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Abstract

Many exotic species combine low probability of establishment at each introduction with rapid population growth once

introduction does succeed. To analyse this phenomenon, we note that invaders often cluster spatially when rare, and consequently

an introduced exotic’s population dynamics should depend on locally structured interactions. Ecological theory for spatially

structured invasion relies on deterministic approximations, and determinism does not address the observed uncertainty of the exotic-

introduction process. We take a new approach to the population dynamics of invasion and, by extension, to the general question of

invasibility in any spatial ecology. We apply the physical theory for nucleation of spatial systems to a lattice-based model of

competition between plant species, a resident and an invader, and the analysis reaches conclusions that differ qualitatively from the

standard ecological theories. Nucleation theory distinguishes between dynamics of single- and multi-cluster invasion. Low

introduction rates and small system size produce single-cluster dynamics, where success or failure of introduction is inherently

stochastic. Single-cluster invasion occurs only if the cluster reaches a critical size, typically preceded by a number of failed attempts.

For this case, we identify the functional form of the probability distribution of time elapsing until invasion succeeds. Although

multi-cluster invasion for sufficiently large systems exhibits spatial averaging and almost-deterministic dynamics of the global

densities, an analytical approximation from nucleation theory, known as Avrami’s law, describes our simulation results far better

than standard ecological approximations.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The breakdown of biogeographic barriers allows
some introduced species to reshape communities (Drake
et al., 1989; Hengeveld, 1989; Rosenzweig, 2001) and
threaten local biodiversity (Kolar and Lodge, 2002;
Pimm, 1987), especially in nature reserves (Usher et al.,
1988). Most introductions fail to initiate invasion
(Lonsdale, 1999; Simberloff, 2000). However, an exotic’s
abundance often increases rapidly once introduction
does succeed (Christian and Wilson, 1999; Sax and
Brown, 2000; Shigesada and Kawasaki, 1997), particu-
e front matter r 2004 Elsevier Ltd. All rights reserved.
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larly when an established exotic has an ecological
advantage promoting its growth (Callaway and Asche-
houg, 2000; Mack et al., 2000; Pimentel et al., 2000).

Veltman et al. (1996) analyse 496 documented, inten-
tional introductions of 79 bird species to New Zealand.
The strongest predictor of establishment is repeated
introduction. Most species introduced four or fewer times
never became established. Despite multiple introduction
attempts for most species, only 20% of the birds ever
became established (Veltman et al., 1996). Repeated
failure of introduction, followed by ecological success
once established, appears characteristic of both natural
dispersal and human-mediated introduction (Sax and
Brown, 2000). The seeming inconsistency between re-
peated failure of the introduction process and an invader’s
rapid growth once established motivates our study.

www.elsevier.com/locate/yjtbi
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Table 1

List of model symbols, definitions (numerical value or range used in

the simulations, where appropriate)

Symbol Definition

L Lattice length/width (32pLp512)

s Set of lattice site’s elementary states (empty, invader,

resident)

bi Invader’s introduction rate (10�8pbip10�2)

br Resident’s introduction rate ðbr ¼ bi ¼ bÞ
d Neighborhood size for clonal growth (4)

ai Invader’s clonal propagation rate (0.8)

ar Resident’s clonal propagation rate (0.7)

Ziðx; tÞ Number of invader neighbors around site x at time t

Zrðx; tÞ Number of resident-species neighbors around site x at

time t

mi Invader’s mortality rate (0.1)

mr Resident’s mortality rate ðmi ¼ mr ¼ m ¼ 0:1Þ
ri Invader’s global density

rr Resident’s global density

rms Resident’s ‘‘metastable’’ global density

hti Resident’s metastable lifetime

ti Waiting time for invader’s nucleation

tg Time for successful invader to grow to competitive

dominance

I(b) Nucleation rate per unit area

V Velocity at which cluster radius grows

S(t, t0) Volume of cluster at time t formed at time t0ot

rc Initial radius of nucleating cluster

Cd Dimension-dependent multiplier

d Dimension of volume within which nucleation occurs
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Despite the observed uncertainty of introduction,
spatial models for invasion processes typically yield
deterministic criteria for growth when rare (Andow et
al., 1990; Caraco et al., 2002; Chesson, 2000; Kot et al.,
1996; cf. Lewis and Pacala, 2000). An invader’s growth
or decline will ordinarily depend on locally structured
interactions (Ellner et al., 1998; Wilson, 1998), so that
chance mechanisms should often govern the population
dynamics of rarity (Durrett and Levin, 1994a). Our
results show how introduction rates and the size of the
environment can generate random variation in an
invader’s success or failure, through effects on the
invader’s spatial clustering.

Our analysis specifically distinguishes single-cluster
growth from multi-cluster growth of a rare exotic
competing with a resident plant species through clonal
propagation (Harada and Iwasa, 1994; Inghe, 1989).
Simulating the model reveals interesting variation in the
waiting time for successful introduction and subsequent
spread of the exotic. To characterize our particular
results and, more importantly, to offer a new perspective
on the population dynamics of invasion, we invoke the
physical theory for homogeneous nucleation of spatial
systems (Avrami, 1940; Johnson and Mehl, 1939;
Kolmogorov, 1937). Originally formulated to model
processes such as crystallization, nucleation theory
readily addresses ecological clustering generated by
local propagation in viscous populations (Gandhi et
al., 1999). We emphasize that under multi-cluster
growth of the exotic species, the dynamics of competi-
tion for space, specifically the time-dependent decay of
the resident’s density, follows a powerful analytic
approximation referred to as Avrami’s law (Duiker
and Beale, 1990; Ishibashi and Takagi, 1971; Ramos
et al., 1999; Rikvold et al., 1994).
2. Spatial model for invader-resident competition

Individual plants typically interact more with nearby
than with distant individuals (Rees et al., 1996; Tilman
et al., 1997). Consequently, an introduction’s success or
failure can depend on effects regulated by neighbor-
hood, rather than global, densities (Higgins et al., 1996;
Wilson, 1998). We model two clonal species, a resident
and an invader, competing for space in a lattice
environment. Each of the L2 lattice sites is either empty
or occupied by a single plant; a site represents the
minimal space an individual (ramet) requires. Competi-
tion for space is preemptive; a site already occupied
cannot be colonized by either species until the occu-
pant’s mortality opens the site. Table 1 defines the
model’s symbols.

The elementary state of any site x belongs to the set
s ¼ f0; i; rg: The states indicate, respectively, an empty
site, occupation by an individual invader, and occupa-
tion by an individual of the resident species.

First, we describe (0 ! i) and (0 ! r) transitions. An
empty site may become occupied as a result of
introduction from outside the environment, or through
local clonal propagation (Cook, 1983; Iwasa, 2000). The
invader occupies each empty site via dispersal at
constant probabilistic introduction rate bi: The intro-
duction rate for the resident species is br: The introduc-
tion process does not depend on an open site’s local
neighborhood; introduction corresponds to a spatially
uniform, typically weak, background process, modeling
long-distance propagule dispersal.

