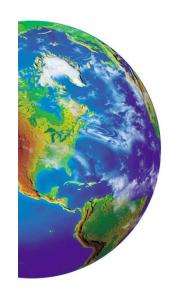
Spatial-Temporal Phrases for Activity Recognition



ECCV 2012

Yimeng Zhang, Xiaoming Liu, Ming-Ching Chang, Weina Ge, Tsuhan Chen Computer Vision Lab.

NIJ #2009-SQ-B9-K013

Overview

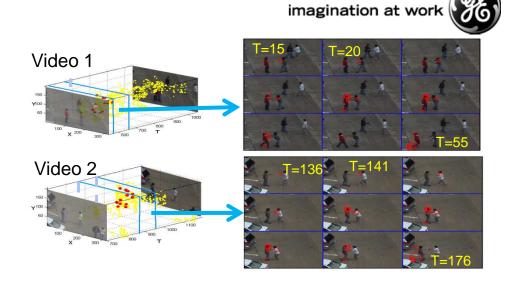
Goal: algorithm that models the spatial and temporal information of the local features, which capture the local movements of the body parts.

Limitation of Prior Work: either 1) not translation or temporal-shift invariant, 2) only capture neighboring information of local movements, 3) only encode weak/limited spatial or temporal information

Proposed: efficient algorithm that identifies both local and **long-range** shift-invariant motion interactions, eg. the causality relationship of the hand movement of one person and the foot movement of the other person several frames later.

Main Idea: Bag of Spatio-Temporal Phrases

ST-Phrases: a combination of local features in a certain spatial and temporal layout.



Runtime of proposed algorithm: detect all STphrases in linear time

Example co-occurring ST-Phrases detected with our algorithm from two videos including the *push* activity at different time stamp

Main Contribution:

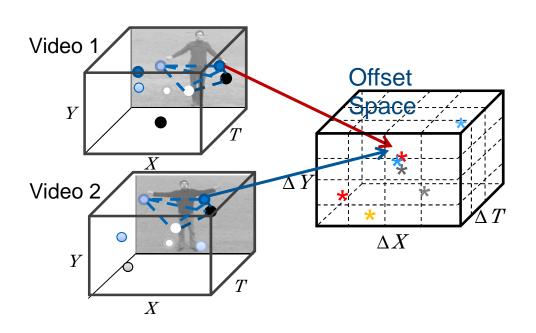
- 1) extend the Bag-of-Phrase algorithm [Zhang et al. CVPR'11] from 2D static images to videos;
- 2) an efficient algorithm for online activity detection

Approach

imagination at work

Detecting co-occurring ST-phrases from two videos

(extend algorithm of [Zhang et al. CVPR11])



Activity Speed or Scale Variations:

add a temporal or spatial scaling dimension to the offset space

ST-Kernel for the SVM:

Inner-product of the bag-of-STphrase histograms = the number of co-occurring ST phrases in two videos

Decision Score for a test image *V*:

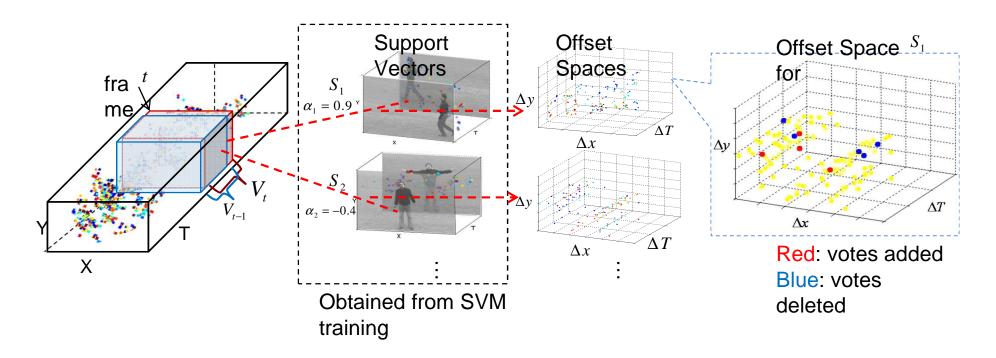
Score(V) =
$$\mathbb{R} K(V; S_j)$$

Approach

imagination at work

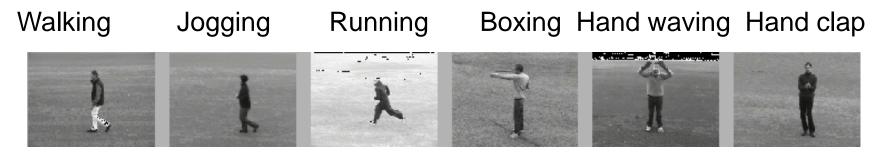
Online activity detection: classify every video frame (using the previous T seconds)

Algorithm: update the kernel values by avoiding the overlapping part of each frame



Only need to update the offset space by processing votes from two frames, thus we can include more context frames when processing each frame

