
1

Cyber-Physical Systems

Basic I/O with RPi
ICEN 553/453– Fall 2018
Prof. Dola Saha

2

Embedded System
Ø Embedded computing system: any

device that includes a processing
system but is NOT a general-purpose
computer.

Ø Often application specific: takes
advantage of application
characteristics to optimize the design

Ø Might have real-time requirements
Ø Might be power constrained

CPU

mem

input

output analog

analog

embedded
computer

3

Connecting the Analog and Digital Worlds
ØCyber
§Digital
§Discrete in Time
§Sequential

ØPhysical
§Continuum
§Continuous in time
§Concurrent

4

Practical Issues
Ø Analog vs. digital
Ø Wired vs. wireless
Ø Serial vs. parallel
Ø Sampled or event triggered
Ø Bit rates
Ø Access control, security, authentication
Ø Physical connectors
Ø Electrical requirements (voltages and currents)

5

History of ARM Processor

6

ARM Cortex Processors
ARM Cortex-A family:
Applications processors
Support OS and high-performance applications
Such as Smartphones, Smart TV
ARM Cortex-R family:
Real-time processors with high performance and
high reliability
Support real-time processing and mission-critical
control
ARM Cortex-M family:
Microcontroller
Cost-sensitive, support SoC

7

Raspberry Pi – Know your board
Ø The Raspberry Pi 3 Model B+ is the latest product in Raspberry Pi range.
§ Broadcom BCM2837B0, Cortex-A53

(ARMv8) 64-bit SoC @ 1.4GHz
§ 1GB LPDDR2 SDRAM
§ 2.4GHz and 5GHz IEEE

802.11.b/g/n/ac wireless LAN,
Bluetooth 4.2, BLE

§ Gigabit Ethernet over USB 2.0
(maximum throughput 300 Mbps)

§ Extended 40-pin GPIO header
§ Full-size HDMI

8

Raspberry Pi – Know your board
Ø The Raspberry Pi 3 Model B+ is the latest product in Raspberry Pi range.
§ CSI camera port for connecting a

Raspberry Pi camera
§ DSI display port for connecting a

Raspberry Pi touchscreen display
§ 4-pole stereo output and composite

video port
§ Micro SD port for loading your

operating system and storing data
§ 5V/2.5A DC power input
§ Power-over-Ethernet (PoE) support

(requires separate PoE HAT)

9

ARM Peripherals BCM2837 Manual

10

GPIO Pins
Ø https://pinout.xyz

https://pinout.xyz/

11

Resistors and LEDs

12

Breadboard Connections

13

Dual In-Line Package or DIP

14

GPIO
Ø GPIO to Breadboard

Interface Board
Ø GPIO Ribbon Cable
Ø Breadboard

15

Convention

16

Circuit to Breadboard
Ø Use 3V

17

Circuit to Breadboard
Ø Use GPIO pin

18

sysfs - a filesystem for exporting kernel objects

Ø The sysfs filesystem is a
pseudo-filesystem which
provides an interface to kernel
data structures.

Ø The files under sysfs provide
information about devices,
kernel modules, filesystems,
and other kernel components.

19

Linux Kernel vs User Space
Ø The Linux kernel runs in an area of system memory called the kernel

space
Ø Regular user applications run in an area of system memory called user

space
Ø A hard boundary between these two spaces prevents
§ User applications from accessing memory and resources required by the Linux kernel
§ Linux kernel from crashing due to badly written user code
§ Interfering one user’s applications with another
§ Provides a degree of security.

20

sysfs
Ø Paths in sysfs (/sys/class/gpio)
§ Control interfaces used to get userspace control over GPIOs
o export
o unexport

§ GPIOs themselves
§ GPIO controllers ("gpio_chip" instances)

Ø GPIO signals have paths like /sys/class/gpio/gpioN/
§ "direction" - reads as either "in" or "out”
§ "value" - reads as either 0 (low) or 1 (high)
§ "edge" - reads as either "none", "rising", "falling", or "both”
§ "active_low" - reads as either 0 (false) or 1 (true)

21

Steps to perform I/O using sysfs
Ø Export the pin.
Ø Set the pin direction (input or output).
Ø If an output pin, set the level to low or high.
Ø If an input pin, read the pin's level (low or high).
Ø When done, unexport the pin.

22

Exporting GPIO control to userspace
Ø "export"
§ Userspace may ask the kernel to export control of a GPIO to userspace

by writing its number to this file.
§ Example: "echo 19 > export" will create a "gpio19" node for GPIO #19, if

that's not requested by kernel code.