Local clonal propagation depends on neighborhood
composition. A plant occupying a site x may propagate
locally if at least one of the d sites neighboring x is open.
An invader at site x attempts to colonize neighboring
sites at total probabilistic rate ai; the propagation rate
per neighboring site is ai=d: The resident’s total
propagation rate is ar; so the rate per site is ar=d: The
chance of successful clonal growth declines with local
density. Ziðx; tÞ counts invaders neighboring an open site
x at time t. Zrðx; tÞ counts individuals of the resident
species on the same neighborhood; Ziðx; tÞ þ Zrðx; tÞpd:

We assume density-independent mortality. If a site is
occupied by an invader, that site becomes open at
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Fig. 1. Time-dependent global densities obtained by numerically

integrating the mean-field equations for b ¼ 10�4; 10�16, and 10�8

G. Korniss, T. Caraco / Journal of Theoretical Biology 233 (2005) 137–150 139
constant probabilistic rate mi: The mortality rate for
individuals of the resident species is mr:

Next we specify the model’s transition rates. Intro-
duction and local propagation occur independently, so
that an open site becomes occupied by an invader, a
(0 ! i) transition, at total rate bi þ Ziðx; tÞ ai=d: An
open site becomes occupied by a resident, a (0 ! r)
transition, at total rate br þ Zrðx; tÞ ar=d: The (i ! 0)
transition, where invader mortality opens a site, occurs
at rate mi; the (r ! 0) transition occurs at rate mr:

Throughout, we set bi ¼ br ¼ b; and mi ¼ mr ¼ m; so
that asymmetry between the invader and resident is due
solely to the difference in the local propagation rates ai

and ar: We keep ai4ar; and ask how the invader’s
clonal-growth advantage affects the dynamics of inva-
sion as we vary lattice size and the introduction rate. We
keep b much smaller than the other rates, so that
neighborhood competition drives the dynamics, but
trapping states are avoided during simulation.
(from left to right, respectively). ar ¼ 0:70; ai ¼ 0:80; and m ¼ 0:10
throughout this paper. Matching pairs of rrðtÞ and riðtÞ intersect near a

density of 0.425.
3. Mean-field approximation

The mean-field approximation offers a clear picture of
the basic biological problem, and so guides analysis of
the spatial model. The mean-field model assumes
homogeneous mixing, and so ignores effects of spatial
clustering on the dynamics.

Let rj represent the global density of sites with state j.
Under the mean-field approximation,

drj=dt ¼ ðbþ ajrjÞ ð1� rr � riÞ � mrj; j ¼ r; i: (1)

To focus on spatial competition, we temporarily
suppress immigration by setting b ¼ 0 (see Lehman
and Tilman, 1997). Then there are three equilibrium
fixed points (r�r ; r

�
i ); none allows coexistence. Mutual

extinction, (r�r ; r
�
i )=(0, 0), is stable when each ajom:

Competitive exclusion of the invader by the resident,
where (r�r ; r

�
i )¼ ð1� m=ar; 0Þ; is stable when ar4m and

ar4ai: Finally, exclusion of the resident species by the
exotic, where ðr�r; r�iÞ ¼ ð0; 1� m=aiÞ; is stable when
ai4m; and ai4ar: We assume ai4ar4m; so that each
species can grow in an empty environment, and the
invader has an individual-level advantage. Given this
ordering of parameters, only the last stability criterion
can hold. Therefore, under homogeneous mixing, the
exotic is introduced at rate b: The invasion condition,
i.e. the condition for the exotic’s advance when rare
against the resident at positive equilibrium, is simply
ai4ar: Since the invader has this advantage, it will
proceed to exclude the resident (to order b with
introduction allowed) under homogeneous mixing.

Integrating Eqs. (1) numerically yields time dependent
global densities. Fig. 1 shows the results for different
values of b (b  m; ar; ai). Initializing the environment as
fully occupied by resident, the system very rapidly relaxes
to a phase dominated by the resident species, where the
global densities are simply (r�r ; r

�
i )¼ ð1� m=ar; 0Þ up to

order b: This fixed point of Eq. (1) is not stable, but the
densities stay very close to these values for some time
before the invader’s growth becomes noticeable. In this
sense, we refer to this phase where the resident resists
invasion as ‘‘meta-stable.’’ We define the characteristic
time t; the lifetime of the resident species, as the time until
the resident’s density decays to half of its meta-stable
value. As b is decreased, the global densities as functions
of time shift to the right (Fig. 1); note that the increase of
the lifetime as b decreases is extremely slow, proportional
to �log(b).

As noted above, approximating the spatial dynamics
by mean-field or pair correlation methods (Bolker and
Pacala, 1999; Matsuda et al., 1992), yields deterministic
criteria for advance when rare; these methods, by
construction, cannot address the observed stochastic
variation in success or failure of introduction. Further-
more, for parameter values we use in simulations of the
spatially detailed model, the standard approximations
fail to describe the dynamics following invasion; see
Discussion. After describing our simulations, we apply
nucleation theory to characterize both the uncertainty of
the introduction process and the advance of the invader.
4. Simulation results

We implemented standard dynamic Monte Carlo
(MC) simulations on an L�L lattice with periodic
boundaries. Neighborhood size was d ¼ 4: The time unit
was one MC step per site (MCSS), during which L�L
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sites were picked randomly and updated probabilisti-
cally. This procedure simulates continuous-time dy-
namics in the large L limit (Durrett and Levin, 1994b;
Korniss et al., 1999). From the mean-field computa-
tions, one might not expect the competitively inferior
resident to resist invasion and induce slow dynamics,
since the lifetime of the resident species increased only
logarithmically with decreasing b: However, simulation
of the spatial model revealed slow ‘‘meta-stable’’ decay
of the resident. That is, spatially structured interactions
slow the timescale of competitive systems (Hurtt and
Pacala, 1995; Lehman and Tilman, 1997).

Fixing m ¼ 0:10; ar ¼ 0:70; and ai ¼ 0:80 (the same
values used in the mean-field approximation), we found
qualitative variation in the dynamics for introduction
rates 10�8pbp10�4; and similarly for system sizes
32pLp512: At t ¼ 0 we initialize the environment with
all sites occupied by the resident. After about (typically
less than) 10 MCSS the system relaxes to a ‘‘meta-
stable’’ configuration dominated by the resident with a
small density of empty sites; we designate the meta-
stable density of the resident as rr ¼ rms: Individuals of
the exotic species occasionally occupy empty sites via
introduction. An immigrant invader may die without
propagating. If a site opens up in the neighborhood of a
rare invader, the empty site is likely surrounded by more
Fig. 2. Single-cluster invasion mode in lattice Monte Carlo simula-

tions. Times are given in units of Monte Carlo steps per site (MCSS);

