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Abstract

When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved

levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest

competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We

apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts

evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and

simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the

maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain

competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence,

increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest

policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that

introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and

increase global host density.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

When increased disease virulence accelerates transmis-
sion of infectious propagules between hosts, but simulta-
neously reduces the longevity of infection within hosts,
changes in virulence can alter host–pathogen dynamics
significantly (Bull, 1994; Ewald, 1994; Frank, 1996; Day,
2002; Holt and Hochberg, 2002). Population dynamics, in
turn, sets the framework for the evolution of virulence (van
Baalen and Sabelis, 1995; Castillo-Chavez and Velasco-
Hernandez, 1998). In particular, spatially structured
disease transmission can govern virulence evolution
through effects on infection dynamics; locally structured
infection generally favors virulence lower than predicted by
homogeneous mixing of susceptible and infectious hosts
e front matter r 2006 Elsevier Inc. All rights reserved.
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(Haraguchi and Sasaki, 2000; van Baalen, 2002a). We
present results on the evolution of virulence, defined here
as the increase in host mortality due to disease. We model
spatially structured superinfection, a form of contest
competition between pathogen strains differing in viru-
lence. To address the interaction of host–pathogen spatial
processes and virulence evolution, we apply methods of
adaptive dynamics (Geritz et al., 1998; Pugliese, 2002a;
Mágori et al., 2005).
Section 2 summarizes the hypothesis that pathogen-

strain competition drives virulence evolution. Section 3
presents a spatially detailed model for pairwise strain
competition; we assume asymmetric superinfection (Levin
and Pimentel, 1981) where the chance of competitive
displacement varies with the difference in virulence
between strains. Section 4 summarizes a mean-field
approximation to the spatial model, and Section 5 develops
a pair approximation (Matsuda et al., 1992; Hiebeler,
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2000). Section 6 applies adaptive dynamics to both the pair
approximation and simulations of the detailed model. The
Discussion collects predictions, offers a simple perspective
on virulence management, and comments on broader
definitions of disease virulence (Antia et al., 1994; O’Keefe
and Antonovics, 2002; van Baalen, 2002b).

2. Pathogen-strain competition

Properties of transmission between hosts and resource
exploitation within infected hosts define the mode of
pathogen-strain competition. If infection of a host indivi-
dual by one strain prevents infection of the same individual
by a second strain (Bremermann and Thieme, 1989),
competition is preemptive. Pathogen strains compete
between hosts, and there is no within-host competition. If
infectives and susceptibles mix homogeneously, preemptive
strain competition may favor maximization of R0, a
strain’s basic reproduction number (expected number of
new infections per infection in a population of suscep-
tibles). Maximizing R0 precludes coexistence; an optimally
virulent strain reduces susceptible density so low that no
other level of virulence can advance when rare (Bremer-
mann and Thieme, 1989; van Baalen, 2002a).

Pathogen strains compete both between and within hosts
under coinfection and superinfection. Coinfection assumes
that different strains can infect, and concurrently be
transmitted from, the same host individual (Bremermann
and Pickering, 1983). van Baalen and Sabelis (1995)
assume that each of two strains exploiting the same host
individual is transmitted less efficiently than when exploit-
ing a host solitarily, so that coinfection resembles scramble
competition. Superinfection implies contest competition. A
more virulent strain can infect a host already infected by a
less virulent strain, and then displace the less virulent strain
(Levin and Pimentel, 1981; Castillo-Chavez and Velasco-
Hernandez, 1998). Some models of the process permit two-
way superinfection, but maintain a virulence-based com-
petitive asymmetry (Gandon et al., 2002; Pugliese, 2002a).
Maniatty et al. (1998) generalize strain competition by
decoupling superinfection from a virulence-based advan-
tage in transmission rate.

Coinfection and superinfection may permit coexistence
of pathogen strains under homogeneous mixing (Nowak
and May, 1994; May and Nowak, 1995; Mosquera and
Adler, 1998; see Saldaña et al., 2003). For superinfection,
Adler and Mosquera (2000) caution that multi-strain
coexistence can result from assuming a discontinuous
superinfection function, where a minimal increase in
virulence implies a strong, deterministic advantage in
contest competition. Smoothing the superinfection func-
tion, so that competitive advantage varies continuously
with the difference in virulence levels, eliminates much of
the multi-strain coexistence (Adler and Mosquera, 2000).
Another consequence of discontinuous superinfection is
that no resident strain will be evolutionarily stable, but for
smoothed superinfection, Pugliese (2002a) finds conditions
yielding a monomorphic, evolutionarily stable strategy
(ESS) for virulence.
When selection acts on coinfecting or superinfecting

pathogens, within-host competition diminishes an avirulent
strain’s benefit of an extended infectious period. A strain
exploiting a host solitarily ‘‘anticipates’’ sharing host
resources with a coinfecting strain, or losing the host
entirely to a superinfecting strain. Either case can favor
greater virulence, to exploit more host resources before a
competitor arrives. A broad implication of these models is
that different modes of strain competition generate
different host–pathogen dynamics, and differences in the
dynamics can have important effects on the evolution of
virulence.
Spatial structuring of disease transmission can alter

consequences of pathogen strain competition. If infectious
contacts are spatially localized, disease ordinarily advances
more slowly than under global mixing, and the difference
depends on neighborhood size (Caraco et al., 1998; Duryea
et al., 1999; Keeling, 1999; van Baalen, 2000). Local
structuring of infection should then reduce evolved levels
of virulence, compared to homogeneous mixing (Herre,
1993; van Baalen, 2002a). A more virulent strain infects
nearby susceptibles faster, but the greater rate of host
mortality generates spatial heterogeneity in the host
population’s density. Clusters of diseased hosts can become
isolated from susceptibles, and the infection may fail to
advance (Sato et al., 1994; Rand et al., 1995). A less
virulent strain, with an extended infectious period, might
not outpace the local dynamics of its host, and so be able to
advance globally.
Rand et al. (1995) and Haraguchi and Sasaki (2000),

under different assumptions, demonstrate that spatially
structured infection can favor reduced virulence (or lower
transmission) when strains compete preemptively. Claessen
and de Roos (1995) simulate coinfection with transmission
limited to nearest neighbors, and find that evolutionarily
stable virulence with global mixing may fail to predict
results of a spatial model. Our study complements these
analyses. We analyze disease virulence for spatially
structured superinfection by applying adaptive dynamics
(Kisdi and Meszéna, 1993; Geritz et al., 1998; Pugliese,
2002a) to our model and its deterministic approximations.

3. Spatially detailed model of superinfection

Each dynamically equivalent site on a rectangular lattice,
with J total sites, can be occupied by at most one host
individual. Any site’s local state belongs to the set {0, S, A,
V}. We represent an empty site by 0. S identifies a site
occupied by a susceptible host. A represents a site occupied
by a host infected with a less virulent pathogen strain; for
convenience we term this avirulent infection. V represents a
site with a host infected by a more virulent pathogen,
termed virulent infection.
Time t advances discretely, and we order events as

follows. Reproduction is independent of infection status;
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Fig. 1. Feasible transitions between a site’s elementary states. State 0

represents an empty site, state S represents a susceptible host, state A

represents avirulent infection, and state V represents virulent infection.

Infected hosts do not recover the susceptible state; the transition from

state A to state V represents superinfection; the more virulent strain

displaces the avirulent strain. Transitions into state 0 represent mortality.

Table 1

Symbols used in spatially detailed model

Symbol Meaning (Numerical value)

R0 Basic reproduction number of pathogen strain

J Total number of lattice sites in spatial model

sk(t) Elementary state of site k at time t

sk Interaction neighborhood around lattice site k

N Neighborhood size (N ¼ 8, 48)

B Host reproductive-effort probability (B ¼ 1)

b Per-site probability host attempts propagation

bA Avirulent strain infection probability

bV Virulent strain infection probability

g Superinfection probability

n(s) Number of sites on sk with state s

mS Susceptible host’s mortality probability (0.05)

mA Mortality probability with avirulent infection

mV Mortality probability with virulent infection

a Shapes infection-transmission function

f Weight equalizing total infectiousness for different

transmission-virulence functions

c Sets concavity/convexity of superinfection probability

(c ¼ 0:2, 1.2)
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offspring produced at time t join the host population as
susceptibles at (tþ 1). Pathogens attack available hosts
while the latter reproduce; new infections appear at (tþ 1).
Next, all hosts alive at time t are subject to mortality; a
host’s survival depends on its infection status at the
beginning of the period. At time (tþ 1) combined effects
of birth, infection of susceptibles, superinfection, and
mortality are realized. Infected hosts do not recover.