Ø "unexport"
§ Reverses the effect of exporting to userspace.
§ Example: "echo 19 > unexport" will remove a "gpio19" node exported

using the "export" file.

23

Control GPIO with Linux
Ø Become the Sudo user
§ dsaha@sahaPi:~ $ sudo su

Ø Go to the GPIO folder and list the contents
§ root@sahaPi:/home/dsaha# cd /sys/class/gpio/
§ root@sahaPi:/sys/class/gpio# ls
§ export gpiochip0 gpiochip128 unexport

Ø Export gpio 4
§ root@sahaPi:/sys/class/gpio# echo 4 > export
§ root@sahaPi:/sys/class/gpio# ls
§ export gpio4 gpiochip0 gpiochip128 unexport

24

Control GPIO with Linux
Ø Go to the gpio4 folder and list contents
§ root@sahaPi:/sys/class/gpio# cd gpio4/
§ root@sahaPi:/sys/class/gpio/gpio4# ls
§ active_low device direction edge power subsystem uevent value

Ø Set direction (in or out) of pin
§ root@sahaPi:/sys/class/gpio/gpio4# echo out > direction

Ø Set value to be 1 to turn on the LED
§ root@sahaPi:/sys/class/gpio/gpio4# echo 1 > value

25

Control GPIO with Linux
Ø Set value to be 0 to turn off the LED
§ root@sahaPi:/sys/class/gpio/gpio4# echo 0 > value

Ø Check the status (direction and value) of the pin
§ root@sahaPi:/sys/class/gpio/gpio4# cat direction
§ out
§ root@sahaPi:/sys/class/gpio/gpio4# cat value
§ 0

26

Control GPIO with Linux
Ø Ready to give up the control? Get out of gpio4 folder and list contents,

which shows gpio4 folder
§ root@sahaPi:/sys/class/gpio/gpio4# cd ../
§ root@sahaPi:/sys/class/gpio# ls
§ export gpio4 gpiochip0 gpiochip128 unexport

Ø Unexport gpio 4 and list contents showing removal of gpio4 folder
§ root@sahaPi:/sys/class/gpio# echo 4 > unexport
§ root@sahaPi:/sys/class/gpio# ls
§ export gpiochip0 gpiochip128 unexport

27

Program
Ø Bash Script
§ exploringrpi/chp05/bashLED/bashLED

Ø Python Code
§ exploringrpi/chp05/pythonLED/python2LED.py

Ø C code
§ exploringrpi/chp05/makeLED/makeLED.c

28

Bash and Python Script

29

C Program

30

Use Rpi Library
Ø https://sourceforge.net/projects/raspberry-gpio-python/
Ø Note: Current release does not support SPI, I2C, 1-wire or

serial functionality on the RPi yet

https://sourceforge.net/projects/raspberry-gpio-python/

31

Use gpiozero Library
Ø https://gpiozero.readthedocs.io/en/stable/

https://gpiozero.readthedocs.io/en/stable/

32

GPIO as Input
Ø Push-button Switch

33

Reading GPIO

34

GPIO Block Diagram

35

Pull-down and Pull-up Resistors
Ø Used to ensure that the switches do not

create floating inputs
Ø Pull-down resistors:
§ used to guarantee that the inputs to the gate are low

when the switches are open

Ø Pull-up resistors:
§ used to guarantee that the inputs are high when the

switches are open.

36

Calculate Internal Resistor Value
Ø Voltage Divider (pin 16 vs pin 7)

37

Internal pull-up/pull-down Resistors
Ø Can be configured using memory based GPIO control
Ø cat /proc/iomem
Ø 00000000-3b3fffff : System RAM
Ø ….
Ø 3f200000-3f2000b3 : /soc/gpio@7e200000
Ø ….

Address Mapped

38

/dev/mem
Ø /dev/mem is a character device file that is an image of the

main memory of the computer.
Ø Byte addresses in /dev/mem are interpreted as physical

memory addresses.
Ø References to nonexistent locations cause errors to be

returned.

39

Use /dev/mem directly
Ø wget http://www.lartmaker.nl/lartware/port/devmem2.c
Ø gcc devmem2.c -o devmem2
Ø ./devmem2
Usage: ./devmem2 { address } [type [data]]
address : memory address to act upon
type : access operation type : [b]yte, [h]alfword, [w]ord
data : data to be written

http://www.lartmaker.nl/lartware/port/devmem2.c

40

GPIO Pull-up/down Register Control
Ø The GPIO Pull-up/down Register controls the actuation of the

internal pull-up/down control line to ALL the GPIO pins. This
register must be used in conjunction with the 2 GPPUDCLKn
registers.

