
1

Cyber-Physical Systems

Revision
IECE 553/453– Fall 2019
Prof. Dola Saha

2

Final Examination
Ø Dec 16
Ø 8AM-10AM
Ø ES 019
Ø Closed books, closed Notes
Ø Syllabus : As discussed in class and lab throughout the

semester
Ø Separate questions for undergrads and grads

3

What did you learn?

4

Application Domains – major societal impact
Ø Agriculture, Aeronautics, Building design, Civil

infrastructure, energy, environmental quality, healthcare
and personalized medicine, Manufacturing, and
transportation.

5

CPS
Ø Cyber + Physical
Ø Computation + Dynamics +

Communication
Ø Security + Safety

Automotive

Biomedical

Military

Energy

Manufacturing

Avionics

Buildings

6

Challenges of Working in a Multidisciplinary Area

7

Challenges of Working in a Multidisciplinary Area

Network

Small Computer

Big Complex
System

Connected
Industrial System

Advanced
Manufacturing

Robot

8

What is this course about?
Ø A scientific structured approach to designing and

implementing embedded systems
Ø Not just hacking and implementing
Ø Focus on model-based system design, on embedded

hardware and software

9

Model, Design & Analysis
ØModeling is the process of gaining a deeper understanding
of a system through imitation. Models specify what a system
does.

ØDesign is the structured creation of artifacts. It specifies how
a system does what it does. This includes optimization.

ØAnalysis is the process of gaining a deeper understanding of
a system through dissection. It specifies why a system does
what it does (or fails to do what a model says it should do).

10

What is a sensor? An actuator?
Ø A sensor is a device that measures a physical quantity
Ø à Input / “Read from physical world”

Ø An actuator is a device that modifies a physical quantity
Ø à Output / “Write to physical world”

11

Sensor Model
Ø Linear and Affine Functions

Ø Affine Sensor Model

Ø Sensitivity (a), Bias (b) and Noise (n)
§ Sensitivity specifies the degree to which the measurement changes

when the physical quantity changes

! " # = %" #
! " # = %" # + '

! " # = %" # + ' + (

12

Resolution
Ø Resolution is determined by number of bits (in binary) to represent an analog input.

Ø Example of two quantization methods (N = 3)

Digital Result = ,loor 20× V
V345

Digital Result = round 20× V
V345

½ ΔΔ

Max quantization error = Δ = VREF/23 Max quantization error = ±½ Δ = ±VREF/24

round x = ,loor(x + 0.5)

13

Range and Dynamic Range
Ø Range

Ø Dynamic Range

14

Noise modeled as statistical property
Ø x(t) is a random variable with uniform

distribution ranging from 0 to 1

Ø n(t) = f(x(t)) – x(t)
§ ranges from −1/8 to 0

15

Precision and Accuracy
Ø Precision: how close the two measured values can be
Ø Accuracy: how close is the measured value to the true

value

16

Binary-weighted Resistor DAC

!"#$ = !&'(×
*&'(
* ×(,-×2- + ,0×20 + ,1×2 + ,2)

R
Rref

R/2R/4R/8

Vout

-Vref
D3 D2 D1 D0

17

Sensor Fusion: Marzullo’s Algorithm
Ø Axiom: if sensor is non-faulty, its interval contains the true

value
Ø Observation: true value must be in overlap of non-faulty

intervals
Ø Consensus (fused) Interval to tolerate f faults in n:

Choose interval that contains all overlaps of n − f; i.e.,
from least value contained in n − f intervals to largest
value contained in n − f

18

Weighted Plurality Voting Units
Inputs: Data-weight pairs
Output: Data with maximal support and its associated tally

Source: B. Parhami, IEEE Trans. Reliability, Vol. 40, No. 3, pp. 380-394, August 1991

Sort
by

data

Com-
bine

weights

Select
max

weight

á5, 1ñ

á4, 2ñ

á5, 3ñ

á7, 2ñ

á4, 1ñ

á5, 4ñ

á7, 2ñ

á5, 1ñ

á5, 3ñ

á4, 2ñ

á4, 1ñ

á7, 2ñ

á5, 4ñ

á5, 0ñ

á4, 3ñ

á4, 0ñ

Phase 1 Phase 2 Phase 3

Sorter Combiner Selector

19

Stages of delay

5-Sorter 5-Combiner 5-Selector

The first two phases (sorting and combining) can be merged, producing a 2-
phase design – fewer, more complex cells (lead to tradeoff)

1 2 3 4 5 6 7 8 9 10 11 12 13

á5, 1ñ

á4, 2ñ

á5, 3ñ

á7, 2ñ

á4, 1ñ

á5, 3ñ

á7, 2ñ á5, 1ñ

á7, 2ñ

á4, 2ñ

á5, 3ñ á5, 4ñ

á5, 0ñ

á4, 3ñ

á4, 0ñ

á5, 4ñá4, 3ñ

20

Peripheral I/O
Ø GPIO
Ø SPI
Ø I2C
Ø UART
Ø USB
Ø CAN

21

Serial Peripheral Interface (SPI)

Ø Master has to provide clock to slave
Ø Synchronous exchange: for each clock pulse, a bit is shifted out and

another bit is shifted in at the same time. This process stops when all
bits are swapped.

