Dynamic Decision Tasks

- A series of decisions required
- The next decision depends on the outcome of the previous one(s)
- Environments change
 - as a function of the decision(s)
 - autonomously
- Clock-driven (real-time) v.s. event-driven tasks
- Interaction between players

What is dynamic decision behavior?
- Task performance
 - Single / aggregate, consistent / conflicting
- Learning (task knowledge)
 - Verbalizable / non-verbal, declarative / procedural
- Decision efforts
 - Time
 - Information use
- Decision quality
 - Decision scope
 - Reliability
- Decision making architecture
 - Networked / hierarchical

What can explain / predict dynamic decision behavior?
- Decision makers
- Task complexity
- Decision-making interfaces and environments

Four predictors related to decision makers:
- Computing skills
- Cognitive / learning style
- Task expertise
- Task experience / practice

Computing skills - Not found to be directly relevant
Cognitive / learning style
- Almost without relevance, except Abstract in Gregorc Style Delineator -- learning concepts first, then examples
- Test intelligence in the European literature
Task expertise
- Task performance affected by academic background / long-term expertise or by pre-task training on task domain knowledge?
- Task domain knowledge helps learning decision heuristics?

Task experience / practice
- Improves task performance, reduces decision time
- Task knowledge acquired? = video game effect, dissociation between performance and learning
- Types of task knowledge

What can explain / predict dynamic decision behavior?
- Decision makers
- Task complexity
- Decision making interfaces and environments

Real-time / event-driven simulation tasks
- No effect on task performance and decision time found
- Have to be replicated in simple tasks

Total number of variables: degrading task performance
Random variation: degrading task performance
Interaction between subsystems
- Supposedly a negative effect on task performance, but a positive effect found
- Types of subsystems (positive and negative loops)
- Dominance of loops

Positive feedback gains
- Enlarging trivial error, side effect
- Task performance degraded
- Decision time unchanged
- Reduce decision scope (decision rules attempted)
- Task knowledge?
- Lagged effects (delays), decision effectiveness, and oscillation
 - Time lag ignored → over-aggressive action?
 - Task performance degraded
 - Information use and decision-architecture unchanged
 - Verbal knowledge impaired
 - Decision time unchanged?
What can explain / predict dynamic decision behavior?
- Decision makers
- Task complexity
- Decision-making interfaces and environments

Predictors related to decision-making interfaces and environments (continued)

Information Feedback
- Contents of information feedback
- Forms of information feedback

The Role of Task Complexity for Indirect Decision Aids
- Learning modes induced by lagged effects
- Learning induction
- Increasing task salience

Decision-making architecture (networked / hierarchical)
- The effect on task performance supported
- Decision time unaffected

Heuristics "hard-wired" in task systems
- Assumptions of the Monte-Carlo simulation: heuristics implemented with perfect consistency
- Heuristics demanding more information and more computation complexity do not always result in better task performance

Direct Prescriptions
- Heuristics-induced goal setting
 - Task performance improved
 - Decision time saved and information use affected
 - Task knowledge acquired

Verbal instructions on heuristics or task property
- Instructions on heuristics improves task performance, but task knowledge?
- Instructions on task property → task performance?
- Instructions on task property do not improve declarative knowledge → direct / indirect relationships
- Which is more helpful?

Task structure knowledge (declarative, feedback loops, variables’ relationships: direct / indirect)

Heuristics knowledge (procedural)
Indirect Decision Aids
- Concurrent verbalization (thinking-aloud)
 - Verbalization after pre-task instructions on performance and learning
 - Verbalization alone? Sufficient practice required? Redundancy with graphical representation?
- Require higher degree of decision precision - 1st decimal place
 - Force subjects to reason out the workings of variables' relationships
 - The positive effect on performance and learning mixed supported
 - Task complexity as the “invisible hand” again?

Information Feedback
- Contents of information feedback
 - Available throughout task operations
 - Bayesian probability helps performance, but more time needed
 - Previous decisions and outcomes (outcome feedback) hinder performance and decision reliability
 - Completeness not relevant here
 - Cognitive feedback (task property) and feedforward (heuristics)?