3.1. Parameters of the spatial model

Contact structure governs details of epidemiological
invasion (Keeling, 1999; Korniss and Caraco, 2005). We
assume nearest-neighbor interaction in both host dispersal
and infection transmission. Hence an empty site may be
colonized only by propagules dispersed from surrounding
sites. sc(k) represents the colonization neighborhood about
site k (k ¼ 1; 2; . . . ; J). The number of sites in the
neighborhood is |sc(k)| ¼ N. If site k is empty, each host
on sc(k) independently places an offspring at the open site
with probability b, the birth probability. Host reproductive
effort remains constant as the size of the colonization
neighborhood varies, so the per-site birth probability b

declines with N. Let b ¼ B=No1, where B represents a
host’s reproductive expenditure.

sp(k) represents the infection neighborhood about site k;
infectious contacts are spatially structured. For simplicity,
let spðkÞ ¼ scðkÞ, so that colonization and infection
neighborhoods become the same set of N nearest neigh-
bors. If a susceptible occupies site k, each avirulently
infected host on sp(k) independently transmits that strain
to site k with probability bA. bV is the virulent infection
probability. If a susceptible or avirulently infected host
occupies site k, each host on sp(k) infected by the virulent
strain independently transmits that pathogen strain to the
site k with probability bV. The total infectious propagules
emanating from a host remains constant as the size of the
transmission neighborhood varies, so bi�N�1; i ¼ A;V .
Since the host and pathogens disperse on the same
neighborhood, we have scðkÞ ¼ spðkÞ ¼ sk.

Discrete-time dynamics allows both strains to be
transmitted to the same susceptible during a single time
interval. Transmission of the virulent strain to an
avirulently infected host produces a similar situation. Each
of these events generates contest competition, which is
resolved via g, the superinfection probability. If both
strains attack the same susceptible, or when the virulent
strain attempts to superinfect an avirulently infected host, g
is the probability that the host, should it survive, develops a
virulent infection. The virulent strain has an advantage in
contest competition, so gX1

2
; see Section 3.2.

Following host and pathogen dispersal, each host
independently dies or survives to the next time interval.
Mortality probabilities depend on infection status. mS is the
probability that a susceptible, alive at t, is dead at time
(tþ 1). The mortality probability for an avirulently
infected host is mA, and mV is the mortality probability
for a virulently infected host. Given our definition of
virulence, mSomAomV .
Fig. 1 diagrams feasible transitions for a single site.

Table 1 lists symbols for the spatially detailed model. In
Appendix A we derive expressions for the detailed model’s
transition probabilities.

3.2. Functional dependence of transmission and virulence

Details of transmission–virulence interactions remain
unknown (Bryant and Behm, 1989; Antia et al., 1994;
Powell et al., 2000; Ganusov and Antia, 2003). We consider
two possibilities. First, suppose that bi increases in a strictly
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monotonic, concave manner as mi increases:

biðmiÞ ¼ mai =N; 0oao1; i ¼ A;V . (1A)

The virulent strain has the greater per-infection probability
of infecting a susceptible neighbor, but imposes an
increased host-mortality probability. bi=mi, the ratio of
transmission to virulence, is the product of the transmis-
sion probability (per unit time) and the expected duration
of the infection-transmission period. Since 0oao1, the
transmission to virulence ratio declines as virulence
increases. Therefore, any greater capacity for interference
competition (superinfection) implies a reduced capacity for
‘‘colonization’’ of susceptible hosts.

Secondly, we can suppose that the transmission prob-
ability reaches a maximum at intermediate virulence:

biðmiÞ ¼ f
mai ð1� miÞ

N
; a40; f40; i ¼ A;V . (1B)

At low virulence levels, the infection-transmission prob-
ability increases with virulence, and then declines at
sufficiently high virulence. The transmission-to-virulence
ratio bi=mi also can reach a maximum at intermediate
virulence, implying that the best colonizers no longer are
the least virulent strains (Nowak and May, 1994; Claessen
and de Roos, 1995; Pugliese, 2002b). The constant f in
Eq. (1B) lets us equate

R
(bi/mi) dmi for the two transmission

functions, simplifying comparisons of our computational
results; note that we relax the constraint on the value of a
in Eq (1B). Fig. 2 shows the two transmission-probability
functions of virulence, plotted with parameter values we
use in analyses reported below.

The superinfection process is discontinuous in that only
the virulent strain can exclude its competitor. But for any
mV4mA, the superinfection probability g depends continu-
ously on the difference in host mortality probabilities,
according to:

gðmV ;mAÞ ¼ b1þ ðmV � mAÞ
c
c=2; c40. (2)
Fig. 2. Pathogen-transmission probabilities. Plots of bi(mi); thick curve is

Eq. (1A), and thin curve is Eq. (1B). Ordinate is probability pathogen

transmitted from given infected host to nearest-neighboring site.

Parameter values for Eq. (1A) are a ¼ 0:5 and N ¼ 48. Parameter values

for Eq. (1B) are a ¼ 1:6, z ¼ 6:245, and N ¼ 48.
If co1, a small difference in virulence gives the virulent
strain a strong competitive advantage through super-
infection. If c41, a larger difference in virulence is
required for the same competitive advantage; as c grows
large, g-1

2
.

4. Mean-field approximation

We relegate details of the mean-field analysis to
Appendix B and present the results here. Table 2 lists
symbols introduced in this section.
ri(t) represents the global density of sites in state i at time

t; as above, iA{0, S, A, V}. For brevity, we restrict the
mean-field analysis to disease-transmission probabilities
that increase strictly monotonically with virulence,
Eq. (1A). Mean-field approximation leads to a mass-action
formulation for densities of susceptible, avirulently infected
and virulently infected hosts:

rSðtþ 1Þ ¼ BðrS þ rA þ rV Þr0 þ rSðtÞ

�b1� maArAðtÞcb1� maVrV ðtÞcð1� mSÞ, ð3Þ

rAðtþ 1Þ ¼ rAðtÞbm
a
ArSðtÞð1� mSÞ þ ð1� mAÞc

�b1� gmaVrV ðtÞc, ð4Þ

rV ðtþ 1Þ ¼ rV ðtÞ
maVrSðtÞð1� mSÞ½1� ð1� gÞmaArAðtÞ�

þgmaVrAðtÞð1� mAÞ þ ð1� mV Þ

( )
.

(5)

The density of open sites, r0(t), follows from
P

iriðtÞ ¼ 1.
We can express total host density as rðtÞ ¼ 1� r0ðtÞ.
In the absence of infection, the host population advances

to a positive disease-free equilibrium where the global
density of susceptibles is r�S ¼ 1� mS=B, with mSoB.
Given a host population at the disease-free equilibrium,
consider invasion by a single pathogen strain which induces
a host-mortality probability mA4mS. Pathogen invasion
requires that the strain’s growth rate when rare exceed
unity. Under homogeneous mixing this requirement
reduces to:

ð1� mS=BÞð1� mSÞ4m1�aA . (6)

A high density of susceptibles promotes a single strain’s
initial advance, as does a large transmission-to-virulence
ratio. That is, both low pathogen virulence (long infectious
period), and high transmission of infection (a not too great)
increase the rare pathogen’s growth.
Table 2

Symbols introduced in mean-field model

Symbol Meaning

r0(t) Global density of open sites, time t

rS(t) Global susceptible density

rA(t), rV(t) Global density of avirulent, virulent infection

r(t) Global density of hosts at time t

e Virulence mutation, resident-invader difference
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Fig. 3. Pairwise invasion analysis of mean-field approximation. Abscissa

is host mortality probability of the resident pathogen at single-strain

equilibrium. Ordinate is host mortality due to infection by introduced

strain. Below the diagonal, the introduced strain is less virulent than the

resident; above the diagonal, the introduced strain is more virulent than

the resident. Black indicates that invader advanced and excluded the

resident. White indicates that resident repelled invader; latter went extinct.

Gray indicates coexistence; invasion succeeded and both strains remained

extant. Parameter values are a ¼ 0:5, c ¼ 0:2 (strong competitive

asymmetry), and mS ¼ 0:05. All entries jut above the diagonal are black;

hence any resident can be invaded and excluded by a slightly more virulent

invader, until virulence reaches the critical upper bound for persistence.

Coexistence is largely limited to pairing of strains with virulence less than

0.25 and strains with virulence exceeding 0.5.
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Assuming that the pathogen invades, infection advances
to its single-strain endemic equilibrium, where the suscep-
tible density becomes r�S ¼ m1�aA =ð1� mSÞ. The correspond-
ing density of infected hosts is

r�A ¼ r� � r�S

¼
B� mA

2B
þ

1

2B
ðB� mAÞ

2
�

þ4Br�SðmA � mSÞ
�1=2
� r�S,

ð7Þ

at the positive, single-strain equilibrium. Susceptible
density declines, and the equilibrium density of infected
hosts increases, as the transmission-to-virulence ratio
increases. rA

* increases as B increases, and declines as
either mS or mA increases; greater virulence decreases the
equilibrium density of infected hosts.