Ø Only master can start the data transfer

22

Inter-Integrated Circuit (I2C)

Ø A START condition is a high-to-low transition on
SDA when SCL is high.

Ø A STOP condition is a low to high transition on
SDA when SCL is high.

Ø The address and the data bytes are sent most
significant bit first.

Ø Master generates the clock signal and sends it to
the slave during data transfer

23

Universal Asynchronous Receiver and Transmitter (UART)

Ø Universal
§ Programmable format, speed, etc.

Ø Asynchronous
§ Sender provides no clock signal to receivers

Ø Half Duplex
Ø Any node can initiate communication
Ø Two lanes are independent of each other

24

8b/10b Encoding
Ø ensure sufficient data transitions

for clock recovery
Ø A DC-balanced serial data stream
§ it has almost same number of 0s and 1s for a

given length of data stream.
§ DC-balance is important for certain media as it

avoids a charge being built up in the media.

25

FIR Filter Implementation
Ø z-1 is unit delay
Ø Suppose N = 4 and a0 = a1 = a2 = a3 = 1/4.
Ø Then for all n ∈ N,

y(n) = (x(n) + x(n − 1) + x(n − 2) + x(n − 3))/4 .

Ø Multiply-Accumulate

Tapped delay line implementation of the FIR filter

26

Fixed Point Numbers
Ø !""!". "!"$
Ø = 1×2) + 1×2$ + 1×2+ + 1×2,- + 1×2,)
Ø = 13.625

1 = 23 + 24×5,6

10101.101$ = 89 + 8:×2,)

= 21 + 5×2,)

= 21.625

m bits n bits

Radix point

Integer Fraction

hA lA

27

Notation

28

Orientation

29

Actor Model of the Helicopter
Ø Input is the net torque of the tail

rotor and the top rotor. Output is
the angular velocity around the y-
axis.

Ø Parameters of the model are
shown in the box. The input and
output relation is given by the
equation to the right.

30

Composition of Actor Model

31

Synchronous Dataflow (SDF)
Ø Specialized model for dataflow
Ø All actors consume input tokens, perform their computation and

produce outputs in one atomic operation
Ø Flow of control is known (predictable at compile time)
Ø Statically scheduled domain
Ø Useful for synchronous signal processing systems
Ø Homogeneous SDF: one token is usually produced for every

iteration

32

Solving the Balance Equation
Ø Every connection between actors results in a balance equation
Ø The model defines a system of equations, and the goal is to

find the least positive integer solution

Ø The least positive integer solution to these equations is
§ qA = qB = 1, and qC = 2

Ø The schedule {A, B, C, C} can be repeated forever to get an
unbounded execution with bounded buffers

33

Inconsistent SDF

Ø An SDF model that has a non-zero solution to the
balance equations is said to be consistent.

Ø If the only solution is zero, then it is inconsistent.
Ø An inconsistent model has no unbounded

execution with bounded buffers.

34

Dynamic Dataflow (DDF)

Ø SDF cannot express conditional firing: an actor
fires only if a token has a particular value

Ø DDF: Firing Rule is required to be satisfied for
firing

Ø Number of tokens produced can vary
Ø Example DDF Actor: Select
Ø Similar to Go To in Imperative Programming

35

Example DDF (Conditional Firing)

When Bernoulli produces
true, the output of the Ramp
actor is multiplied by −1

36

Discrete Systems
Ø Example: count the number of cars that enter and leave a

parking garage:

Ø Pure signal:
Ø Discrete actor: Counter : (R� {absent,present})P � (R� {absent}⇥N)

up : R� {absent,present}

P = {up,down}

37

Garage Counter Mathematical Model

Formally: (States, Inputs,Outputs,update, initialState), where

• States = {0,1, · · · ,M}

• Inputs = ({up,down}⇥{ absent,present}

• Outputs = ({count}⇥{ absent}⇤N)