L ¼ 128 and b ¼ 10�6: White represents empty sites, blue and red

correspond to sites occupied by resident and invasive species,

respectively. The waiting time for successful introduction exceeds the

time between initiation of invasion and the resident becoming

numerically superior.
than one resident. The resident’s greater local density
more than compensates for its lower propagation rate
per individual, so the resident has the better chance of
colonizing the empty site; see Discussion. Consequently,
small clusters of invaders usually shrink and disappear.
Introductions fail since preemptive competition imposes
a strong constraint on the exotic’s growth. Introduction
succeeds only if the exotic can generate a spatial cluster
large enough that it statistically tends to grow at its
periphery. On coarse-grained length scales, nucleation
theory suggests that there exists a critical radius for
invader clusters; smaller clusters decline in size, while
clusters with a radius larger than the critical value will
more likely grow than decline (Gandhi et al., 1999).
Simulations confirm this picture, and suggest an
interesting distinction between single and multi-cluster
invasion. For b ¼ 10�6; a 128� 128 system exhibits
single-cluster invasion (Fig. 2). Increasing b to 10�4

produces multi-cluster invasion (Fig. 3). Holding b
constant and increasing the system size L would also
generate multi-cluster invasion. Since the spatial struc-
ture of the introduction process exhibits nucleation and
growth of invader clusters, we apply nucleation theory
as described in the next section.
Fig. 3. Multi-cluster invasion mode in lattice Monte Carlo simula-

tions. Times are given in units of MCSS; L ¼ 128 and b ¼ 10�4: Sites
are color coded as in Fig. 2. The first successful introduction occurs

rapidly; additional clusters nucleate during invasion. Note that the

system size L is the same as in Fig. 1. The temporal sequence of

configurations in Figs. 2 and 3 demonstrates the importance of the

interplay of the characteristic length scales: the typical cluster

separation and the system size. In our simulations, critical cluster size

is clearly smaller than either underlying length scale.
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Fig. 4. Five independent realizations of the time series of the two

species’ global densities during (a) single-cluster invasion mode. Note

that matching pairs of rrðtÞ and riðtÞ intersect near a density of 0.425.

(b) During multi-cluster (self-averaging) invasion mode. The para-

meters are the same as those in Fig. 2 and Fig. 3 for (a) and (b),

respectively, i.e., L ¼ 128 for both, b ¼ 10�6 in (a) and b ¼ 10�4 in (b).
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5. Nucleation theory

Nucleation theory’s ecological significance lies in its
prediction of population dynamics according to an
invader’s spatial-clustering pattern. Our application of
nucleation theory rests on the conceptual similarity
between biological invasion and nucleation phenomena
in physical systems. In particular, our analysis parallels
the theory developed by Rikvold et al. (1994), Richards
et al. (1995), and Korniss et al. (1999) for magnetization
switching in ferromagnetic materials.

When the resident species’ density rrðtÞ first falls to
rms/2, we consider the resident competitively dominated
by the exotic (defining competitive dominance in terms
of any particular global fraction of sites which the
resident occupies does not affect the dynamics). The
non-negative random variable t will represent the first-
passage time of the resident’s density to rms/2, in
accordance with earlier definition of the lifetime for
the mean-field approximation. The mean waiting time
hti is called the meta-stable lifetime, the expected time
elapsing until the resident’s global density is 1

2
its meta-

stable value. In single-cluster invasion t sums the
random waiting time until successful introduction and
a subsequent period of invasive spread. Nucleation is
equivalent to successful introduction; invasive spread
begins when a critically sized cluster of invaders first
forms. In multi-cluster invasion, clusters of the critical
size continuously form and grow, leading to many
invading species’ clusters of various sizes; see snapshots
of the environment in Fig. 3. In this section we identify
how the probability distribution of t differs between
single-cluster and multi-cluster invasion, and interpret
this difference ecologically.

5.1. Single-cluster invasion

In single-cluster invasion, random variation in the
time until a cluster exceeds critical size contributes more
to the variance of t than does variation in the period of
invasive growth following successful introduction. Dif-
ferent realizations of the introduction and invasion
dynamics (simulations with the same initial configura-
tion of the resident, but using different random
numbers) show that the average time for meta-stable
decay has little predictive significance for single-cluster
dynamics. In fact, the standard deviation is comparable
to the average (Fig. 4a); the ecological implication is
that uncertainty of the success or failure of introduction
makes single-cluster invasion inherently stochastic.

When the typical cluster separation (of a hypothetical
infinite system) exceeds the finite environment size L, the
spatial dynamics of the latter (finite) system almost
always exhibits meta-stable escape through nucleation
and growth of a single cluster of the superior species
(Rikvold et al., 1994). Ecologically, if the introduction
rate or environment size is sufficiently small, the
invasion geometry will always involve single-cluster
dynamics. While the introduction of an invader at an
empty site is a Poisson process by the construction of
our stochastic spatial model, it is not known a priori
whether the nucleation of a successful invading cluster
(one which has just reached the critical size) will also be
Poisson. However, we shall suppose, as a working
assumption, that nucleation of a single invader cluster is
a Poisson process as well, and verify this assumption
using simulations. Following this assumption, single-
cluster invasion (advance of the first critical cluster)
should be described by an exponential distribution of
time until successful introduction of the invader.
Consider the cumulative probability distribution of
competitive waiting times, i.e., the probability that the
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Fig. 5. Cumulative probability distribution for the lifetime of the

resident species (the probability that the resident’s density has not

decayed to rms/2 by time t) in the single-cluster invasion regime for (a)

b ¼ 10�6 and L ¼ 32; 64; 128 (from top to bottom, respectively); (b)

for L ¼ 128 and b ¼ 10�8; 10�7; 10�6 (from top to bottom, respec-

tively). The log-linear scales indicate an exponential distribution for

the nucleation process, Eq. (9). The lifetime distributions were

constructed using 104 independent Monte Carlo runs for b ¼ 10�6;
L ¼ 32; 64; 128 and 103 independent runs for L ¼ 128; b ¼ 10�8; 10�7:
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resident’s global density has not decayed to rms/2 by
time t, PnotðtÞ ¼ Pðt4tÞ: For single-cluster invasion,
analysis by Richards et al. (1995) shows us that

PnotðtÞ ¼
1 for totg

exp �
t�tg

htii

� �
for t4tg

(
(2)

where htii is the mean time until successful introduction
of the exotic (mean nucleation time) and tg is the
duration of invasive spread; we take the latter as
constant for single-cluster invasion, since the growth
of a single, supercritical cluster can be treated determi-
nistically. Note that tg does not depend on b; but only
on m; ai; ar; and system size L. Given the symmetry of
resident decline and invader growth (Fig. 4a), we
approximate tg as the time for the supercritical cluster
of the invading species to grow and fill half the
environment. For fixed m; ai; and ar; the characteristic
time scale (the mean nucleation time htii), depends only
on b and the system size L. More precisely, nucleation of
a critical cluster is a Poisson process with nucleation rate
per unit area I(b). Thus, for systems in the single-cluster
regime

htii / ½L2IðbÞ��1 (3)

in two dimensions (Rikvold et al., 1994). The distribu-
tion of first-passage time t has a two-parameter
exponential density (see Bury, 1975) with mean hti ¼
ðhtii þ tgÞ; variance htii

2; and skew 2htii
340:

To verify that nucleation of a cluster of critical size is
a Poisson process, we simulated 103 (104 for some
parameter values) independent realizations of introduc-
tion and invasion, and constructed the cumulative
distribution PnotðtÞ: Fig. 5(a) and (b), compares the
results with Eq. (2) for fixed b and various L values, and
for fixed L and various b values, respectively. Fitting an
exponential to the data (a straight line on log-linear
scales), we estimated the mean time to successful
introduction htii (i.e., the nucleation time of the first
critical cluster) as the inverse of the slope in Fig. 5. Then
one can read the invasive-spread time tg from the figure;
from expression (2) tg is equal to the maximal time at
which PnotðtÞ is unity.