Given the single-strain endemic equilibrium, we turn to
the mean-field’s pairwise invasion criteria. Consider an
avirulent and a virulent strain with (respective) host-
mortality probabilities mAomV . First, assume the avirulent
strain is resident with density given by Eq. (7). The virulent
strain invades if its increase when rare through infecting
susceptibles and through superinfection exceeds losses
through host mortality; invasion by the virulent strain
requires:

r�A4ðm
1�a
V � m1�aA Þ=ðg� mAÞ, (8)

where the superinfection probability g depends on the
difference ðmV � mAÞ.

Now assume the virulent strain is resident; global
susceptible density is given by r�S ¼ m1�aV =ð1� mSÞ, and
infective density is given by Eq. (7) with mV replacing mA,
and rV replacing rA. The avirulent strain invades if its
increase when rare through transmission to susceptibles
exceeds its losses through contest competition and host
mortality; successful avirulent invasion requires:

r�Vo
maAm

1�a
V � mA

gmaV ð1þ maAm
1�a
V � mAÞ

. (9)

If both (8) and (9) hold, the two strains can coexist
ecologically. If rA were great enough for (8) to hold, mA

cannot be too large. If rV were small enough for (9) to
hold, mV cannot be too small. Virulence levels of the two
strains must differ sufficiently for coexistence in the mean-
field model. When the strains coexist, the avirulent type
persists by finding enough susceptibles to infect, and the
virulent strain maintains itself through interference com-
petition.

To address virulence evolution in the mean-field model,
suppose that mutants arise at the single-strain endemic
equilibrium, and that host-mortality probabilities of the
resident and mutant differ by a small amount e. A virulent
mutant invades a resident mA if expression (8) holds with
mV ¼ mA þ e. An avirulent mutant invades a resident mV if
expression (9) holds with mA ¼ mV � e. As e-0, the right-
hand side of both (8) and (9) approaches 0. Hence, a
virulent mutant invades successfully, but an avirulent
mutant is repelled. Under the mean-field model, assuming
mutations in virulence are small, virulence ‘‘evolves to
criticality’’ (cf. Rand et al., 1995). That is, virulence
increases, as each more virulent mutant invades, until host
mortality approaches ½ð1� mS=BÞð1� mSÞ�

1=ð1�aÞ. Beyond
this point, despite the increase in susceptible density with
virulence, the rate of mortality among infected hosts
becomes too great to sustain the pathogen (R0 falls below
unity; see Appendix B).
Fig. 3 plots pairwise invasibility results for the mean-

field model. If the difference in virulence between strains is
small, the more virulent invader (resident) always invades
and excludes (repels) the less virulent strain. Some strain
combinations can coexist, if the difference in virulence is
large enough. No monomorphic ESS is possible, and
sequentially monomorphic populations (Geritz et al., 1998)
evolve to criticality. Note that R0 declines and susceptible
density increases as virulence evolves, the outcome
opposite that predicted for preemptive strain competition
under homogeneous mixing (Bremermann and Thieme,
1989).

5. Pair approximation

Pair approximation models combinations of states at
paired, neighboring sites (Matsuda et al., 1992; Hiebeler,
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Table 3

Symbols introduced in pair approximation

Symbol Meaning

P[ij] Block probability, states i and j

Pt[i] Global density, sites with state i

l(t) Probability site, state unknown, attempts to colonize open site

yA(t) Probability susceptible contacts avirulent infection at site with

state unknown

yV(t) Probability susceptible contacts virulent infection at site with

state unknown

ysi(t) Probability avirulently infected host contacts virulent infection

at site with state unknown

T. Caraco et al. / Theoretical Population Biology 69 (2006) 367–384372
2000). Dynamics of the pair-block frequencies reflects a
degree of local spatial correlation, and consequently
approximates most spatial processes better than mean-field
models (Nakamuru et al., 1997; Ives et al., 1998; Caraco
et al., 2001). Specifically, pair approximation assumes that
the correlation between states of two neighboring sites does
not depend on the state of any other, randomly selected
neighbor of the focal pair. This assumption closes the pair
approximation’s system of equations, but ignores the more
extensive spatial correlations that can affect the dynamics.
For more extensive methods, see Rand (1999), Sato and
Iwasa (2000) or van Baalen (2000). Symbols introduced in
this section are listed in Table 3.

5.1. Block probabilities

The block probability Pt[ij] is the chance that the state at
site k, sk(t), is i and the state at a randomly chosen nearest
neighbor is j. Summed block probabilities give frequencies
of the elementary states; Pt½i� ¼

P
jPt½ij�; where Pt[i] is the

global density of sites with state i at time t. Pt[i] need not
equal the mean field’s ri(t), since the two models have
different structure and, hence, different dynamics. We
assume spatial symmetry (P[ij] ¼ P[ji]), leaving 10 distinct
block probabilities. Therefore, the pair-approximation
requires nine equations.

5.2. Pair-block transitions

Following Hiebeler (2000), we represent pair-block
transitions as

skðtÞsrðtÞ½ � ! skðtþ 1Þsrðtþ 1Þ½ �; r 2 sk. (10)

First, consider host birth. Suppose site k is open at time t,
so the left-hand side of (10) is a [0j] pair block. Since we
know j, we know the probability that an offspring is
dispersed from site r to site k. If a host occupies site r, the
probability is b. The transition of a [0j] pair block via birth
also depends on the other (N � 1) sites on sk whose states
are unknown. For a randomly chosen site q on sk, other
than site r, the conditional probability site q is occupied,
given that skðtÞ ¼ 0, is Pt½0h�=Pt½0�; h 2 fS;A;Vg: Each of
these (N � 1) sites on sk attempts to colonize with
probability b times the chance a host occupies the site:

b
X

h2fS;A;Vg

Pt½0h�

Pt½0�
¼ ðb=Pt½0�ÞðPt½0� � Pt½0 0�Þ. (11)

Then the probability, per site of unknown state, of an
attempt to colonize an open site k is

lðtÞ ¼ b 1�
Pt½0 0�

Pt½0�

� �
. (12)

Next, consider avirulent infection in an [Sj] pair block.
The probability a susceptible at k is exposed to the
avirulent strain at site r is ba if j ¼ A, and 0 otherwise.
The conditional probability of an avirulent infection at site
q, given a susceptible at k, is Pt½SA�=Pt½S�. Then the
probability a susceptible at site k is exposed to the avirulent
strain from a site q on sk is

yAðtÞ ¼ bAPt½SA�=Pt½S�. (13)

Similarly, the probability that a susceptible is exposed to
the virulent strain via contact from site q on sk, where the
elementary state is unknown, is

yV ðtÞ ¼ bV Pt½SV �=Pt½S�. (14)

Given an [AV] pair block, the probability that the
avirulently infected host at k is exposed to the virulent
strain via the known neighbor is bv. For each of the (N � 1)
sites on sk whose states are unknown, the probability of
exposure to the virulent strain is

ysiðtÞ ¼ bV Pt½AV �=Pt½A�. (15)

5.3. Pair-block dynamics

Here we develop two of the pair approximation’s
equations. Appendix C presents the remaining equations;
they use the same transitions explained here, but in
different combinations.
First, consider the pair block [0S], where site k is empty

and site r is occupied by a susceptible. Eight different [ij]
block pairs can become a [0s] pair block in a single period;
they have iA{0, S, A, V} and jA{0, S}. Then:

Ptþ1½0S� ¼ Pt½0 0�½1� lðtÞ�N�1ð1� ½1� lðtÞ�N�1Þ

þ ð1� ð1� bÞ½1� lðtÞ�N�1ÞðmSPt½S0� þ mAPt½A0�

þ mV Pt½V0�Þ þ Pt½0S�ð1� bÞ½1� lðtÞ�N�1ð1� mSÞ

�½1� yAðtÞ�
N�1½1� yV ðtÞ�

N�1

þ ½1� yAðtÞ�
N�1½1� yV ðtÞ�

N�1ð1� mSÞðmSPt½SS�

þ mAPt½AS� þ mV Pt½VS�Þ. ð16Þ

In the first part of Eq. (16), sites k and r are open. No birth
occurs at k, and a birth occurs at r. In the second part k is
occupied, and r is open. Mortality occurs at k; the
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probability depends on infection status. Birth occurs at r;
the host at k may have dispersed a propagule to r before its
death. In the third part k is open, and a susceptible
occupies r. No birth occurs at k. The susceptible is not
infected by either strain, and survives. In the fourth part k

is occupied, and r is occupied by a susceptible. Mortality at
k depends on infection status; the susceptible at r avoids
infection, and survives. In calculating Eq. (16), Pt½S0� ¼
Pt½0S� by spatial symmetry.