• update : States� Inputs⇥ States�Outputs

• initialState = 0

Transition Function

38

Process Execution
Ø Memory layout of three

processes
Ø Dispatcher program:

switches processor from
one process to another

Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

39

Five State Process Model

New Ready

Blocked

Running Exit

Figure 3.6 Five-State Process Model

Admit
Dispatch

Timeout

Release

Event
Wait

Event
Occurs

40

Queuing Model

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

Figure 3.8 Queuing Model for Figure 3.6

Dispatch

Timeout

Event Wait

Event 1 Wait

Event 2 Wait

Event n Wait

Event
Occurs

Ready Queue

Blocked Queue

Admit
Release

Processor

Dispatch
ReleaseReady Queue

Admit
Processor

Timeout

Event 1 Queue
Event 1
Occurs

Event 2
Occurs

Event n
Occurs

Event 2 Queue

Event n Queue

(a) Single blocked queue

(b) Multiple blocked queues

Single Blocked Queue Multiple Blocked Queue

41

User and Kernel level Threads

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

42

Create Thread and Join
#include <pthread.h>
#include <stdio.h>
void *PrintHello(void * id){

printf(“Hello from thread %d\n", id);
}

void main (){
pthread_t thread0, thread1;
pthread_create(&thread0, NULL, PrintHello, (void *) 0);
pthread_create(&thread1, NULL, PrintHello, (void *) 1);
pthread_join(thread0, NULL);
pthread_join(thread1, NULL);

}

43

Interrupt Processing

44

Mutual Exclusion - Mutex
Ø Prevents Race Condition
Ø Enables resource sharing
Ø Critical section is performed by a

single process or thread
Ø One thread blocks a critical section

by using locking technique (mutex)
Ø Other threads have to wait to get

their turn to enter into the section.

45

Deadlock
Ø The permanent blocking of a set of processes that either

compete for system resources or communicate with each
other

Ø A set of processes is deadlocked when each process in the
set is blocked awaiting an event that can only be triggered
by another blocked process in the set

Ø Example: addListener() and update()

46

Problems with the Foundations of Threads
Ø A model of computation:
§ Bits: B = {0, 1}
§ Set of finite sequences of bits: B*
§ Computation: f : B*® B*
§ Composition of computations: f • f '
§ Programs specify compositions of computations

Ø Threads augment this model to admit concurrency.
Ø But this model does not admit concurrency gracefully.

47

Basic Sequential Computation

initial state: b0 Î B*

final state: bN

sequential
composition

bn = fn (bn-1)

Formally, composition of computations is function composition.

48

When There are Threads, Everything Changes

suspend

A program no longer
computes a function.

resume

another thread can
change the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this
model appealing because nothing has
changed in the syntax.

49

Scheduling Policies
Ø First Come First Serve
Ø Round Robin
Ø Shortest Process Next
Ø Shortest Remaining Time Next
Ø Highest Response Ratio Next
Ø Feedback Scheduler
Ø Fair Share Scheduler

50

How to predict execution time in SPN ?

Ø Store the Sum
Ø Higher weight to recent instances

Ø The older the observation, the less it is counted in to the average.

51

Queuing Analysis

52

Characteristics of Various Scheduling Policies

53

Characteristics of Real Time Systems

Real-time operating systems have requirements in five
general areas:

Determinism

Responsiveness

User control

Reliability

Fail-soft operation

54

Task Model

55

Criteria or Metrices
Ø Processor Utilization
Ø Maximum Lateness

Ø Total Completion Time or Makespan

Ø Average Response Time

56

Step Response with PID Controller

Ø Combined
benefits of PI
and PD

Controller

Desired
Velocity
(Vdes) Adjusted Volts

(X)
err

Time (sec)

Ve
lo

cit
y

Motor
Actual

Velocity
(Vact)

dt
tdeK

dtteK

teKVX

D

I

Pdes

)(

)(

)(

-

+

+=

ò

57

PID Controller Pseudocode

58

Security Threats in the IoT
Ø Cyber attack on the Ukrainian power grid
Ø Power outage caused by hackers

Source: Comprehensive Analysis Report on Ukraine Power System Attacks
March 16, 2016 By Antiy Lab

Security in the IoT is essential, not just for information
protection, but also for safety!

59

Properties and Threat Models
Ø Secrecy/Confidentiality
§ Can secret data be leaked to an attacker?

Ø Integrity
§ Can the system be modified by the attacker?

Ø Authenticity
§ Who is the system communicating/interacting with?

Ø Availability
§ Is the system always able to perform its function?

Ø Need to think about Threat (attacker) Models

60

Polyalphabetic Cipher

Ø n substitution ciphers, C1,C2,…,Cn

Ø cycling pattern:
§ e.g., n=4 [C1-C4], k=key length=5: C1,C3,C4,C3,C2; C1,C3,C4,C3,C2; ..