The Role of Task Complexity for Indirect Decision Aids
- Learning modes induced by lagged effects
 - Selective mode: explicit search for task structure
 - Unselective mode: decision-outcome contingencies
 - Adopting s-mode improves performance and declarative procedural knowledge
 - So what is good for u-mode learners? Transferring knowledge between tasks
- Increasing task salience
 - Informing subjects with lagged effects does not help
 - Providing task structure information improves performance and knowledge acquisition

Decision-making environments
- Decision-making interfaces
- Decision-making task systems
- Decision-making environments (politics, banking, etc.)
- What can explain / predict dynamic decision behavior?
 - Decision makers
 - Task complexity
 - Decision-making interfaces and environments
Task Complexity as the Invisible Hand

- Lurking behind all empirical evidences
 - Providing task property information may be useful in a "simple" task, but not in a "difficult" task
- Are people dynamically deficient?
 - Appears "yes" from the literature
 - Task complexity as a ceiling for human performance on dynamic decision making
- An unified complexity metric?
 - Delay and positive feedback gains as individual indicators

<table>
<thead>
<tr>
<th>Delay</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
</tr>
</tbody>
</table>

Ceiling Score = 800 - Delay * 99

<table>
<thead>
<tr>
<th>Delay</th>
<th>Score</th>
<th>Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>602</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>404</td>
</tr>
</tbody>
</table>

Components of Cognitive Feedback (Balzer et al., 1989)
- Task information: Re, inter-cue correlation, and cue-criterion relation
- Cognitive information: Rs and cue-judgment relation
- Functional validity information: \(r_a \), G, and C

Design of Information Feedback as an Effective Decision Aid

Research questions Worth Exploring

Task Complexity as the Invisible Hand

- Lurking behind all empirical evidences
 - Providing task property information may be useful in a "simple" task, but not in a "difficult" task
- Are people dynamically deficient?
 - Appears "yes" from the literature
 - Task complexity as a ceiling for human performance on dynamic decision making
- An unified complexity metric?
 - Delay and positive feedback gains as individual indicators

\[r_a = G R_s + C \sqrt{(1 - R_e^2)(1 - R_s^2)} \]

- The lens model equation above depicts the relationship between human performance \(r_a \) and task predictability \(R_e \)
 - If the nonlinear part can be ignored, i.e., \(R_s \) and \(R_e \) large enough, \(r_a \) is always less than \(R_e \) since \(R_s \) (judgmental reliability) is always less than 1 even when we have a perfect knowledge (G = 1). That is, \(r_a \leq R_e \)
- Dynamic version of the lens model?
 - Independence of judgments (decisions in DDM)
 - A complex task model captured by a regression model
 - Human decisions in dynamic situations captured

Research questions Worth Exploring

Are People Dynamically Deficient?

Research questions Worth Exploring

Design of Information Feedback as an Effective Decision Aid

Design of Information Feedback as an Effective Decision Aid

Outcome Feedback

- For a judgment, such as weather prediction, the outcome of the judgment is the true status. For a dynamic decision task, we have a series of decisions leading to "outcomes."
- Outcome feedback in dynamic decision environments
 - In some DDM studies reviewed, outcomes of subjects’ decisions are regarded as outcome feedback
 - How about benchmark decisions and outcomes?
 - Plots over time as outcome feedback

Research questions Worth Exploring

Design of Information Feedback as an Effective Decision Aid

Research questions Worth Exploring
Task Expertise
- What is task expertise?
 - Task domain knowledge, e.g., social welfare, economics
 - Between domain knowledge and task property and heuristics → capability to identify certain patterns, e.g., delays and fixes that fail, “systems architectures”
 - Systems thinking experts?

- How task expertise can be developed and helpful in DDM tasks
 - Formal academic training and/or long term experience
 - Pre-task training sessions
 - Group model building exposure?

Methodological Issues
- The current review collects the dynamic decision making research conducted by laboratory experiments with two possible limitations.

- Single case studies as theory construction and testing

- Dynamic feedback models as a theory of dynamic decision behavior