Next, consider the [AV] block pair. Six [ij] block pairs
can become an [AV] in a single interval; they have iA{S, A}
and jA{S, A, V}. The difference equation for the
probability of a [AV] block pair is:

Ptþ1½AV � ¼ b½1� yV ðtÞ�
N�1 þ ð1� gÞð1� ½1� yV ðtÞ�

N�1Þc

�

Pt½SS�ð1� mSÞ
2
ð1� ½1� yAðtÞ�

N�1Þ

�ð1� ½1� yV ðtÞ�
N�1Þ½½1� yAðtÞ�

N�1

þgð1� ½1� yAðtÞ�
N�1Þ�

þPt½SA�ð1� mSÞð1� mAÞ

�ð1� ð1� bAÞ½1� yAðtÞ�
N�1Þg

�ð1� ½1� ysiðtÞ�
N�1Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

þ Pt½SV �ð1� mSÞð1� mV Þð1� ½1� yAðtÞ�
N�1Þ

� ð1� bV Þ½1� yV ðtÞ�
N�1 þ ð1� gÞ

�
�ð1� ð1� bV Þ½1� yV ðtÞ�

N�1Þ
�

þ ½½1� ysiðtÞ�
N�1 þ ð1� gÞð1� ½1� ysiðtÞ�

N�1Þ�

�

Pt½AS�ð1� mAÞð1� mSÞð1� ½1� yV ðtÞ�
N�1Þ

� ð1� bAÞ½1� yAðtÞ�
N�1

�
þgð1� ð1� bAÞ½1� yAðtÞ�

N�1Þ
�

þPt½AA�ð1� mAÞ
2gð1� ½1� ysiðtÞ�

N�1Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

þ Pt½AV �ð1� mAÞð1� mV Þ½ð1� bV Þ½1� ysiðtÞ�
N�1

þ ð1� gÞð1� ð1� bV Þ½1� ysiðtÞ�
N�1Þ�. ð17Þ

The first pair-block transition in Eq. (17) is [SS]-[AV].
The susceptible at k must be exposed to avirulent infection;
it may avoid exposure to the virulent strain, or may
be exposed to both strains with the avirulent winning.
The susceptible at r must be exposed to virulent infection.
The host at r might avoid exposure to avirulent infection,
or might be exposed to both strains simultaneously
with the virulent strain winning the host. Then both hosts
must survive.

The second block-pair transition in Eq. (17) is [SA]-
[AV]. The susceptible at k must be exposed to avirulent
infection. The same host at k might avoid virulent
infection, or the avirulent strain may win if the host is
exposed to both strains. The avirulently infected host at r

must acquire the virulent strain via superinfection. Finally,
both hosts must survive. The four other transitions in
Eq. (17) are justified similarly.
6. Spatial superinfection: pairwise invasion analysis

We conducted pairwise invasion analyses of both the
individual-based, stochastic model and the deterministic
pair approximation. Each analysis began with a resident
strain at monomorphic, endemic equilibrium. We com-
puted single-strain equilibria for the spatial simulation and
pair-approximation models separately. To introduce a
competing strain (whether more or less virulent than the
resident), we reduced the global density of susceptibles by
0.075. We then converted the corresponding sites (simula-
tion) or pair-block frequencies (pair approximation) to
hosts infected by the introduced strain. Hence the initial
global density of the invader was held constant across
different single-strain equilibria. We recorded invasion of
the resident strain whenever the introduced strain’s global
density exceeded 10�3 at time t ¼ 1000; otherwise, we
recorded that the resident repelled the introduced strain.
The invasion analyses identified any monomorphic

singular strategies (Geritz et al., 1998), which we classify
according to convergence stability and evolutionary
stability. Convergence stability implies that a mono-
morphic population near a singular strategy can be invaded
and excluded by a mutant closer to the singular strategy.
Evolutionary stability implies that a singular virulence
strategy repels invaders. Following Pugliese (2002a), we
term an ESS local if it repels any mutant in a neighborhood
around the singular strategy, and global if the ESS repels
any feasible mutant. Convergence stability does not
guarantee evolutionary stability; neither stability property
need imply the other (Geritz et al., 1998). This section
divides results according to the two forms assumed for the
transmission–virulence ratio, Eqs. (1A) and (1B).

6.1. Transmission/virulence declines as virulence increases

If bðmiÞ ¼ mai =N for ao1, increased virulence reduces the
ratio of transmission to host-mortality probability. Hence
an avirulent strain always has the greater b=m, implying a
potential ‘‘colonization’’ advantage. A virulent strain has
the greater transmission probability, though lower b=m,
and the competitive advantage of superinfection. For this
case we report results for two forms of the superinfection
function (two values for c). We present four invasion
analyses and then address quantitative effects of virulence
on host densities and mortality frequencies.

6.1.1. Pairwise invasion: strong competitive asymmetry

First we set c ¼ 0:2, implying a strong competitive
asymmetry for given difference in virulence. That is,
superinfection occurs relatively frequently for given
(mV � mA). Fig. 4a shows results for the invasion analysis
of the spatially detailed, stochastic model with neighbor-
hood size N ¼ 48. Restricting attention to results along the
diagonal, we envision evolution via sequential replacement
of monomorphic populations (Geritz et al., 1998). Selec-
tion via spatially structured competition does not predict
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Fig. 4. Pairwise invasion analysis: N ¼ 48, strong competitive asymmetry.

Transmission/virulence declines monotonically with virulence. Colors

defined in legend for Fig. 3. Parameter values are a ¼ 0:5, c ¼ 0:2, and
mS ¼ 0:05. (a) Spatially detailed model. Each entry is the result of a single

simulation. (b) Pair approximation. Stationary virulence strategy m*

located by considering results along diagonal. Below m* we have black

over white, so small increase in virulence favored in strain competition.

Above m* we have white over black, so strain competition favors slightly

less virulent strain. Convergent stable stationary point m*, with virulence

close to 0.6, is a local ESS.
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evolution to the maximal virulence capable of dynamic
persistence, as the mean-field model does. In fact, the
pattern indicated a convergent stable, local ESS at the
singular strategy m* (Fig. 4a).

A band of strain coexistence separates strains that invade
and exclude the resident from those repelled by the
resident. Coexistence implied that each of two strains
invaded the other, and the dynamics proceeded to a fixed-
point equilibrium.

Fig. 4b shows the pairwise invasion plot for this
parameter combination’s pair approximation. A conver-
gent stable, local ESS occurred at the singular strategy m*,
which repels any larger virulence, but can be invaded by
sufficiently less virulent mutants (which can then be
invaded by a strategy closer to m*). Both models indicated
that a monomorphic singular strategy may be an evolu-
tionary attractor and exhibit local evolutionary stability,
although the pair approximation predicts an ESS virulence
exceeding the spatial model’s prediction. Compared to the
spatial simulations, the pair approximation predicted that
a considerably larger set of paired strains can coexist. More
importantly, a comparison of Figs. 4a and b shows clearly
that the maximal virulence capable of dynamic, single-
strain persistence is smaller for the spatially detailed model
than for the pair approximation. The individual-based
model appreciates the full impact of spatial clustering of
infectives on the dynamics, while the pair approximation
relaxes spatial correlations beyond nearest neighbors.
These results imply that stronger spatial structuring of
the dynamics reduces the maximal virulence capable of
persistence and also reduces the evolutionarily stable level
of virulence.

6.1.2. Pairwise invasion: weaker competitive asymmetry

Setting c ¼ 1:2 implies a weaker competitive asymmetry
between strains. The individual-based model’s pairwise-
invasion plot, Fig. 5a, suggested a convergent stable, local
ESS level of virulence, near the value indicated by
simulations with strong competitive asymmetry. Decreas-
ing the advantage of superinfection reduced the extent of
strain coexistence in the simulations. Resident strains with
low virulence now repelled high-virulence invaders with
which they could coexist under greater competitive
asymmetry.
The pair approximation’s invasion analysis, Fig. 5b, also

predicted a convergent and evolutionarily stable level of
virulence. The local ESS occurred at a lower virulence,
compared to the pair approximation under strong compe-
titive asymmetry. However, the extent of coexistence
remained similar. Comparing Figs. 5a and b reveals two
effects noted under strong competitive asymmetry. Stron-
ger spatial structuring of the dynamics (individual-based
model, Fig. 5a) reduces the maximal virulence capable of
persisting alone, and reduces the predicted EES level of
virulence under pairwise competition.
For parameter values we present, both strong and weak

competitive asymmetry predict a monomorphic virulence-
strategy exhibiting both convergence stability and local
evolutionary stability. Comparing the levels of competitive
asymmetry predicts that increasing the frequency of
superinfection (strong asymmetry) may lead to a greater
local ESS level of virulence, and may permit increased
coexistence of competing strains. Increased competitive
asymmetry implies that opportunities for colonization–
competition distinctions between avirulent and virulent
strains increase. Comparing degrees of spatial structure
(simulation vs. pair approximation) within either level
of competitive asymmetry predicts that increased spatial
clustering of infections reduces the locally stable level
of virulence.
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Fig. 5. Pairwise invasion analysis: N ¼ 48, weak competitive asymmetry.

Transmission/virulence declines monotonically with virulence. Colors

defined in legend for Fig. 3. Parameter values are the same as in Fig. 4, but

here c ¼ 1:2. (a) Spatially detailed model. Each entry is the result of a

single simulation. Probability of superinfection reduced in comparison to

Fig. 4a; extent of coexistence lower than in Fig. 4a. (b) Pair approxima-

tion. Frequency of superinfection reduced in comparison to Fig. 4b.