We also confirmed the dependence of htii on L, as
indicated in Eq. (3), and found that IðbÞ / b; the rate of
successful introduction is proportional to the introduc-
tion rate. Since the typical separation between invading
species’ clusters increases with decreasing b (Richards et
al., 1995), the fundamental consequence of these
findings is that given an arbitrarily large but finite and
fixed system size L, for sufficiently small b the system
will exhibit single-cluster growth of the invader with
htii / b�1: Note that this behavior follows from our
working assumption that successful introduction is a
Poisson process. However, htii remains orders of
magnitude larger than one would estimate based simply
on the system size and the density of open sites, since
many exotic clusters fail to grow before introduction
succeeds. Most importantly, the average lifetime for
decay of the resident’s density increases rather quickly as
b decreases, in stark contrast with the weak logarithmic
divergence predicted by the mean-field model (and pair
approximation models; see Discussion). Also note that
for small b; hti � htii; (since htii � tg), and htii equals to
the standard deviation of the exponential lifetime
distribution, Eq. (2).

When introduction rates or the numbers of habitable
sites in an environment are sufficiently small, ecological
invasion of a locally propagating species should occur as
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the growth of a single invader cluster. The inherent
stochasticity of the single-cluster process renders inva-
sion time highly unpredictable. The standard deviation
of the meta-stable lifetime t is as large as the mean, and
standard ecological methods for spatial systems do not
address the uncertainty of invasion dynamics. Nuclea-
tion theory, as a first step, provides a functional form
characterizing the random waiting time of single-cluster
invasion process.

5.2. Multi-cluster invasion

In multi-cluster invasion, realizations of introduction
and invasion processes are quite different from those of
single-cluster growth. Species’ global densities exhibit
only small fluctuations about their time-dependent
averages (Fig. 4b; cf. Fig. 4a). Therefore, the first-
passage time of the resident’s density to half its initial
value has a standard deviation much smaller than its
average hti: Nucleation and subsequent expansion of
many clusters implies that global density is a sum of
random variables, and spatial averaging of local
densities within the multi-cluster process reduces the
variability of the time-dependent global densities among
different realizations of the process. This reduction in
variability of the dynamics of the global species’
densities, resulting from averaging local behavior of a
large number of clusters, is sometimes termed ‘‘self-
averaging.’’

To model decay of the resident’s density under multi-
cluster invasion, we again invoke nucleation theory.
Increasing the introduction rate b or system size L2 leads
to the nucleation and subsequent growth of many
invader clusters (Ramos et al., 1999). The meta-stable
lifetime hti; the resident’s mean first-passage time to rms/
2, becomes independent of the size of the environment;
the standard deviation is proportional to the inverse of
the square root of system size, i.e., 1/L. Further, since
global densities reflect spatial averaging of local
densities during the nucleation and growth of many
invader clusters, the distribution of the first-passage time
t is normal (Richards et al., 1995). We express the
corresponding cumulative probability distribution
PnotðtÞ as an error function (Fig. 6a); the point where
the PnotðtÞ functions for different system sizes cross
corresponds to the system-size independent meta-stable
lifetime for the resident species’ decay (Korniss et al.,
1999). Compared to the single-cluster mode, the mean
first-passage time hti is decreased (and becomes system-
size independent in the large-L limit). Importantly, as
the size of the environment invaded increases, the
variance and skew of t go to zero.

The preceding observations imply that, for multi-
cluster invasion, global densities rjðtÞ converge to
deterministic functions in large environments. Hence
we tested KJMA theory, so named for its developers:
Kolmogorov (1937), Johnson and Mehl (1939) and
Avrami (1940). In particular, we tested Avrami’s law,
which predicts the time-dependent global density of the
resident species when the superior competitor invades
through the nucleation and growth of many clusters.
The Avrami picture of meta-stable decay works
accurately until invader clusters begin to coalesce, and
the invader becomes the more abundant species; Ramos
et al. (1999) offer a visual characterization of multi-
cluster dynamics. According to Avrami’s law the global
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density of the meta-stable resident species decays as

rr tð Þ � rms exp � ln 2
t

th i

� �3
" #

; (4)

where hti is the asymptotically system-size independent
mean lifetime of the resident’s decay. The Appendix
presents a derivation of Avrami’s law based on the
assumptions of multi-cluster nucleation and applies the
general result to our ecological-invasion problem to
obtain expression (4). Fig. 6(b) shows convincing
agreement between simulation averages and Avrami’s
law; deviations are noticeable only for very large times
[t3X1010 (tX2154), inset of Fig. 6b] when invader
clusters begin to coalesce (Korniss et al., 1999) and
percolation effects become important (Gandhi et al.,
1999).

Nucleation theory also relates the system-size inde-
pendent lifetime hti of the multi-cluster regime to the
inherent nucleation rate per unit area I(b) through

hti / ½IðbÞ��1=3 (5)

[see Eq. (A.6) of the Appendix]; note that this
proportionality is quite different than that obtained
above for single-cluster dynamics. Eq. (5) enables us to
predict the b-dependence of the lifetime in the multi-
cluster regime based on measuring the mean nucleation
time in single-cluster invasions; see Eq. (3). Combining
that result with Eq. (5) implies that hti / b�1=3 in the
multi-cluster regime. Thus, for an arbitrary small b; in
the limit as L ! 1; the lifetime of the resident species’
decline eventually approaches an asymptotic system-size
independent value, proportional to b�1/3. While the
global densities become deterministic in the multi cluster
regime, the b-dependence of the lifetime is very different
from the weak logarithmic divergence yielded by the
mean-field approximation (pair approximation, not
shown, is similar to the mean field). That is, invader
density may vary locally across the environment, but the
multi-cluster dynamics will maintain the spatially
averaged, i.e. the global, density with little variability
about a time-dependent mean. Nevertheless, despite this
lack of random variation in the global densities, the
multi-cluster dynamics with nearest-neighbor interac-
tion may be poorly predicted by standard approxima-
tions to spatial processes. Avrami’s law, Eq. (4), on the
other hand, accurately predicts the simulated multi-
cluster invasion dynamics.
6. Discussion

Theory in population biology relies heavily on
invasion analyses. That is, predictions commonly are
inferred from conditions promoting the initial increase
of a rare type (allele, phenotype, or species) among
resident types, usually at dynamic equilibrium (see
Ferriere and Gatto, 1995). Invasion criteria formalize
conditions for local stability of the rare type’s extinction;
when extinction is unstable, invasion succeeds. Models
for spatial population processes may be deterministic or
stochastic, but the associated invasion criteria typically
are deduced from linear, deterministic approximations
to a rare type’s dynamics. However, most introduction
in nature presumably begin with a small number of
colonists, implying that a more realistic approach to
invasion analysis would model discrete individuals and
include a random component in the dynamics of rarity
(Caraco et al., 1998; Durrett and Levin, 1994a).
Nucleation theory characterizes stochastic properties
of introduction and invasion that must often result from
spatially structured interactions and locally clustered
growth.