Ø Note that it is not possible to read back the current Pull-
up/down settings and so it is the users’ responsibility to
‘remember’ which pull-up/downs are active. The reason for
this is that GPIO pull-ups are maintained even in power-down
mode when the core is off, when all register contents is lost.

41

Default Configuration of Pull-up/down Resistors

42

BCM 2837 Manual
Ø Table 6-1

Ø Table 6-28

43

BCM 2837 Manual

44

Control Pull-up/down (from BCM2837 manual)
Ø Write to GPPUD to set the required control signal (i.e. Pull-up or Pull-Down or neither to

remove the current Pull-up/down)
Ø Wait 150 cycles – this provides the required set-up time for the control signal
Ø Write to GPPUDCLK0/1 to clock the control signal into the GPIO pads you wish to

modify – NOTE only the pads which receive a clock will be modified, all others will
retain their previous state.

Ø Wait 150 cycles – this provides the required hold time for the control signal
Ø Write to GPPUD to remove the control signal
Ø Write to GPPUDCLK0/1 to remove the clock

45

Pull Down Resistor is enabled
Ø Set bit 4 on the GPPUDCLK0 register, clear the GPPUD

register, and then remove the clock control signal from
GPPUDCLK0

§ GPIO4 is bit 4, which is 10000 in binary (0x1016)

Ø Get the Value in GPIO 4
§ sudo su
§ cd /sys/class/gpio/
§ echo 4 > export
§ cd gpio4
§ cat value

46

Pull Down Resistor is enabled
Ø GPPUD Enable Pull-down
§ sudo /home/dsaha/myCode/devmem2 0x3F200094 w 0x01

Ø GPPUDCLK0 enable GPIO 4
§ sudo /home/dsaha/myCode/devmem2 0x3F200098 w 0x10

Ø GPPUD Disable Pull-down
§ sudo /home/dsaha/myCode/devmem2 0x3F200094 w 0x00

Ø GPPUDCLK0 disable Clk signal
§ sudo /home/dsaha/myCode/devmem2 0x3F200098 w 0x00

Ø cat value
§ 0

47

Pull up Configuration
Ø GPPUD Enable Pull-up
§ sudo /home/dsaha/myCode/devmem2 0x3F200094 w 0x02

Ø GPPUDCLK0 enable GPIO 4
§ sudo /home/dsaha/myCode/devmem2 0x3F200098 w 0x10

Ø GPPUD Disable Pull-up
§ sudo /home/dsaha/myCode/devmem2 0x3F200094 w 0x00

Ø GPPUDCLK0 disable Clk signal
§ sudo /home/dsaha/myCode/devmem2 0x3F200098 w 0x00

Ø cat value
§ 1

48

WiringPi

49

The gpio Command (WiringPi)

50

wiringPi Functions

51

wiringPi Blink LED

http://wiringpi.com/examples/blink/

52

Analog Output
Ø Pulse Width Modulation (PWM)
§ Technique that conforms a signal width, generally pulses
§ The general purpose is to control power delivery
§ The on-off behavior changes the average power of signal
§ Output signal alternates between on and off within a specified period.
§ If signal toggles between on and off quicker than the load, then the load

is not affected by the toggling

53

PWM – Duty Cycle
Ø A measure of the time the modulated signal is in its “high”

state
Ø Generally recorded as the percentage of the signal period

where the signal is considered on

Period (T)

Duty
Cycle (D)VL

VH

On Off

54

Duty Cycle Formulation

%100´=
Period
TimeOnCycleDuty

() LHavg VDVDV ×-+×= 1

Duty Cycle is determined by:

*Average value of a signal can
be found as:

0

1 ()
T

y f t dt
T

= ò

*In general analysis, VL is taken as zero volts for simplicity.

Period (T)

Duty
Cycle (D)VL

VH

On Off

55

PWM Duty Cycle

56

PWM Mode
Ø Counter counts up

to the range
provided

Ø When the counter
value is higher
than set value,
output is high

57

PWM Duty Cycle Calculation
Ø The PWM device on the RPi is clocked at a fixed base-

clock frequency of 19.2 MHz
Ø Integer divisor and range values are used to tailor the

PWM frequency according to application requirements
Ø !"#$ = 19.2*+,/(/010234×46789)
Ø If !"#$ is 10KHz (0.01MHz), and range is 128,
§ /010234 =

;<.=$>?
@ABC×DEFGH

= 15

58

PWM0 and PWM1 Map

59

exploringPi/chp06/wiringPi/pwm.cpp