Single Person Activity: KTH Dataset



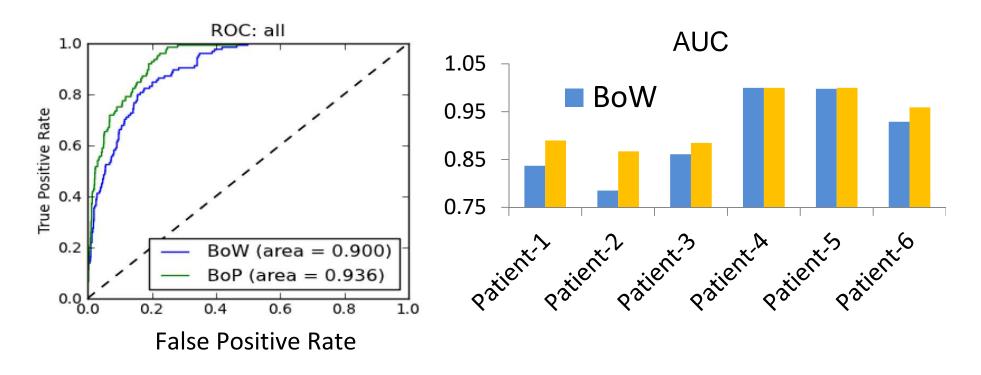
2391 videos of 25 subjects

Setting	BoW	BoP	SPM [1]	HT [2]	Correlaton [3]	ST-relation [4]
16/9	91.5	94.0	91.8	n/a	n/a	91.1
5-folder	92.9	94.6	n/a	92.0	n/a	n/a
leave one out	91.9	95.5	n/a	n/a	94.2	93.8

Accuracies (%) using different train-test settings: [1] Laptev et al. CVPR08 [2] Yao et al., CVPR10 [3] Savarese et al. WMVC08 [4] Ryoo et al. ICCV09

Single Person Activity: Hospital Surveillance Dataset

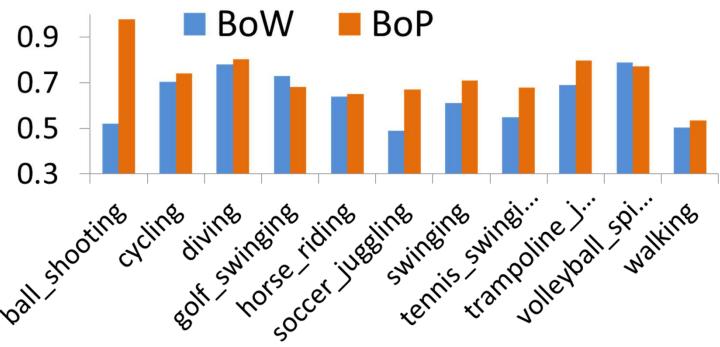
Real surveillance videos of 6 patients in the private sickrooms. Goal: detect abnormal behaviors of the patients



Single Person Activity: YouTube Action Dataset

1168 videos of 11 categories

Single Person Activity: YouTube Action Dataset

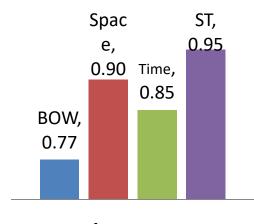


Average: 63.7% (BoW) → 72.9% (BoP)

Main improvement: different swing activities or categories both involve jump

Comparison: [Liu et al, CVPR09]: 65.4% (same features as us), 71.2% (add additional features)

Multiple Person Activity: HT-interact Dataset



Dataset	Method	Avg.	Shake	Hug	Kick	Point	Push	Punch
Set 1	BoW	0.77	0.70	0.80	0.90	1.00	0.50	0.70
	Hough Voting	0.83	0.50	1.00	1.00	1.00	0.70	0.80
	ВоР	0.95	1.00	1.00	1.00	0.90	0.90	0.90
Set2	BoW	0.73	0.70	0.70	0.80	0.80	0.70	0.70
	Hough Voting	0.80	0.70	0.90	1.00	1.00	0.80	0.40
	ВоР	0.90	0.80	1.00	1.00	0.80	0.90	0.90

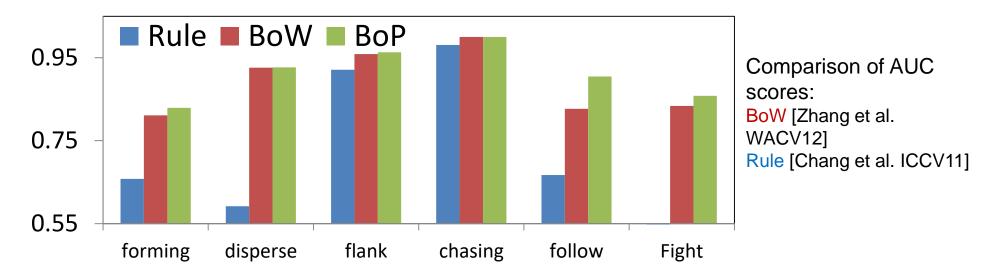
Accuracy

Left: effect of incorporating space and time separately

Right: comparison with Hough Voting (winner of ICPR 10)

Online Group-Level Activity: MPR Dataset

19 continous surveillance videos in a prison yard



This project was supported by grant #2009-SQ-B9-K013 awarded by the National Institute of Justice, Office of Justice Programs, US Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the Department of Justice.