Stationary point m*, with virulence close to 0.56, is convergent stable and a

local ESS.

Fig. 6. Infected host density at single-strain equilibrium: strong asym-

metry, transmission/virulence declines monotonically with virulence.

Global infection shows density of infected hosts as function of host

mortality probability; results of both spatially detailed model (open

triangles) and pair approximation (closed squares) plotted. Equilibrium

density of infection declines as virulence increases. Local contagion ratio

exceeds unity when infected hosts are aggregated spatially; results of both

spatially detailed model (closed circles) and pair approximation (open

circles) plotted. Parameter values are a ¼ 0:5, c ¼ 0:2, and mS ¼ 0:05. (a)
Small interaction neighborhood, N ¼ 8. (b) Large interaction neighbor-

hood, N ¼ 48. Note improvement of pair approximation with respect to

global density of infection.
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6.1.3. Host densities and mortality frequency

Here we evaluate effects of virulence on host densities.
For simplicity, we separate results based competitive
exclusion from results on pairwise coexistence. To char-
acterize disease clustering, we plot a local contagion ratio
for pathogen infection: the frequency of infected hosts
among sites neighboring an infected host divided by the
square of the global frequency of infected hosts. In terms of
the pair approximation’s state variables, the contagion
ratio is P½ii�=ðP½i�Þ2, where i is an infected-host state (i ¼ A

or V). In the absence of local spatial correlation, the ratio
will be unity by independence; clustering of infectives yields
values exceeding unity (Tainaka and Araki, 1999). We
recognize that these are equilibrium values, and the impact
of clustering on dynamics may occur soon after the
invader’s introduction (van Baalen and Rand, 1998).
Fig. 6a shows global densities of infected hosts at single-

strain equilibrium as a function of virulence. The equilibria
were computed for a small neighborhood (N ¼ 8) and
strong competitive asymmetry (c ¼ 0:2); densities are
plotted for both the spatially detailed model and pair
approximation. The same figure also shows the local
contagion ratios. Under both models the density of
infected hosts declined as virulence increased; the decline
in infectives was accompanied by an increase in the global
density of susceptibles (not shown).
For the combination of a small neighborhood and strong

competitive asymmetry, global density of infection in the
pair approximation always exceeded the simulation’s
density for the same virulence (although the numerical
difference was small at very low virulence). This difference
parallels the observation that the spatially detailed
dynamics sent the pathogen to extinction at a much lower
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Fig. 7. Maximal host density and maximal host mortality. Results from

pair approximation with N ¼ 48, strong competitive asymmetry, and

transmission/virulence declining strictly monotonically in virulence. That

is, parameter values are a ¼ 0:5, c ¼ 0:2, and mS ¼ 0:05. (a) Pathogen

strain(s) maximizing total host density at endemic equilibrium. Given that

two strains can coexist, A indicates maximal host density when only

avirulent strain infects hosts. V indicates maximal host density when only

virulent strain infects hosts, and C indicates maximal host density when

both strains occur together. (b) Pathogen strain(s) maximizing host

mortality at endemic equilibrium. Given that two strains can coexist, A

indicates maximal host mortality when only avirulent strain infects hosts.

V indicates maximal host mortality when only virulent strain infects hosts,

and C indicates maximal host mortality when both strains occur together.
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virulence level than does the pair approximation (Figs. 4a
and b). We anticipated these results qualitatively, since pair
approximation underestimates clumping of infection when
neighborhoods are small. Fig. 6a shows that local
contagion ratios uniformly exceeded unity and increased
with virulence in both models, and that pair approxima-
tion’s overestimation of the global density of infection
follows from underestimation of the local clustering of
infection. For small neighborhoods, pair approximation
can miss the degree to which an invading strain’s clustering
impacts its dynamics (Sato and Iwasa, 2000; Korniss and
Caraco, 2005). Although susceptible hosts became more
common as virulence increased, the combination of lower
infectious-host density and increased relative clumping of
infectives strongly constrained the maximal feasible viru-
lence in the spatially detailed model.

Fig. 6b plots single-strain, endemic equilibria for a larger
neighborhood (N ¼ 48, as in the pairwise invasion plots).
Comparing the spatial model and its pair approximation,
global densities of infected hosts declined similarly as
virulence increased. Pair approximation also mimicked the
spatial model’s local contagion ratios much better at the
larger neighborhood size. More importantly, the larger
neighborhood increased the maximal dynamically persis-
tent virulence in both models, and slightly increased the
equilibrium density of infected hosts for given virulence.
Increased neighborhood size diminishes the likelihood that
a pathogen kills its host before finding another to infect
(Caraco et al., 1998), and increases the likelihood that a
host will find an open site and reproduce before dieing.
Although clustering of diseased hosts occurred, the larger
neighborhood size diminished the extinction penalty for
relatively virulent pathogens. The resulting increase in the
maximal feasible virulence, in turn, made coexistence with
minimally virulent strains more likely.

We end this section by examining host densities for
virulence pairs capable of coexistence. We compare host
populations infected by coexisting pathogens to each of the
two single-strain equilibria. Neighborhood size is N ¼ 48,
and competitive asymmetry is strong (c ¼ 0:2). These
values commonly produced coexistence in both the
spatially detailed simulations and pair approximation,
and the associated invasion plots are similar. As a
convenience, we use the results from pair approximation,
since boundaries of the coexistence regions are exact.

Total host density sums susceptibles, avirulent infections
and virulent infections. If we represent total host density at
coexistence equilibrium as P�ðma;mvÞ ¼ Pc

S þ Pc
A þ Pc

V ,
then the total number of deaths per time interval is
proportional to (mSPS

c+mAPA
c+mVPV

c). Densities and
mortality count for the two single-strain equilibria are
defined similarly.

Given that pathogen strains with virulence levels mA

and mV can coexist, global host density most often was
greatest in populations infected by the virulent strain alone;
see Fig. 7a. The virulent single-strain equilibrium always
maximized the density of susceptible hosts, most often
minimized density of infected hosts, and the former effect
usually dominated. Infection by the avirulent strain alone
most often minimized total host density.
The avirulent strain alone almost always maximized the

density of infected hosts; as we just noted, the virulent
strain alone almost always minimized the global density of
infection. These differences affect the global mortality
count. Fig. 7b shows the equilibrium population experien-
cing the greatest number of deaths per time interval, given
the three alternatives defined by a coexistence pair. When
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Fig. 8. Pairwise invasion analysis: N ¼ 48, strong competitive asymmetry,

transmission/virulence peaks at intermediate virulence. Colors defined in

legend for Fig. 3. Parameter values are a ¼ 1:6, f ¼ 6:254, c ¼ 0:2, and
mS ¼ 0:05. (a) Spatially detailed model. Each entry is the result of a single

simulation. (b) Pair approximation. Convergent stable stationary point m*,
near 0.76, is a local ESS.
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the difference (mV � mA) is relatively large, the mortality
density is greatest in a population infected by only the
virulent strain. Here, introducing the avirulent strain
(taking the system to the fixed point, coexistence equili-
brium) would decrease the mortality per time interval, but
would also decrease the total host density (from Fig. 7a).
When the difference (mV � mA) is relatively small, the
mortality density is greatest in a population infected by
only the avirulent strain. Here, introducing the virulent
strain (leading to coexistence) both increased total host
density and decreased the global mortality at equilibrium.

The preceding hypothesis assumes that a disease cannot
be eliminated from a host population, and that a more
virulent infection can displace a less virulent infection
within individual hosts. Given our assumptions, introdu-
cing a more virulent strain of that disease could sometimes
increase total host density, increase the global density of
susceptible (healthy) hosts, and decrease the number of
deaths per time interval. These results further can depend
on our assumption that disease affects only mortality
(not fecundity), and on the model’s birth-first order of
events (Maniatty et al., 1998; Koella and Doebeli, 1999;
see Discussion).

6.2. Transmission/virulence maximal at intermediate

virulence

If bðmiÞ / mai ð1� miÞ=N, Eq. (1B), the ratio of transmis-
sion probability to virulence can reach a maximum at
intermediate host mortality, hence, at intermediate dura-
tion of the infectious period. For the lowest-virulence
strains, an increase in virulence promotes both colonization
capacity and strength as an interference competitor. Highly
virulent strains, of course, have low transmission rates and
must rely more on superinfection to persist competitively.

In this section we set a ¼ 1:6, and restrict attention to
strong competitive asymmetry (c ¼ 0:2). In the associated
computations the transmission probability b reached a
maximum near mi ¼ 0:6, and the transmission–virulence
ratio attained a maximum near mi ¼ 0:35.

6.2.1. Pairwise invasion

Using the ‘‘peaked’’ form of the infection-transmission
function, we conducted pairwise invasion analyses with
N ¼ 48. Fig. 8a shows the invasion plot for the individual-
based model, and Fig. 8b shows pair-approximation’s
results. Both models produced a convergent stable, singular
strategy; the deterministic pair approximation exhibited a
local ESS. Neither model mimicked the mean-field’s
evolution to criticality. As noted above, the inherent
difference between the individual-based model’s and pair
approximation’s appreciation of spatial clustering affected
the results. Both the singular strategy and the maximal
virulence capable of single-strain persistence took smaller
values in the spatially exact simulations.

Strain coexistence occurred only rarely in simulation.
Pair approximation admitted a set of coexisting strategy
pairs. The latter invasion plot indicated that dynamical
coexistence was largely limited to pairings between strains
with large transmission–virulence ratios and the maximally
virulent strains. That is, coexistence under pair approxima-
tion tended to link the best colonizers and the strongest
interference competitors. Examination of the associated
pair-block frequencies revealed that that key to coexistence
was that the strongest interference competitors (most
virulent strains) remained at low global density (due to
spatial aggregation), permitting the avirulent strain’s
persistence through colonization of susceptibles. This
qualitatively parallels results for the first infection-trans-
mission function we studied.

6.2.2. Infected host densities

Fig. 9a shows global densities of infected hosts at single-
strain equilibrium, as a function of virulence, for a small
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Fig. 9. Infected host density at single-strain equilibrium: strong asym-

metry, transmission/virulence peaks at intermediate virulence. Symbols

defined in legend for Fig. 6. Parameter values are a ¼ 1:6, f ¼ 6:254,
c ¼ 0:2, and mS ¼ 0:05. Global infection shows density of infected hosts as

function of host mortality probability; results of both spatially detailed

model and pair approximation plotted. Equilibrium density of infection

varies nonlinearly with virulence. Local contagion ratio exceeds unity

when infected hosts are aggregated spatially; results of both spatially

detailed model and pair approximation plotted. (a) N ¼ 8. (b) N ¼ 48.

Pair approximation better predicts infected host density with larger

neighborhood. Note difference of scale for contagion ratio.
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neighborhood (N ¼ 8). Densities are plotted for both the
spatially detailed model and pair approximation; the figure
also shows local contagion ratios for both models. Infected
host density peaks at intermediate virulence for each
model, approximating the dependence of transmission on
virulence. Infectives aggregated spatially, more so in
simulation than in the pair approximation’s results.
Consequently, pair approximation overestimated densities
of infected hosts, when compared to the detailed model’s
results. Fig. 9b shows densities of infected hosts and
contagion ratios for a larger neighborhood, N ¼ 48. The
larger neighborhood reduces the degree of clustering and,
not surprisingly, the pair approximation better predicts
behavior of the spatially detailed model.

7. Discussion

Superinfection models diseases where individual hosts
may contact more than one strain of a pathogen, and
properties of the more (or most) virulent strain acquired
govern the consequences of infection. Martcheva and
Thieme (2003) suggest that in humans, superinfection
seldom plays a role in the dynamics of micro-parasitic
disease (cf. Donnenberg and Whittam, 2001), but occurs
commonly in macro-parasitic disease.
Our model introduced spatial structure to superinfection

dynamics and asked how pathogen virulence might evolve
under strain competition. The model’s results predict that
increased limitation on host–pathogen spatial dispersal
increases extinction of highly virulent strains, and reduces
the stationary level of virulence that evolves in response to
strain competition. The results associate increased spatial
clustering of infected hosts with reduced convergent-stable
levels of virulence. The model predicts that coexistence of
competing strains becomes more likely when one strain has
a high transmission-to-virulence ratio, but is a poor
interference competitor, and the other strain has a low
ratio of transmission to virulence, but has an advantage
through interference competition.
When pathogen strains compete both between and

within hosts, the dynamics of the host–pathogen interac-
tion defines the context for virulence evolution (Ebert and
Mangin, 1997; Castillo-Chavez and Velasco-Hernandez,
1998); the outcome of strain competition depends on
details of the population dynamics. Models for the
superinfection process may assume density-independent
host growth in the absence of disease (Levin and Pimentel,
1981), may fix the host population’s total density (Nowak
and May, 1994; Claessen and de Roos, 1995), or may
include logistic self-regulation in the host dynamics
(Pugliese, 2002b). Our model assumes a host population
subject to intraspecific competition; a finite number of sites
and local clustering combine to produce self-regulation.
When the number of hosts (susceptibles plus infectives) is
fixed, so that total mortality is always balanced by birth
or immigration, the mean-field superinfection dynamics
becomes equivalent to models where different species
compete implicitly for space, and higher ranked species
displace weaker within-patch competitors (Tilman, 1994;
Stone, 1995; Kinzig et al., 1999; Adler and Mosquera,
2000).
The combination of spatially structured disease transmis-

sion and virulence-dependent superinfection probabilities
distinguishes our model. The mean-field approximation
allows virulence to evolve to its critical upper bound, but
the introduction of spatial structure predicts lower levels of
virulence. At a general level, this result agrees with
predictions of other disease-transmission models with
spatial structure (Claessen and de Roos, 1995; Haraguchi
and Sasaki, 2000; van Baalen, 2002a). At a more detailed
level, we found significant effects of spatial structure in
both the pair approximation and simulation model. Our
results indicate that spatial structure, and the consequent
clustering, constrained the maximal virulence capable of
dynamical persistence and reduced the convergent-stable
level of virulence.
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Recall that the model’s neighborhoods are restricted to
nearest neighbors, so that infection occurs on a regular
network. If we held the number of neighbors per site
constant, but randomly selected the interaction neighbors,
the contact network would change. Local clustering would
diminish, model behavior should move toward mean-field
dynamics, and we would predict higher levels of virulence
(Boots and Sasaki, 1999; van Baalen, 2002a).

Virulence management usually refers to purposeful
modification of infection-transmission rates, so that low-
virulence strains might be selectively favored over more
virulent pathogens (Ewald, 1994; Dieckmann et al., 2002).
Our results point out that ecological management of a
diseased host population can, in some situations, take
advantage of more virulent strains to reduce mortality and
increase global host density. Suppose that disease cannot
be cured (our model admits no recovery) in a population at
endemic equilibrium, and that we want to reduce total
mortality. Management options are limited to introducing
a strain that will invade and exclude the resident, or
introducing a strain that will coexist with the resident
pathogen (Elliot et al., 2002). Given a strictly monotonic
increase in transmission with virulence, introducing a strain
slightly more virulent than the resident usually will exclude
the latter; mortality consequently declines and global host
density increases. Similarly, introducing a virulent strain
that will coexist with a less virulent resident sometimes can
reduce total mortality. For given strain pairs capable of
coexistence, the monomorphic avirulent strain almost
always minimized total host density. Hence, if the host is
a ‘‘pest,’’ introducing low-virulence disease may reduce
pest density more effectively than would a high-virulence
alternative. These patterns in our results depend on model
details. In particular, differences in virulence affect only
disease transmission and host mortality; host reproduction
does not depend on infection status. If infection alters
fecundity, other patterns will likely arise. Furthermore,
our discrete-time model must order events for concurrent
updating of lattice sites; we allow host reproduction and
pathogen transmission to precede mortality. For some
models, the difference between discrete and continuous
time simulations can be significant (Huberman and
Glance, 1993).

Disease virulence can affect fecundity in addition to, or
instead of, host mortality (Gandon et al., 2002). Haraguchi
and Sasaki (2000) assume that infection sterilizes hosts and
also increases their mortality. O’Keefe and Antonovics
(2002) let infection reduce fecundity without an impact on
mortality. Both models predict that spatial structuring of
transmission can reduce virulence, compared to results for
homogeneous mixing. A virulent pathogen might reduce
host reproduction so low that clustered infectives would
not find enough neighboring susceptibles to persist
dynamically, an effect paralleling that of diseased-induced
mortality.

Ewald (1994) defines virulence as increased host mortal-
ity caused by infection, and argues that vector-borne
diseases are likely to evolve greater virulence than will
directly transmitted diseases. The hypothesis supposes that
illness renders a host inactive, so that the rate of direct
contact with susceptibles will decline as virulence increases.
However, the rate of contact with vectors such as flying
insects need not decline with virulence. So, direct transmis-
sion might constrain virulence evolution through loss of
contacts, and vectors could relax this constraint (Day,
2002). In our model’s terms, vector-borne transmission
could effectively increase neighborhood size (Caraco et al.,
2001) or randomize the contact network, both of which
could increase the competitive advantage of virulent
pathogen strains.
Antia et al. (1994) suppose that more virulent infections

generate greater concentrations of parasites within a host’s
tissues. Increased within-host parasite density increases the
between-host transmission rate of disease, and may also
increase the rate at which the host’s immune system
produces antigen-specific cells. An increased immune
response accelerates the host’s recovery, leading to a
virulence-modulated tradeoff between transmission rate
and duration of the infectious period. If the host’s
nutritional status is good, an immune response need not
tax the host sufficiently to exact a fecundity or survival cost
(Roberts et al., 1995). But energetic stress associated with
reproduction (Oppliger et al., 1996) or development
(Whitaker and Fair, 2002) can result in antagonism
between defense against disease and other elements of
fitness.
Our analyses assumed the pathogen could evolve

through pairwise competition, but held the host constant.
Host resistance to infection will sometimes co-evolve with
transmission–virulence properties of pathogens (Bowers
and Hodgkinson, 2001; Gandon et al., 2002; Holt and
Hochberg, 2002). Interactions between horizontal and
vertical transmission may also affect virulence evolution
(Kover and Clay, 1998; Koella and Doebeli, 1999). Finally,
Thomas et al. (2000) argue that costs of disease to a host
may sometimes be compensated by indirect benefits of
parasitism, including avoidance by predators, and (once
recovered) demonstration of disease resistance to potential
mates.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. 0342689
(T. Caraco and G. Korniss). Each of three reviewers
provided insightful comments and useful criticisms that
improved the paper significantly, and we thank them. We
also appreciate discussion with I.N. Wang.