Ø for each new plaintext symbol, use subsequent substitution pattern in
cyclic pattern

§ dog: d from C1, o from C3, g from C4

Encryption key: n substitution ciphers, and cyclic pattern
§ key need not be just n-bit pattern

• Chosen-plaintext attack. In a chosen-plaintext attack, the intruder is able to
choose the plaintext message and obtain its corresponding ciphertext form. For
the simple encryption algorithms we’ve seen so far, if Trudy could get Alice to
send the message, “The quick brown fox jumps over the lazy
dog,” she could completely break the encryption scheme. We’ll see shortly that
for more sophisticated encryption techniques, a chosen-plaintext attack does not
necessarily mean that the encryption technique can be broken.

Five hundred years ago, techniques improving on monoalphabetic encryption,
known as polyalphabetic encryption, were invented. The idea behind polyalpha-
betic encryption is to use multiple monoalphabetic ciphers, with a specific monoal-
phabetic cipher to encode a letter in a specific position in the plaintext message.
Thus, the same letter, appearing in different positions in the plaintext message,
might be encoded differently. An example of a polyalphabetic encryption scheme is
shown in Figure 8.4. It has two Caesar ciphers (with k = 5 and k = 19), shown as
rows. We might choose to use these two Caesar ciphers, C1 and C2, in the repeating
pattern C1, C2, C2, C1, C2. That is, the first letter of plaintext is to be encoded using
C1, the second and third using C2, the fourth using C1, and the fifth using C2. The
pattern then repeats, with the sixth letter being encoded using C1, the seventh with
C2, and so on. The plaintext message “bob, i love you.” is thus encrypted
“ghu, n etox dhz.” Note that the first b in the plaintext message is encrypted
using C1, while the second b is encrypted using C2. In this example, the encryption
and decryption “key” is the knowledge of the two Caesar keys (k = 5, k = 19) and
the pattern C1, C2, C2, C1, C2.

Block Ciphers

Let us now move forward to modern times and examine how symmetric key encryp-
tion is done today. There are two broad classes of symmetric encryption techniques:
stream ciphers and block ciphers. We’ll briefly examine stream ciphers in Section
8.7 when we investigate security for wireless LANs. In this section, we focus on
block ciphers, which are used in many secure Internet protocols, including PGP
(for secure e-mail), SSL (for securing TCP connections), and IPsec (for securing the
network-layer transport).

678 CHAPTER 8 • SECURITY IN COMPUTER NETWORKS

Plaintext letter: a b c d e f g h i j k l m n o p q r s t u v w x y z
C1(k = 5):
C2(k = 19):

f g h i j k l m n o p q r s t u v w x y z a b c d e
t u v w x y z a b c d e f g h i j k l m n o p q r s

Figure 8.4 ! A polyalphabetic cipher using two Caesar ciphers

61

Symmetric key crypto: DES
Ø initial permutation (on 64 bits)

Ø 16 identical “rounds” of function
application

§ each using different 48 bits of key
§ a subkey (Ki) is produced by the combination of a left

circular shift and a permutation
§ rightmost 32 bits are moved to leftmost 32 bits

Ø final permutation (on 64 bits)

Kaufman, Schneier, 1995

With the exception of the initial and final
permutations, DES has the exact structure
of a Feistel cipher

The permutation function is the
same for each round, but a
different subkey is produced
because of the repeated shifts of
the key bits

62

Each round of DES
Ø Ki is 48 bits, R input is 32 bits.
Ø R is first expanded to 48 bits
§ a table defines a permutation plus an expansion

that involves duplication of 16 of the R bits

Ø Resulting 48 bits are XORed with Ki
Ø This 48-bit result passes through

a substitution function (S box)
that produces a 32-bit output

Ø This is permuted

63

RSA: Creating public/private key pair

1. choose two large prime numbers p, q.
(e.g., 1024 bits each)

2. compute n = pq, z = (p-1)(q-1)

3. choose e (with e<n) that has no common factors
with z (e, z are “relatively prime”).

4. choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. public key is (n,e). private key is (n,d).

K B
+ K B

-

64

RSA: encryption, decryption

0. given (n,e) and (n,d) as computed above

1. to encrypt message m (<n), compute
c = m mod ne

2. to decrypt received bit pattern, c, compute
m = c mod nd

m = (m mod n)e mod nd

c

65

RSA example:
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z).

bit pattern m me c = m mod ne

0000l000 12 24832 17
encrypt:

encrypting 8-bit messages.

c m = c mod nd

17 481968572106750915091411825223071697 12

c d
decrypt:

