34.42 | —/30.29 | —/17.62 | 32.54/24.78 | 36.71/30.91 | 40.26/25.55 | 50.53/31.77
ACF 54.80/46.35 | 54.80/54.27 | —/51.52 | —/38.07 | 71.95/58.30 | 45.20/35.29 | 43.76/37.09 | 73.07/66.58
R-CNN 59.71/48.95 | 59.71/59.31 | —/54.06 | —/39.47 | 74.14/59.73 | 94.46/39.32 | 90.81/39.06 | 76.64/67.52
CompACT 65.50/53.23 | 65.50/64.84 | —/58.70 | —/43.16 | 77.27/63.23 | 61.98/46.37 | 57.68/44.21 | 77.35/71.16

Table 2. Detection speed: Average running speed of the detection algorithms (in FPS) when running on the UA-DETRAC-test set.

indicates the GPU is not used.

«

X

Detectors CPU Frequency GPU RAM Codes Speed
GP-FRCNN (D.1) | 12xIntel Xeon E5-2690v3 | 2.60GHz Tesla K40 256GB Python, C++ 4.00
EB (D.2) 4 xIntel Core i7-4770 3.40GHz TitanX 16GB C++ 11.00
SSDR (D.3) 8 xIntel Core i7-6700K 4.00GHz GTX1080 32GB C++ 34.00
RCNN-SC (D.4) 2 x Intel Xeon E5-2630v3 4.00GHz | 2xTesla K80 | 384GB | Python, Tensorflow 2.20
FRCNN-Res (D.5) 16 xIntel Xeon X5570 2.93GHz 2x Titan X 96GB | Python, Tensorflow 1.00
DFCN (D.6) 11x Intel Xeon E5-1650v3 | 3.50GHz Titan X 64GB Python 11.00
DPM 4 xIntel Core i7-6600U 2.60GHz X 8GB Matlab,C++ 0.17
ACF 2 xIntel Xeon E5-2470v2 2.40GHz X 64GB Matlab 0.67
R-CNN 2xIntel Xeon E5-2470v2 2.40GHz Tesla K40 64GB Matlab,C++ 0.10
CompACT 2 xIntel Xeon E5-2470v2 2.40GHz Tesla K40 64GB Matlab,C++ 0.22

»

UA-DETRAC dataset. The threshold of metric base-
lines for detection and tracking are 65% AP score and
14% PR-MOTA, respectively.
¢ Experienced: participants of the ‘experienced’ dif-
ficulty should submit all detection results or track-
ing results from the evaluation set that are marked as
‘medium’ and ‘hard’ in the UA-DETRAC dataset. The
threshold of metric baselines for detection and tracking
are 55% AP score and 7% PR-MOTA, respectively.
We further analyze the performance of submitted algo-
rithms under the 4 weather conditions provided in the UA-
DETRAC dataset, i.e., cloudy, night, sunny, and rainy.

3. Results and Analyses

As discussed in Section 2.3, in this section, we analyze
all results included the baseline and submitted participant
methods that scored more than the threshold in the chal-
lenge. We begin with a short overview of the algorithm-
s considered in the challenge, present results, and discuss
overall findings. Detailed descriptions of evaluated algo-
rithms are Section 4.

3.1. Vehicle Detection

We have received 7 entries of detectors from various au-
thors in the IWT4S 2017 challenge. One participant per-
formed the beginner experiment, and the rest performed
both the beginner and experienced experiments. The UA-
DETRAC committee additionally performed both experi-
ments with 4 baseline detection methods. Thus a total of

11 algorithms were included in the detection task of IWTS4
2017 challenge.

As shown in Table 1, significant progress has been made
in vehicle detection by the aid of various kinds of state-of-
the-art convolutional networks, such as R-CNN [31], SS-
D [27] and ResNet [21]. For beginner level, the best RCNN-
SC (D.4) achieves 93.43% AP in easy sequences, which
benefits from the prior knowledge of vehicle types (i.e., car,
bus, van and others). For experienced level, GP-FRCNN
(D.1) is ranked number one in accuracy, which proposes
an automatic estimation of the approximate scene geometry
by ranking proposals to yield less false positives in back-
ground cluttered areas, and less false negatives for small
vehicles. Besides, it is worth pointing out SSDR (D.3) uses
lightweight feature extraction network to preserve reason-
able number of computations for realtime application (i.e.,
34.00 FPS).

However, the results of the submitted detectors on the
UA-DETRAC benchmark show that there is still room for
improvement for vehicle detectors. Weather conditions,
such as rainy and night, significantly affect the performance
of detectors. Existing vehicle detectors do not perform well
when the appearance changes caused by pool lighting con-
ditions are significant at rainy days. Similar trends are found
in cluttered scenes of hard sequences. Besides, different de-
tection algorithms requires different platform for testing. As
such, it is hard to compare the tracking speed of the evaluat-
ed detection algorithms directly, which are listed in Table 2
for reference.



Table 3. Tracking performance: DETRAC metrics of submitted object tracking algorithms on the UA-DETRAC-test set in the beginner

(easy)/ experienced (medium and hard) levels in various environmental conditions.

« wy»

—” indicates the data is not available. “x” indicates

the tracking method uses the private detections for association. Bold faces are the top performer and underlines corresponds to second

runner-up.
Methods PR-MOTAT [PR-MOTP}| _ PR-MTT PR-ML] PR-IDS| PR-FM], PR-FP| PR-FNJ
GOG+CompACT 23.9/11.7|47.4/34.4| 20.5/10.8 | 21.0/21.1 |829.9/2571.2 | 776.2/2463.8 | 6276.5/25352.8 | 36738.3/145257.5
CEM+CompACT 8.1/4.5 |44.2/33.2| 3.8/2.6 40.9/34.5 | 73.7/198.1 | 88.3/267.5 | 3236.0/9047.6 | 60393.3/200703.1
DCT+R-CNN 23.2/8.5 |45.8/36.5| 18.5/6.5 18.1/27.1 | 183.3/541.8 | 176.3/532.4 | 8976.3/24204.6 | 36484.9/180873.7
IHTLS+CompACT 20.8/8.7 |46.5/34.2| 20.2/10.7 | 21.6/21.1 | 178.0/774.0 | 735.8/2835.9 |10484.0/42814.2| 37172.1/145188.5
HT+CompACT 21.8/10.144.0/33.6| 21.7/11.5 | 21.7/20.3 | 162.9/687.8 | 191.7/922.2 |10278.4/41193.8| 36115.2/139703.2
CMOT+CompACT 22.5/10.3 |45.9/33.4| 23.3/12.6 | 20.0/19.7 | 40.7/243.2 |254.1/1255.9 |11424.4/45619.6| 34134.9/134568.6
HGFT(T.1)+CompACT —/121 | —/335 —/104 —/21.5 —/1927.5 —/2141.0 —/24160.0 —/145262.2
GM-PHD(T2+EB(D.2)* | —/14.4 | —/26.5 | —/12.3% —/18.8% —/994.3 —/1660.4 —/19627.3 —/139807.3
GM-PHD(T.2)+CompACT | 21.8/10.9 |47.6/35.0|16.2%/15.1%)|20.4% /21.6% | 641.8/556.4 |2038.5/1674.9|37963.0/29687.1|186043.9/147257.0
CCM(T.3)+R-CNN/CompACT | 25.2/10.7 |45.8/33.8|23.8%/11.9% |15.8% /20.0%| 179.9/514.7 | 590.6/1705.5 |10155.4/35624.7|32742.9/142110.0
IOUT(T4)+EB(D.2)*  [34.0/16.4|37.8/26.7|27.9%/14.8%|20.4%/18.2%| 573.6/1743.2 | 603.7/1846.3 |1617.0,/12627.0| 33760.8/136077.8
IOUT(T4)+R-CNN 29.3/11.8 [47.2/36.5| 25.0%/8.9% | 17.3%/25.0% |1112.5/3693.1|1261.0/4228.3| 3457.6/16634.7 | 33394.1/168527.2
JTEGCTD(T.5)+CompACT |28.4/14.2 [47.1/34.4(23.1%/13.5% | 18.3%/18.7%| 69.4/415.3 |260.6/1345.7 | 5034.0/26221.8 [33093.8/133867.4
MTT(T.6)+CompACT —/12.0 | —/35.7 | —/7.7% —/23.2% —/814.7 —/3158.9 —/14016.8 —/156997.0
GMPHD-KCE(T.)+EB(D.2)* | —/14.1 | —/25.9 | —/12.5% —/18.5% —/909.9 —/1437.2 —/21863.7 —/139245.4
GMPHD-KCF(T.7)+CompACT| —/12.0 | —/33.8 | —/10.8% —/19.5% —/648.8 —/1300.2 —/30518.1 —/140669.4

3.2. Multi-Vehicle Tracking

On the other hand, we have received 8 entries of track-
ers from various authors in the IWT4S2 2017 challenge. 5
participants performed both the beginner and experienced
experiments, and the rest only performed the experienced
experiment. The UA-DETRAC committee additionally per-
formed both experiments with 6 baseline trackers with the
best detection input. Thus a total of 14 trackers were pre-
sented in the challenge. All submitted algorithms use the
provided R-CNN and CompACT or EB (D.2) detection as
the input for their trackers. They focus on modeling appear-
ance similarity (e.g., MTT (T.6) and GMPHD-KCF (T.7))
and motion relation (e.g., HGFT (T.1), GM-PHD (T.2), C-
CM (T.3), IOUT (T.4) and JTEGCTD (T.5)) among detec-
tions in consecutive frames.

As shown in Table 3, all multi-object tracking systems
perform disappointedly. Given the provided detections, the
PR-MOTA scores of the best JTEGCTD (T.5)+CompACT
combination are 28.4% and 14.2% (Perfect = 100%) in be-
ginner and experienced level respectively. Although given
the more accurate EB (D.2) detection input, the PR-MOTA
score of the best IOUT (T.4)+EB (D.2) combination is on-
ly 16.4% in experienced level. Compared to other more
sophisticated methods, IOUT only calculates the overlap
intersection-over-union between detections without using
image information, resulting in very low overall complexity.
However, this method is not universally valid but depends
on more accurate detection input (e.g., EB (D.2)). Then,
different from pedestrian datasets, the fixed-camera based
vehicle dataset makes the size and aspect ratios of objects
undergo not great changes in a few consecutive frames.

It can easily be seen that more accurate detection input
leads to more accurate tracking performance (e.g., [OUT
(T.4) and GMPHD-KCF (T.7)). Besides, the correlation
filters based visual tracker can further facilitate the track-
ing accuracy (see GM-PHD (T.2) and GMPHD-KCF (T.7)
with CompACT). In Table 4, we report the average tracking

speed and the corresponding platform configuration of all
the evaluated object tracking algorithms.

4. Discussions

This paper concludes with summarized results and find-
ings. All evaluations are conducted on the large scale UA-
DETRAC benchmark, which is annotated per-frame with
different attributes in complex traffic and street surveillance
scenarios. Besides, the DETRAC-MOT toolkit is develope-
d to evaluate either detection or tracking methods conve-
niently. In this challenge, a total of 7 new detectors and
8 new trackers are submitted from participants. For the be-
ginner level, the best submitted detector and tracker of the I-
WTA4S 2017 challenge are RCNN-SC (D.4) and IOUT (T.4)
respectively. For the experienced level, the best detector
and tracker are GP-FRCNN (D.1) and JTEGCTD (T.5) re-
spectively. Other important cues such vehicles types and
correlation filters can increase the performance.

The main goal of the IWT4S challenge is to establish a
community-based platform for discussion of both detection
and tracking performance evaluation for traffic and street
surveillance. We hope it will contribute to the communi-
ty with verified annotated benchmarks, evaluation proto-
cols and evaluation toolkits. There are several important
future works we would like to further investigate. Firstly,
we will improve the evaluation toolkit for cross-platform
integration, making it easier for different users. Secondly,
we plan to enrich the current UA-DETRAC benchmark to
include more sequences in more scenes and richer annota-
tions of attributes. Thirdly, we would like to launch other
challenges focused to narrow application domains, such as
object recognition and behavior analysis.
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Table 4. Tracking speed: Average running speed (in FPS) of the
object tracking algorithms on the UA-DETRAC-test benchmark.