Appendix A. Transition probabilities for the detailed model

This appendix specifies transition probabilities between a
site’s elementary states. sk(t) identifies the elementary state
of site k at time t; sk(t)A{0, S, A, V}. The number of sites
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on the interaction neighborhood, for both host propaga-
tion and infection transmission, is |sk| ¼ N, i.e., the N

nearest neighbors of k. n(s) counts the respective elemen-
tary states on sk at time t. 0pnðsÞpN, and

P
snðsÞ ¼ N.

Suppose that site k is open at time t. Then sk(t+1)A{0,
S}; no change occurs, or a newly produced susceptible
occupies the empty site. The probability of a birth at
site k is

1� ð1� bÞN�nð0Þ. (A.1)

The complement of (A.1) is the probability of no change at
an open site.

Next suppose site k is occupied by a susceptible. If
sk(t) ¼ S, sk(t+1)A{0, S, A, V}. A susceptible host may
acquire an avirulent infection and survive, may acquire a
virulent infection and survive, may die, or may avoid
infection and survive (no change). The probability that the
susceptible is infected by the avirulent strain and survives
to (tþ 1) is

½1� ð1� bAÞ
nðAÞ
�½ð1� bV Þ

nðV Þ

þ ½1� ð1� bV Þ
nðV Þ
�ð1� gÞ�ð1� mSÞ. ðA:2Þ

The probability that a susceptible is virulently infected and
survives is:

½1� ð1� bV Þ
nðV Þ
�½ð1� bAÞ

nðAÞ
þ ½1� ð1� bAÞ

nðAÞ
�g�ð1� mSÞ.

(A.3)

A susceptible’s mortality probability is mS. The probability
of no change when sk(t) ¼ S complements the sum of these
three probabilities.

Now suppose that an avirulently infected host occupies
site k at time t. If sk(t) ¼ A, then sk(t+1)A{0, A, V}. An
avirulently infected host may acquire the virulent strain
and survive, may die, or may avoid superinfection and
survive. The probability that the virulent strain displaces
the avirulent (via superinfection), and the host survives is

½1� ð1� bV Þ
nðV Þ
�gð1� mAÞ. (A.4)

The mortality probability is mA. The probability of no
change (i.e., avoiding superinfection and surviving) is the
complement of these two probabilities.

Finally, suppose that a virulently infected host occupies
site k. If sk(t) ¼ V, then sk(t+1)A{0, V}. The site becomes
open through mortality with probability mV. The prob-
ability of no change is (1�mV), completing the model’s
transition probabilities.

Appendix B. Mean-field approximation

The global density of susceptibles at time (tþ 1) sums
densities of births at open sites plus susceptibles at time t

that avoid both avirulent and virulent infection and then
survive. Hence,

rSðtþ 1Þ ¼ BðrS þ rA þ rV Þr0 þ rSðtÞsb1� maArAðtÞc

�b1� maVrV ðtÞcð1� mSÞ. ðB:1Þ
The global density of avirulently infected hosts at time
(tþ 1) has four sources. The avirulent strain, and not the
virulent, is transmitted to some susceptibles that survive.
Second, both strains are transmitted to some susceptibles,
the avirulent strain wins, and the hosts survive. Third,
some avirulently infected hosts avoid contacting the
virulent strain and survive. Finally, the virulent strain is
transmitted to some avirulently infected hosts, but super-
infection fails and the hosts survive. Then:

rAðtþ 1Þ ¼ rSðtÞm
a
ArAðtÞb1� maVrV ðtÞ þ ð1� gÞmaVrV ðtÞc

�ð1� mSÞ þ rAðtÞb1� maVrV ðtÞ

þ ð1� gÞmaVrV ðtÞcð1� mAÞ. ðB:2Þ

The global density of virulently infected hosts at time
(t+1) has four sources. The virulent strain, and not the
avirulent, is transmitted to some susceptibles that survive.
Second, both strains are transmitted to some susceptibles,
the virulent strain wins, and the hosts survive. Third, the
virulent strain displaces the avirulent strain via super-
infection in some hosts that survive; finally, some virulently
infected hosts survive. Then:

rV ðtþ 1Þ ¼ rSðtÞm
a
VrV ðtÞ

�b1� maArAðtÞ þ gmaArAðtÞcð1� mSÞ

þ rAðtÞgm
a
VrV ðtÞð1� mAÞ þ rV ðtÞð1� mV Þ.

ðB:3Þ

After simplification, expressions (B.1)–(B.3) become Eqs.
(3)–(5) in the text.
In the absence of disease, rAðtÞ ¼ rV ðtÞ ¼ 0: At positive,

disease-free equilibrium:

DrSðtÞ ¼ rSðtÞðB½1� rSðtÞ� � mSÞ,

so that r�S ¼ 1� mS=B, for mSoB.
If a single pathogen strain, with host-mortality prob-

ability mA4mS, invades the disease-free equilibrium, the
strain’s growth rate when rare must exceed unity, requir-
ing:

rAðtþ 1Þ=rAðtÞ ¼ ð1þ r�Sm
a
AÞð1� mSÞ41. (B.4)

Substituting for rS
* in the absence of disease and then

simplifying yields expression (6) in the text. The same
condition results by requiring that the pathogen’s repro-
duction number, R0, exceed unity for invasion. Since the
mean-field model assumes homogeneous mixing, we have:

R0ðmAÞ ¼ r�Sð1� mSÞðm
1�a
A =mAÞ41. (B.5)

Since 0oao1, qR0=qmAo0; for homogeneous mixing,
growth when rare declines with any increase in virulence.
Expression (B.5) shows that for any positive density of
susceptibles, there is a transmission-to-virulence ratio large
enough for successful pathogen invasion.
If a single pathogen strain invades the host population

and advances to endemic equilibrium, the growth rate in
(B.4) falls to unity, and the equilibrium density of
susceptible hosts becomes r�S ¼ m1�aA =1� mS. At the sin-
gle-strain endemic equilibrium the total density of hosts is
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r� ¼ r�S þ r�A. Host birth and survival balances mortality,
and r� satisfies:

r� ¼ Br�ð1� r�Þ þ m1�aA þ r� �
m1�aA

1� mS

� �
ð1� mAÞ. (B.6)

Substituting and simplifying yields:

Bðr�Þ2 þ ðmA � BÞr� � r�1ðmA � mSÞ ¼ 0. (B.7)

The root of the quadratic on (0,1) has the form shown in
Eq. (7) of the text, where r�A ¼ r� � r�S at single-strain
endemic equilibrium.

Given the single-strain equilibrium, we ask if a second
strain can invade. Consider a pair of strains with host-
mortality probabilities mAomV . Suppose the avirulent
strain is resident; then the equilibrium is given by r�S ¼
m1�aA =ð1� mSÞ and by Eq. (7) in the text. The virulent strain
advances when rare if its increase through infecting
susceptibles and through superinfection exceeds the loss
through host mortality; successful invasion by the virulent
strain requires:

maVr
�
Sð1� maAr

�
A½1� g�Þð1� mSÞ þ gmaVr

�
Að1� mAÞ4mV ,

(B.8)

where g increases with (mV � mA). After simplification, we
obtain expression (8) in the text.

Now assume the virulent strain is resident; the endemic
equilibrium is described in the text. The avirulent strain
advances when rare when:

bmaAr
�
Sð1� mSÞ þ 1� mAcb1� maVr

�
V þ ð1� gÞmaVr

�
Vc41.

(B.9)

Simplification yields expression (9) in the text.