Our analysis associates random variation in the
spatial dynamics of an introduced species with the
contrast between the high probability that a given
introduction will fail and the ecological dominance of
exotics once introduction succeeds (Kolar and Lodge,
2002; Sax and Brown, 2000). If the exotic’s introduction
rate or the system size is small, invasion occurs almost
always through a single successful invading cluster.
Before that successful event, invader clusters fail to
achieve critical size and decline to extinction. The
ultimate decline of the resident occurs only after a
number of stochastic introductions of the exotic species
fail; when the exotic invades successfully, it grows as a
single super-critical cluster (Rikvold et al., 1994).

Multi-cluster invasion has distinct features. In larger
systems, or with higher introduction rates, invasive
growth of the exotic begins (almost) as soon as
biogeographic barriers break down, and dynamics of
the global densities becomes nearly deterministic. For
multi-cluster invasion, nucleation theory approximates
the decay of the resident by Avrami’s law (Ramos et al.,
1999; Richards et al., 1995). The global densities become
self-averaging with an asymptotically system-size inde-
pendent mean lifetime hti for the resident. Quantitative
or qualitative variation in local interactions, through
effects on cluster formation and dissolution (Gandhi et
al., 1999; van Baalen and Rand, 1998), influences hti
and consequently should exert predictable effects on
global dynamics; see the Appendix.

Ecological implications of nucleation theory extend
beyond the neighborhood-level competition we model.
The two limiting processes we emphasize suggest general
significance for spatial ecologies. Consider a hypotheti-
cally infinite system (i.e., when we take the limit L ! 1

first). Then, for all b much smaller than ai; ar; and m (so
that competition drives the dynamics), the system must
be in the multi-cluster regime. Spatial averaging of local
dynamics generates (almost) deterministic behavior of
the global densities, and Avrami’s law accurately
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Fig. 7. Comparison of the mean-field approximation with lattice Monte Carlo (MC) simulation results. (a) Time-dependent global densities for

b ¼ 10�4: Here the system size for MC simulations was L ¼ 256; yielding self-averaging multi-cluster invasion. (b) The resident’s global density vs. t3

shown on log-normal scales illustrate the validity of nucleation theory and Avrami’s law, and the weakness of the mean-field approximation. (c)

Lifetime of the resident in the mean-field approximation and by Monte Carlo (MC) simulations for L ¼ 128 as a function of the introduction rate b:
Log–log scales are used to capture the range of b spanning several orders of magnitude and the resulting disparate timescales for the lifetime hti in the

MC simulations. Standard error for the MC lifetime data is less than 4% for all data points (and would correspond to error bars less than the symbol

size for the average lifetime on the graph). The two straight-line segments correspond to the b-dependence of the average lifetime predicted by

nucleation theory in the multi-cluster regime (slope �1/3 on log–log plot) and in the single-cluster regime (slope �1 on the log–log plot). The inset

shows the same data on linear-log scales to illustrate the linear dependence of the lifetime on log(b) for the mean-field approximation. The straight

line is the best linear fit, a � b logðbÞ; to the mean-field model.
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describes the resident’s decay. Although the global
densities are deterministic functions of time for large
systems, recall that their dynamics qualitatively differs
from the results of the mean-field approximation
(Figs. 7a and b). Further, the lifetime hti increases as
b�1=3 for decreasing b; much faster than the weak
logarithmic increase predicted by the mean-field model
(Fig. 7c).

We also developed a pair approximation to the
spatially detailed model (after Iwasa et al., 1998). Pair
approximation incorporates short-range spatial correla-
tions, and so evaluates both global densities and the
conditional densities of the states of paired, neighboring
sites (Rand, 1999). The pair approximation marginally
improves the estimation of the resident species’ lifetime
over the mean-field model; pair approximation might
better predict global densities for interaction neighbor-
hoods extending beyond nearest neighbors (e.g., Caraco
et al., 2001). Importantly, both mean-field and pair
approximations fail to capture the actual behavior of the
time-dependent global densities of the spatial model,
well described by nucleation theory and Avrami’s law.

Now consider the second limiting process. For any
finite system, there is a sufficiently small b where the
typical cluster separation increases beyond the system
size, and invasion crosses over to the single-cluster
mode. Below this b; we found that hti / b�1; this is the
b ! 0 limiting behavior of the meta-stable lifetime for a
finite system. Illustrating this scenario for an L ¼ 128
system (Fig. 7c), we confirmed that for 10�5pbp10�3

the system is in the multi-cluster regime and the b-
dependence of the lifetime follows b�1=3: At around b �

10�6 the crossover occurs, and for bp10�6 the system
exhibits single-cluster invasion and indeed approaches
the hti / b�1 behavior (Fig. 7c). Here the invasion is
inherently stochastic, and the mean of the lifetime
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becomes equal to its standard deviation. Note that in the
large-b region ðbX10�2Þ nucleation theory breaks down
as invading clusters coalesce almost immediately after
introduction. In fact, the mean-field and pair approx-
imations begin to work much better here as a result of
the almost immediate mixing of small clusters.

We set bi ¼ br for simplicity; the difference between
species was due solely to different rates of local
propagation. However, equal introduction rates might
imply that the competitors’ populations outside the
environment are the same size (or equally distant),
which is unlikely. For the initial conditions we consider,
however, the dynamics is insensitive to br (as long as it
remains small), since the system is initially occupied
densely by the resident species. Assigning separate
introduction rates to the species, in particular, bi 

m; ar; ai as previously, but with br ¼ 0; does not alter the
dynamics qualitatively; the ecological distinction be-
tween single-cluster and multi-cluster invasion processes
remains important.

6.1. Local dynamics

Our results, in particular the slow decay of the
resident species’ density, depend on the discreteness of
space. Bolker et al. (2000) suggest that lattice-based
models overemphasize effects of local clumping on
dynamics, but we can regard a lattice site as the minimal
amount of space (hence, minimal access to resources)
necessary to sustain an individual (ramet). At some
scales, this may imply greater realism for the discrete-
space approach (Neuhauser and Pacala, 2000). Of
course, our detailed simulation results further depend
on choices of parameter values, neighborhood size, and
system sizes (Filipe and Maule, 2003; McCauley et al.,
1993).

The local dynamics helps explain the resistance to
invasion. In the absence of the invader, the resident’s
global density will be approximated by r�r ¼ ð1� m=arÞ:
Suppose that an individual of the invasive species is
introduced, via dispersal, at an open site y at time t.
Approximating the local state frequencies by global
densities (e.g., Duryea et al., 1999), the probability that
no site is open (for local propagation) among the
neighbors of site y is close to ðr�r Þ

d: If no site neighboring
the single invader is open, the chance that the immigrant
invader dies before a neighboring site opens is just ðdþ
1Þ�1; since each individual has the same exponentially
distributed waiting time for mortality. Larger neighbor-
hoods increase the probability that the immigrant will
find a neighboring site open, but do not necessarily
increase the chance that the invader will propagate into
an open site. To examine the latter probability, we
consider a simple example.

Suppose that neighboring sites (x, y) form an (open,
invader) pair. The open site (x) becomes occupied by the
invading species at constant probabilistic rate (bþ ai=d).
The same open site becomes occupied by the resident at
rate ðbþ Zrðx; tÞar=dÞ; which depends on the number of
resident individuals neighboring site x. Approximating
that number Zrðx; tÞ with a binomial random variable,
the resident species occupies the open site at constant
probabilistic rate ðbþ ðar � mÞðd� 1Þ=dÞ: Although
ai4ar; that resident is more likely to acquire the open
site as long as

ðar � mÞðd� 1Þ4ai: (6)

This expression holds in our simulations; more gener-
ally, the invader is less likely to acquire the open site as
neighborhood size d increases.

The preceding emphasizes that it is the discreteness of
the introduction process and the preemptive nature of
the competition that, in combination, allow the resident
species to repel small, rare clusters of invaders, before
the resident declines. Recall that this is the sense in
which we refer to the possibly lengthy domination of the
environment by the resident species as ‘‘meta-stable.’’ In
contrast to Gandhi et al. (1999; see below), we do not
assume an underlying bistability (such that either
species, when common, tends to repel invasion by the
other).

6.2. Nucleation theory in biology

Gandhi et al. (1998, 1999) model two species
competing for space, and consider how cluster growth/
decay can influence time to extinction. The authors
assume a somewhat elaborate locally structured dy-
namics. The mortality rate for individuals of each
species increases as the total density in the local
neighborhood increases. The birth rate for individuals
of either species increases as the relative frequency of
conspecifics increase locally. Finally, individuals may
move diffusively (Gandhi et al., 1998).

As an initial condition, Gandhi et al. (1998, 1999)
distribute large numbers of individuals of each species
uniformly across the environment. Gandhi et al. (1998)
assume competitively identical species. If initial densities
differ sufficiently, a mean-field model approximates the
time elapsing until the less numerous species reaches
extinction. But when both competitors initially occur at
high density, clusters quickly form in each species.
Thereafter, the dynamics are driven by interactions at
cluster interfaces, and the expected time to extinction
increases beyond the mean-field prediction. Gandhi et
al. (1999) conduct a similar analysis with asymmetric
species, and they invoke nucleation theory’s concept of a
cluster size critical for growth in a competitive environ-
ment. The model’s positive frequency-dependent birth
rates likely accentuate the rapid decay of small clusters;
smaller clusters have greater perimeter curvature, so
that individuals on the perimeter have relatively few
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conspecific neighbors. Again, in their models
nucleation is driven by an underlying bistability
(two stable fixed points in terms of the global
densities).

Our analysis complements the results in Gandhi et al.
(1998, 1999). Each model addresses competition; we
assume clonal propagation, while Gandhi et al. model
social interactions where paired conspecifics do better
than heterospecific pairs (see Giraldeau and Caraco,
2000). Our analysis focuses on ecological invasion, a
process where one species begins at zero density, enters
the environment as rare individuals, and advances
through single or multi-cluster growth (depending on
parameter values). Gandhi et al. (1998, 1999) initially
disperse each species uniformly. Both species form
multiple clusters, and then the sometimes lengthy
process of competitive exclusion begins. Our model’s
biological assumptions differ considerably from the
model by Gandhi et al. (1998, 1999), but both analyses
point to the importance of cluster geometry as a basis
for understanding relationships between individual-
based interactions and global dynamics.

The term ‘‘nucleation’’ has been applied, metaphori-
cally, in studies of community succession (Franks, 2003;
Moody and Mack, 1988) and ecological restoration
(Robinson and Handel, 2000). These applications refer
to an interspecific facilitation, where a plant of one
species modifies local sites in a manner promoting the
germination and survival of a second species. Yarranton
and Morrison (1974) describe an interesting example by
tracing primary succession in a sand-dune community.
Persistent vegetation (oak–pine forest) replaces coloniz-
ing grassland during succession. Persistent species begin
as local clusters that expand and eventually coalesce,
replacing the colonizing species in the process. But many
of the persistent-species clusters are initiated through
seedling establishment under individual junipers (Juni-

perus virginiana), where microclimate is moderated and
soil nutrients are concentrated (Yarranton and Morri-
son, 1974). Our model assumes equivalent sites, but
logical extensions of the theory would examine effects of
spatial heterogeneity in site quality and exogenous
temporal variation in demographic parameters (Korniss
et al., 2001).

Finally, we suggest that nucleation theory offers a
quantitative context for addressing a diverse series of
fundamental questions in biology. For example, Herrick
et al. (2002) analyse DNA replication by invoking
formal equivalence between KJMA theory and their
stochastic model for replication kinetics of Xenopus

DNA. Initiation of replication forks along the linear
DNA molecule is equivalent to nucleation events, and
replication fork velocity is equivalent to the rate of
cluster growth. Herrick et al. (2002) present the first
reliable description of temporal organization in a higher
eukaryote’s DNA replication; nucleation theory pro-
vides the study’s conceptual perspective and so guides
the interpretation of data.
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Appendix. KJMA theory for homogeneous nucleation

Here we present a brief derivation of KJMA theory
(commonly referred to as Avrami’s law) for an infinite
system. Avrami’s law was originally formulated to
describe how solids transform from one state of matter
(‘‘phase’’) to another as they crystallize. Since then,
nucleation theory and Avrami’s law have also been
applied successfully to domain switching in ferromag-
netic (Ramos et al., 1999; Rikvold et al., 1994) and
ferroelectric (Duiker and Beale, 1990; Ishibashi and
Takagi, 1971) materials. Our development follows
Ishibashi and Takagi (1971). See Duiker and Beale
(1990) for discussion of large, but finite systems, in
particular, for consideration of finite-size effects where
clusters begin to coalesce. The appendix first offers a
description applicable to spatial systems in general, and
then specifies application to the model analysed in the
text.