“__»

indicates the data is not avaliable, and “x” indicates the

GPU is not used.

Trackers Codes CPU RAM [Frequency| GPU | Speed
HGFT Matlab - 32GB - x 3.97
GM-PHD C++ Intel i7-4770 | 16GB|3.50GHz | x 947.24
CCM Matlab Intel i7-4720 | 16GB|2.60GHz | x 471.28
I0UT Python Intel i7-6700 |32GB |3.40GHz| x [6902.07
JTEGCTD Matlab [Intel i7-3720QM| 8GB [2.70GHz | x 60.38
MTT Python, C++ Intel E5-2650 [128GB|2.00GHz [Titan X| 24.30
GMPHD-KCF|  C++ Intel i7-4770 |32GB|3.50GHz | x 24.60
CEM Matlab | Intel i7-3520M | 16GB [ 2.90GHz | x 4.62
GOG Matlab | Intel i7-3520M | 16GB | 2.90GHz | x 389.51
DCT Matlab,C++| Intel i7-3520M | 16GB | 2.90GHz | x 0.71
IHTLS Matlab | Intel i7-3520M | 16GB [ 2.90GHz | x 19.79
H’T C++ Intel i7-3520M | 16GB |2.90GHz | x 3.02
CMOT Matlab | Intel i7-3520M | 16GB | 2.90GHz | x 3.79

Appendix: List of Challenge Submissions

All participant submission methods for detection and

tracking are listed within chronological order in which they
are received, and prefixed by D and T, respectively.

* D.1. Geometric proposals for Faster R-CNN (GP-
FRCNN). Sikandar Amin, Fabio Galasso. {s.amin,
f.galasso} @osram.com

GP-FRCNN is an extension of the Faster R-CNN de-
tector [31]. Faster R-CNN based methods are known
to be limited in two aspects: (1) it is sensitive to back-
ground clutter; (2) performance decreases as the prob-
lem scales up. To address these issues, the proposed
GP-FRCNN method re-ranks the generic object pro-
posals with an approximate geometric estimate of the
scene. However, this simple extension requires scale
adjustments (e.g., anchors, layer resolution) involved
in the implementation details. GP-FRCNN perform-
s equally well on smaller and larger objects, and does
not require an explicit geometric formulation.

D.2. Evolving boxes for fast vehicle detection (E-
B). Li Wang, Yao Lu, Hong Wang, Yingbin Zheng,
Hao Ye, Xiangyang Xue. wanglil6@fudan.edu.cn,
luyao@cs.washington.edu, {fwang_hong, zhengyb,
yehg} @sari.ac.cn, xyxue @fudan.edu.cn

EB is a deep learning framework that proposes and re-
fines the object boxes under different feature represen-
tations. It is embedded with a light-weight proposal
network to generate initial anchor boxes as well as to
early discard unlikely regions. A fine-turning network
produces detailed features for the candidate boxes. By
applying different feature fusion techniques, the initial
boxes can be refined for both localization and recogni-
tion. See [32] for more details.

D.3. Lightweight SSD based on ResNet10 with di-
lations (SSDR). Dmitriy Anisimov, Tatiana Khanova.
{dmitry.anisimov, tatiana.khanova} @intel.com

SDDR focuses on design of fast object detection model
based on ResNet10 [21], which still retains high quali-
ty. Besides, the dilation module [6] is extended to sub-
sampling all layers in feature extraction network. After
removing pooling operations, channels in convolution
layers are sampled additionally to preserve small num-
ber of computations. To deal with high computation
demand of neural networks, pruning can be done on
per-channel basis by eliminating less important chan-
nels in convolution filters [26].