Appendix C. Pair approximation dynamics

Equations for Pt[0S] and Pt[AV] appear in the text; we
present the remaining seven difference equations here. We
begin with the [00] block pair. Generating a pair block with
two empty sites requires an already empty pair block and
no births, no birth and a death on a block with exactly one
site occupied, or two deaths on a pair block with both sites
occupied. So,

Ptþ1½0 0� ¼ Pt½0 0�½1� lðtÞ�2ðN�1Þ

þ 2 mSPt½0S� þ mAPt½0A�
�

þmV Pt½0V �
�
ð1� bÞ½1� lðtÞ�N�1

þ m2SPt½SS� þ m2APt½AA� þ m2V Pt½VV �

þ 2 mSmAPt½SA� þ mSmV Pt½SV �
�

þmAmV Pt½AV �
�
. ðC:1Þ

Next consider the [0A] block pair. No [i0] block becomes
a [0A] block in one time interval, since hosts are born
susceptible. No [iV] block becomes an [iA] in a single
period, since the avirulent strain cannot displace the
virulent. Eight different pair blocks can produce a [0A]
block. Any transition of an [iS] to [0A] requires avirulent
infection at site r. Any transition of a [iA] block to [0A]
requires that the host at site r avoid superinfection. So,

Ptþ1½0A� ¼ ð1� mSÞð1� ½1� yAðtÞ�
N�1Þ

�b½1� yV ðtÞ�
N�1 þ ð1� gÞð1� ½1� yV ðtÞ�

N�1Þc

�ðð1� bÞ½1� lðtÞ�N�1Pt½0S� þ mSPt½SS�Þ

þ Pt½AS�mAð1� mSÞð1� ð1� bAÞ½1� yAðtÞ�
N�1Þ

�½½1� yV ðtÞ�
N�1 þ ð1� gÞð1� ½1� yV ðtÞ�

N�1Þ�

þ Pt½VS�mV ð1� mSÞð1� ½1� yAðtÞ�
N�1Þ

� ð1� bV Þ½1� yV ðtÞ�
N�1

�
þð1� gÞð1� ð1� bV Þ½1� yV ðtÞ�

N�1Þ
�

þ ð1� mAÞ ½1� ysiðtÞ�
N�1

�
þð1� gÞð1� ½1� ysiðtÞ�

N�1Þ
�

� ð1� bÞ½1� lðtÞ�N�1Pt½0A�
�
þmSPt½SA� þ mAPt½AA�

�
þ mV ð1� mAÞPt½VA� ð1� bV Þ½1� ysiðtÞ�

N�1
�

þ ð1� gÞð1� ð1� bV Þ½1� ysiðtÞ�
N�1Þ

�
. ðC:2Þ

The first transition in (C.2) is [0S]-[0A]. Site k is empty,
and no birth occurs there. The susceptible host at site r

must be exposed to avirulent infection, and not be infected
by the virulent strain. Then the host at r must survive. The
three other [iS]-[0A] transitions require mortality, rather
than birth, at k. Note that in the four [iA]-[0A]
transitions, the avirulently infected host at site r must
avoid superinfection.
Next consider a block with two susceptibles. No block

pair that includes an infected host can become an [SS] in a
single period, since hosts do not recover. Empty sites
require a birth, and susceptibles must avoid infection. So,

Pt½SS� ¼ Pt½00�ð1� ½1� lðtÞ�N�1Þ2

þ ð1� m1Þ
2Pt½SS�½1� yAðtÞ�

2ðN�1Þ½1� yV ðtÞ�
2ðN�1Þ

þ 2Pt½0S�ð1� mSÞð1� ð1� bÞ½1� lðtÞ�N�1Þ

�½1� yAðtÞ�
N�1½1� yV ðtÞ�

N�1. ðC:3Þ

The 2 in the last term of (C.3) indicates that transitions
from a [0S] pair block or from an [S0] block to a [SS] pair
block occur with the same probability.
Now consider the [SA] block pair. Since infected hosts

do not recover, neither [Aj] nor [Vj] pair blocks become an
[SA] block in a single period. The avirulent strain cannot
displace the virulent hosts, so no [iV] block becomes an
[SA] block in a single period. That leaves four [ij] block
pairs, with iA{0, S} and jA{S, A} in the equation for the
[SA] block pair:

Pt½SA� ¼ ð1� mSÞPt½0S�ð1� ð1� bÞ½1� lðtÞ�N�1Þ

�ð1� ½1� yAðtÞ�
N�1Þ ½1� yV ðtÞ�

N�1
�

þð1� gÞð1� ½1� yV ðtÞ�
N�1Þ

�
þ ð1� mAÞPt½0A�ð1� ð1� bÞ½1� lðtÞ�N�1Þ
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�½½1� ysiðtÞ�
N�1 þ ð1� gÞð1� ½1� ysiðtÞ�

N�1Þ�

þ ð1� mSÞ
2Pt½SS�½1� yAðtÞ�

N�1½1� yV ðtÞ�
N�1

�ð1� ½1� yAðtÞ�
N�1Þ ½1� yV ðtÞ�

N�1
�

þð1� gÞð1� ½1� yV ðtÞ�
N�1Þ

�
þ ð1� mSÞð1� mAÞPt½SA�

�ð1� bAÞ½1� yAðtÞ�
N�1½1� yV ðtÞ�

N�1

�½½1� ysiðtÞ�
N�1 þ ð1� gÞð1� ½1� ysiðtÞ�

N�1Þ�.

ðC:4Þ

The [iS] blocks must avoid virulent infection, and the [iA]
blocks must avoid superinfection to generate the [SA]
block pair.

Next consider [SV] block pairs. Since hosts are born
susceptible and do not recover once infected, no [i0], [Aj],
nor [Vj] block pair can become an [SV] block in a single
time period. Six different block pairs are included in the
equation for the [SV] block:

Pt½SV � ¼ ð1� ð1� bÞ½1� lðtÞ�N�1Þ

�

ð1� mSÞPt½0S�ð1� ½1� yV ðtÞ�
N�1Þ

�½½1� yAðtÞ�
N�1 þ gð1� ½1� yAðtÞ�

N�1Þ�

þð1� mAÞPt½0A�gð1� ½1� ysiðtÞ�
N�1Þ

þð1� mV ÞPt½0V �

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ ð1� mSÞ½1� yAðtÞ�
N�1½1� yV ðtÞ�

N�1

�

ð1� mSÞPt½SS�ð1� ½1� yV ðtÞ�
N�1Þ

�½½1� yAðtÞ�
N�1 þ gð1� ½1� yAðtÞ�

N�1Þ�

þð1� mAÞPt½SA�ð1� bAÞg

�ð1� ½1� ysiðtÞ�
N�1Þ

þð1� mV ÞPt½SV �ð1� bV Þ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðC:5Þ

The [0j] blocks with r occupied require a birth at site k; [0A]
also requires superinfection at site r.

Now consider the [AA] block pair. Pair blocks including
either an open site or a virulently infected host cannot
become a [AA] block in a single interval. For the [AA]
block:

Pt½AA� ¼ ð1� mSÞ
2Pt½SS�ð1� ½1� yAðtÞ�

N�1Þ
2

�½½1� yV ðtÞ�
N�1 þ ð1� gÞð1� ½1� yV ðtÞ�

N�1Þ�2

þ 2ð1� mSÞð1� mAÞPt½SA�

�ð1� ð1� bAÞ½1� yAðtÞ�
N�1Þ

�½½1� yV ðtÞ�
N�1 þ ð1� gÞð1� ½1� yV ðtÞ�

N�1Þ�

�½½1� ysiðtÞ�
N�1 þ ð1� gÞð1� ½1� ysiðtÞ�

N�1Þ�

þ ð1� mAÞ
2Pt½AA� ½1� ysiðtÞ�

N�1
�

þð1� gÞð1� ½1� ysiðtÞ�
N�1Þ

�2
. ðC:6Þ
The 2 associated with the [SA] pair block in (C.6) indicates
that both an [SA] block and an [AS] block are changed to
[AA] by the same transitions.
Finally, consider the [VV] pair block. Any block without

an open site can become a [VV] block pair in a single time
period. So,

Pt½VV � ¼ b½1� yAðtÞ�
N�1 þ gð1� ½1� yAðtÞ�

N�1Þc

�

ð1� mSÞ
2Pt½SS�ð1� ½1� yV ðtÞ�

N�1Þ
2

�½½1� yAðtÞ�
N�1 þ gð1� ½1� yAðtÞ�

N�1Þ�

þ2ð1� mSÞð1� mV ÞPt½SV �

�ð1� ð1� bV Þ½1� yV ðtÞ�
N�1Þ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ 2ð1� mSÞð1� mAÞPt½SA�ð1� ½1� yV ðtÞ�
N�1Þ

� ð1� bAÞ½1� yAðtÞ�
N�1 þ gð1� ð1� bAÞ

�
�½1� yAðtÞ�

N�1Þ
�
gð1� ½1� ysiðtÞ�

N�1Þ

þ ð1� mAÞ
2Pt½AA�½gð1� ½1� ysiðtÞ�

N�1Þ�2

þ 2Pt½AV �ð1� mAÞð1� mV Þg

�ð1� ð1� bV Þ½1� ysiðtÞ�
N�1Þ þ ð1� mV Þ

2Pt½VV �.

ðC:7Þ

Eqs. (16) and (17) and Eqs. (C.1)–(C.7) complete the pair-
approximation model.
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