The system is initialized in the meta-stable phase. In
homogeneous nucleation the decay of the meta-stable
phase (or ‘‘switching’’ to the final equilibrium phase)
occurs through random nucleation and subsequent
growth of local clusters. Consider an arbitrary point
Q in the d-dimensional, infinite ‘‘volume.’’ The prob-
ability that this point is not in the switched volume by
time t, PnotðtÞ; equals to the volume fraction of the initial
phase, jðtÞ:

Recall that we expect an invading cluster to continue
to grow only after its radius reaches a critical length rc.
We assume that nucleation of a successful invading
cluster (with initial radius rc) is a Poisson process with
constant nucleation rate I per unit volume (i.e., the
probability of nucleation per unit volume per unit time
is I). Such a cluster, nucleated at time t0, will cover a
volume

Sðt; t0Þ ¼ Cd ½rc þ vðt � t0Þ�d (A.1)

at later time t, where v, the radial velocity of a growing
cluster, is approximated by a constant, and Cd defines
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the relationship between radius and volume
in the d-dimensional volume (i.e., C2 ¼ p and
C3 ¼ 4p=3).

Now divide the ð0; tÞ time interval into N infini-
tesimal intervals ðjDt; ðj þ 1ÞDtÞ with Dt ¼ t=N; j ¼

0; 1; 2; . . . ;N � 1: For infinitesimal Dt; under the as-
sumption of a Poisson process, the probability that no
cluster, nucleated in the infinitesimal interval ðjDt; ðj þ
1ÞDtÞ; will cover point Q at time t is 1� ISðt; jDtÞDt:
Thus, the probability that point Q is not swept by any

cluster (i.e., Q is not in the switched volume) at time t is
given by

PnotðtÞ ¼ ½1� ISðt; 0ÞDt�½1� ISðt;DtÞDt�

� ½1� ISðt; 2DtÞDt� . . . ½1� ISðt;NDt�

¼
YN�1

j¼0

½1� ISðt; jDtÞDt�: ðA:2Þ

Taking the logarithm of Eq. (A.2), letting Dt ! 0; and
letting N ! 1 (such that NDt ¼ t) yields

ln PnotðtÞ ¼
XN�1

j¼0

ln½1� ISðt; jDtÞDt� �!
Dt!0

�I

Z t

0

Sðt; t0Þdt0

¼ � ICd

Z t

0

½rc þ vðt � t0Þ�d dt0

¼
ICd

vðd þ 1Þ
½rc þ vðt � t0Þ�dþ1

��t
0

¼ �
ICd

vðd þ 1Þ
½ðrc þ vtÞdþ1

� rdþ1
c �: ðA:3Þ

In our case, as in many applications, the critical radius is
much smaller than the typical cluster separation (which
equals to the average diameter of the cluster when they
begin to coalesce) and can be neglected. Then, for rc ¼

0; the volume fraction of the meta-stable phase
becomes

jðtÞ ¼ PnotðtÞ ¼ exp �
ICdvd

d þ 1
tdþ1

� �
; (A.4)

which is the general form of Avrami’s law.
For our application, d ¼ 2: The meta-stable phase

corresponds to the competitively inferior, resident
species with a small density of open sites in the
background. The introduced species advances through
nucleation (successful introduction) and subsequent
cluster growth. Thus, for the decay of the resident we
find

rrðtÞ ¼ rmsjðtÞ ¼ rms exp �
IC2v

2

3
t3

� �
; (A.5)

where rms is the meta-stable density of the resident.
Recall that we define the meta-stable lifetime hti as the
time until the residents’ density decays to one half of its
meta-stable value rms; i.e., rrðhtiÞ ¼ rms=2: Then from
Eq. (A.5) we obtain

hti ¼
3 lnð2Þ

IC2v2

� 1=3
; (A.6)

which explicitly shows the dependence of the lifetime on
the nucleation rate per unit volume I and the radial
growth velocity of the invading clusters v: Using this
expression for the lifetime, we can write Eq. (A.5) in the
form of Eq. (4) of the text

rrðtÞ ¼ rms exp � lnð2Þ
t

hti

� �3
" #

: (A.7)

From the above derivation, Avrami’s law, Eq. (A.7), is
generic when the switching mechanism is governed by
homogeneous nucleation. Parameters of the ecological
dynamics (aj ; b; m and d) govern the meta-stable lifetime
through their impact on the nucleation rate per unit
volume I and the radial growth velocity v [Eq. (A.6)],
leaving the functional form of the time-dependent
density unchanged in Eq. (A.7).
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Rejmánek, M., Williamson, M. (Eds.), 1989, Biological Invasions,

A Global Perspective. Wiley, New York.

Duiker, H.M., Beale, P.D., 1990. Grain-size effects in ferroelectric

switching. Phys. Rev. B 41, 490–495.

Durrett, R., Levin, S., 1994a. The importance of being discrete (and

spatial). Theor. Popul. Biol. 46, 363–394.

Durrett, R., Levin, S., 1994b. Stochastic spatial models: a user’s guide

to ecological applications. Phil. Trans. R. Soc. London, Ser. B 343,

329–350.

Duryea, M., Caraco, T., Gardner, G., Maniatty, W., Szymanski, B.K.,

1999. Population dispersion and equilibrium infection frequency in

a spatial epidemic. Physica D 132, 511–519.

Ellner, S.P., Sasaki, A., Haraguchi, Y., Matsuda, H., 1998. Speed of

invasion in lattice population models: pair-edge approximation. J.

Math. Biol. 36, 469–484.

Ferriere, R., Gatto, M., 1995. Lyapunov exponents and the mathe-

matics of invasion in oscillatory or chaotic populations. Theor.

Popul. Biol. 48, 126–171.

Filipe, J.A.N., Maule, M.M., 2003. Analytical methods for predicting

the behaviour of population models with general spatial interac-

tions. Math. Biosci. 183, 15–35.

Franks, S.J., 2003. Facilitation in multiple life-history stages: evidence

for nucleated succession in coastal dunes. Plant Ecol. 168, 1–11.

Gandhi, A., Levin, S., Orszag, S., 1998. ‘‘Critical slowing down’’ in

time-to-extinction: an example of critical phenomena in ecology. J.

Theor. Biol. 192, 363–376.

Gandhi, A., Levin, S., Orszag, S., 1999. Nucleation and relaxation

from meta-stability in spatial ecological models. J. Theor. Biol. 200,

121–146.

Giraldeau, L.-A., Caraco, T., 2000. Social Foraging Theory. Princeton

University Press, Princeton, NJ.

Harada, Y., Iwasa, Y., 1994. Lattice population dynamics for plants

with dispersing seeds and vegetative propagation. Res. Popul. Ecol.

36, 237–249.

Hengeveld, R., 1989. Dynamics of Biological Invasions. Chapman &

Hall, London.

Herrick, J., Jun, S., Bechhoefer, J., Bensimon, A., 2002. Kinetic model

of DNA replication in eukaryotic organisms. J. Mol. Biol. 320,

741–750.

Higgins, S.L., Richardson, D.M., Cowling, R., 1996. Modeling

invasive plant spread: the role of plant-environment interactions

and model structure. Ecology 77, 2043–2054.

Hurtt, G.C., Pacala, S.W., 1995. The consequences of recruitment

limitation: reconciling chance, history and competitive differences

between plants. J. Theor. Biol. 176, 1–12.

Inghe, O., 1989. Genet and ramet survivorship under different

mortality regimes—a cellular automaton model. J. Theor. Biol.

138, 257–270.

Ishibashi, Y., Takagi, Y., 1971. Note on ferroelectric domain

switching. J. Phys. Soc. Jpn. 31, 506–510.

Iwasa, Y., 2000. Lattice models and pair approximation in ecology. In:

Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of

Ecological Interactions. Cambridge University Press, Cambridge,

pp. 227–251.

Iwasa, Y., Nakamuru, M., Levin, S.A., 1998. Allelopathy of bacteria

in a lattice population: competition between colicin-sensitive and

colicin-producing strains. Evol. Ecol. 12, 785–802.

Johnson, W.A., Mehl, R.F., 1939. Reaction kinetics in processes of

nucleation and growth. Trans. Am. Inst. Miner. Metallur. Eng.

135, 416–442.

Kolar, C.S., Lodge, D.M., 2002. Ecological predictions and risk

assessment for alien fishes in North America. Science 298,

1233–1236.

Kolmogorov, A.N., 1937. A statistical theory for the recrystallization

of metals. Bull. Acad. Sci. USSR, Phys. Ser. 1, 355–359.
Korniss, G., Novotny, M.A., Rikvold, P.A., 1999. Parallelization of a

dynamic Monte Carlo algorithm: a partially rejection-free con-

servative approach. J. Comput. Phys. 153, 488–494.

Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A., 2001.

Dynamic phase transition, universality, and finite-size scaling in

the two dimensional kinetic Ising model in an oscillating field.

Phys. Rev. E, 63, 016120.

Kot, M., Lewis, M.A., van den Driessche, P., 1996. Dispersal

data and the spread of invading organisms. Ecology 77,

2027–2042.

Lehman, C.L., Tilman, D., 1997. Competition in spatial habitats. In:

Tilman, D., Kareiva, P. (Eds.), Spatial Ecology: The Role of Space

in Population Dynamics and Interspecific Interactions. Princeton

University Press, Princeton, pp. 185–203.

Lewis, M.A., Pacala, S.W., 2000. Modeling and analysis of stochastic

invasion processes. J. Math. Biol. 41, 387–429.

Lonsdale, W.M., 1999. Global patterns of plant invasions and the

concept of invasibility. Ecology 80, 1522–1536.

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M.,

Bazzaz, F., 2000. Biotic invasions: causes, epidemiology, global

consequences and control. Issues Ecol. 5, 2–20.

Matsuda, H.N., Ogita, A., Sasaki, A., Sato, K., 1992. Statistical

mechanics of population: the lattice Lotka–Volterra model. Prog.

Theor. Phys. 88, 1035–1049.

McCauley, E., Wilson, W.G., De Roos, A.M., 1993. Dynamics of age-

structured and spatially structured predator–prey interactions:

individual-based models, and population-level formulations. Am.

Nat. 142, 412–442.

Moody, M.E., Mack, R.N., 1988. Controlling the spread of plant

invasions: the importance of nascent foci. J. Appl. Ecol. 25,

1009–10021.

Neuhauser, C., Pacala, S.W., 2000. An explicitly spatial version of the

Lotka-Volterra model with interspecific competition. Ann. Appl.

Prob. 9, 1226–1259.

Pimentel, D., Lach, L., Zuniga, R., Morrison, D., 2000. Environ-

mental and economic costs of nonindigenous species in the United

States. Biosci 50, 53–65.

Pimm, S.L., 1987. The snake that ate Guam. Trends Ecol. Evol. 2,

293–295.

Ramos, R.A., Rikvold, P.A., Novotny, M.A., 1999. Test of the

Kolmogorov–Johnson–Mehl–Avrami picture of meta-stable

decay in a model with microscopic dynamics. Phys. Rev. B 59,

9053–9069.

Rand, D.A., 1999. Correlation equations and pair approximations for

spatial ecologies. In: McGlade, J.M. (Ed.), Advanced Theoretical

Ecology: Principles and Applications. Blackwell, Oxford.

Rees, M., Grubb, P.J., Kelly, D.K., 1996. Quantifying the impact of

competition and spatial heterogeneity on the structure and

dynamics of a four-species guild of winter annuals. Am. Nat.

147, 1–32.

Richards, H.L., Sides, S.W., Novotny, M.A., Rikvold, P.A., 1995.

Magnetization switching in nanoscale ferromagnetic grains:

description by a kinetic Ising model. J. Magnet. Mater. 150, 37–50.

Rikvold, P.A., Tomita, H., Miyashita, S., Sides, S.W., 1994.

Metastable lifetimes in a kinetic Ising model: dependence on field

and system size. Phys. Rev. E 49, 5080–5090.

Robinson, G.R., Handel, S.N., 2000. Directing spatial patterns of

recruitment during an experimental urban woodland reclamation.

Ecol. Appl. 10, 174–188.

Rosenzweig, M.L., 2001. The four questions: what does the introduc-

tion of exotic species do to diversity? Evol. Ecol. Res. 3, 361–367.

Sax, D.F., Brown, J.H., 2000. The paradox of invasion. Global Ecol.

Biogeo. 9, 361–371.

Simberloff, D., 2000. Foreword. In: Elton, C.S. (Ed.), The Ecology of

Invasions by Animals and Plants. University of Chicago Press,

Chicago, pp. vii–xiv.



ARTICLE IN PRESS
G. Korniss, T. Caraco / Journal of Theoretical Biology 233 (2005) 137–150150
Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and

Practice. Oxford University Press, Oxford.

Tilman, D., Lehman, C.L., Kareiva, P., 1997. Population dynamics in

spatial habitats. In: Tilman, D., Kareiva, P. (Eds.), Spatial

Ecology: The Role of Space in Population Dynamics and

Interspecific Interactions. Princeton University Press, Princeton,

pp. 3–20.

Usher, M.B., Kruger, F.J., Macdonald, A.W., Loope, L.L., Brockie,

R.E., 1988. The ecology of biological invasions into nature

reserves: an introduction. Biol. Conserv. 44, 1–8.
van Baalen, M., Rand, D.A., 1998. The unit of selection in viscous

populations and the evolution of altruism. J. Theor. Biol. 193,

631–648.

Veltman, C.J., Nee, S., Crawley, M.J., 1996. Correlates of introduction

success in exotic New Zealand birds. Am. Nat. 147, 542–557.

Wilson, W., 1998. Resolving discrepancies between deterministic

population models and individual-based simulations. Am. Nat.

151, 116–134.

Yarranton, G.A., Morrison, R.G., 1974. Spatial dynamics of a

primary succession: nucleation. J. Ecol. 62, 417–428.


	Spatial dynamics of invasion: the geometry of introduced species
	Introduction
	Spatial model for invader-resident competition
	Mean-field approximation
	Simulation results
	Nucleation theory
	Single-cluster invasion
	Multi-cluster invasion


	Discussion
	Local dynamics
	Nucleation theory in biology

	Acknowledgements
	Appendix. KJMA theory for homogeneous nucleation
	References