* DA4. R-CNN with Sub-Classes (RCNN-
SC). Nattachai Watcharapinchai,  Sitapa Ru-
Jikietgumjorn. {sitapa.rujikietgumjorn,  nat-
tachai.watcharapinchai} @nectec.or.th
RCNN-SC is based on the Faster R-CNN architec-
ture [31] with residual network. Instead of training
from scratch, the COCO pre-trained model parame-
ters [23] are used for the initialization of the mod-
els. The residual network is then fine-tuned on the
UA-DETRAC dataset. Instead of using a single object
class (i.e., the vehicle) to train on the R-CNN, multiple
sub-classes of vehicles (i.e., car, van, bus, and others)
are used, such that the R-CNN can better learn respec-
tive features of each vehicle class.

¢ D.5. Faster R-CNN with ResNet101 (FRCNN-Res).
Nenghui Song, Yi Wei, Ming-Ching Chang. {njsong,
ywei2, mchang2} @albany.edu
FRCNN-Res employs the Faster R-CNN architecture
in [31]. Specifically, the ResNet-101 model is used to
fine-tune on the UA-DETRAC train set. More details
can be found in [23].

* D.6. Region-based Deformable Fully Convolu-
tional Network (DFCN). Shuo Wang, Koray Ozcan.
{shuowang, koray6} @iastate.edu

DFCN is the combination of Region-based Fully Con-
volutional Networks (R-FCN) [7] and Deformable
Convolutional Networks (Deformable ConvNets) [8]
using resnet-101 as the backbone. The model is fine-
tuned based on the contents of UA-DETRAC dataset.
The source code? of Microsoft Research Asia (MSRA)
is modified and used to train a model suitable for UA-
DETRAC dataset.

* D.7. CERTH Single Shot multibox Detector (SS-
D) for vehicle detection (CERTH-SSD). Konstanti-
nos Avgerinakis, Panagiotis Giannakeris, Alexia Bri-
assouli, loannis Kompatsiaris. {koafgeri, giannakeris,
abria, ikom} @iti.gr
CERTH-SSD uses a modification of SSD [27]. Specif-
ically, the SSD Inception V2 architecture that is trained

3https://github.com/msracver/

Deformable-ConvNets
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on the COCO dataset is adopted. It uses a single
feed-forward convolutional network to directly predict
classes and bounding boxes of objects without requir-
ing a second stage per-proposal classification opera-
tion. Argmax is used for classification purposes and
SmoothLI to compute location loss function.

T.1. Higher-order Graph and Flow network
based Tracker (HGFT). Xiaoyi Yu, Guang Han.
{1215012310, hanguang8848} @njupt.edu.cn

HGFT is a variant of the min-cost flow network based
tracker [30]. Different from the original algorithm, this
method considers high-order temporal relations among
detections in the confidence calculation, which results
in better tracking performance. Specifically, the rela-
tions are calculated based on the overlap and height
ratio among detections in several consecutive frames.

T.2. Gaussian Mixture Probability Hypothesis Den-
sity Filter (GM-PHD). Tino Kutschbach, Volker Eise-
lein, Thomas Sikora. {kutschbach, eiselein} @nue.tu-
berlin.de

GM-PHD [14] is a new tree-based path extraction al-
gorithm for a Gaussian Mixture Probability Hypoth-
esis Density (PHD) filter in multi-object tracking.
Specifically, the PHD filter is a multi-object Bayes fil-
ter with the advantage of linear complexity and ability
to deal with high clutter especially in radar/sonar sce-
narios. Specifically, an eight-dimensional state-space
is used, where a state is encoded by the position of the
upper-left corner and the height/width of its bounding
box in the image, plus their temporal derivatives. See
[14] for further details.

T.3. Online distance based and offline appearance
based tracker with correlated color dissimilarity
matrix (CCM). Noor M. Al-Shakarji, Filiz Bunyak,
Kannappan Palaniappan. {nmahyd, punyak, pala-
niappank} @mail.missouri.edu

CCM employs a process in managing the birth, death
and temporary lose of object during visual tracking.
Kalman filter is used to predict the location of targets
on following frames. For local assignment, spatial dis-
tance is used to assign object using Hungarian algorith-
m [29]. Refinement process based on spatial distance
and reliable appearance model is used for solving the
global assignment. This method can filter out noisy
detections from objects that are reliably detected.

T.4. Intersection-over-union tracker (IOUT).
Erik Bochinski, Volker FEiselein, Thomas Sikora.
{bochinski, eiselein, sikora} @nue.tu-berlin.de

IOUT is a simple tracker which can essentially main-
tain and expand a track by selecting the detection with
the highest intersection-over-union to the last detection

in the existing frame (if a certain threshold is met).
The remaining detections (not assigned to an existing
track) will start a new track. All tracks with no de-
tection updates will end eventually. The performance
can be further improved by filtering out all tracks with
small length and/or no low-confidence detections.

T.5. Joint tracking with event grouping and con-
straints in time domain (JTEGCTD). Wei Tian, Mar-
tin Lauer. {fwei.tian, martin.lauerg} @kit.edu

JTEGCTD consists of two major components: the
grouping approach for prediction events and track
stitching by constraints in time domain. The first one is
employed to reduce the drift of targets which is caused
by mismatched objects in crowded scenes. The key
idea is based on the motion relationship within mul-
tiple objects. The second step attempts to rediscover
the target after long disappearance by solving subgraph
models.

T.6. Multi-task Deep Learning for Fast
Online  Multiple Object Tracking (MTT)
Yuqi Zhang, Yongzhen Huang, Liang Wang.
{yugi.zhang,yzhuang,wangliang} @nlpr.ia.ac.cn

MTT improves the original method in [35] by using
the appearance feature extractor trained by triplet loss
instead of cross entropy loss. In addition, the detec-
tion quality is judged first before performing track-
ing. The detection quality is simply defined as the
intersection-over-union between the ground truth. If
the intersection-over-union is low, it is labeled as bad
quality. A two-class classification network is trained.
The data association part only deals with detections
with good quality. The two parts formulate a multi-
task network and the computation of the convolutional
layers is shared in the two tasks.

T.7. Gaussian Mixture Probability Hypothesis Den-
sity Filter extended by Kernelized Correlation Fil-
ters (GMPHD-KCF). Tino Kutschbach, Volker Eise-
lein, Thomas Sikora. {kutschbach, eiselein}@nue.tu-
berlin.de

GMPHD-KCF is based on the work published in [14].
Furthermore, it has been extended by visual correlation
filters (namely Kernelized Correlation Filters) present-
ed in [22]. Specifically, the visual tracking scheme is
similar to [10] and uses two separate models for esti-
mating target translation and scale. This is possible be-
cause in most visual tracking applications, the change
in target position between two frames is much larger
than the change in scale. Therefore, translation esti-
mation and scale estimation can be done subsequently.
In this work, FHOG-features [17] from the computer



vision toolbox* are used. For translation estimation, a
KCF with Gaussian kernel, and for scale estimation a
filter with linear kernel is used.

T.8. CERTH Kernelized Correlation Filters (KCF)
tracking algorithm for vehicle tracking (CERTH-
KCF). Konstantinos Avgerinakis, Panagiotis Gian-
nakeris, Alexia Briassouli, loannis Kompatsiaris.
{koafgeri, giannakeris, abria, ikom} @iti.gr

CERTH-KCEF is based on the KCF tracking algorith-
m [22] in order to localize the bounding boxes through-
out sequential frames. The given detections are com-
pensated by allowing creation of a new trajectory on-
ly after an intersection-over-union score check is per-
formed with other already existing localized boxes in
the frame and falls below a certain value. When a de-
tection is missed, only the coordinates are updated to
relocalize the bounding box, while when the algorith-
m could not localize the initial given vehicle id for 3
sequential video frames the vehicle was presumed to
have traveled off the frame and it was ultimately delet-
ed from the database. To handle with the case that
a correctly tracked vehicle passes in front of another
confusing the tracker, the trajectories are merged at the
current frame and assign the oldest vehicle id to the re-
sulting trajectory.
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