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ABSTRACT

Question: We envision a lytic virus invading a novel-host population, when rarity of
productive infections suggests a role for demographic stochasticity. We ask how functionally
constrained viral trait combinations that reduce the chance of extinction (promoting invasion)
might differ from traits increasing the expected growth rate of the viral population.

Mathematical methods: To focus on random variation in viral reproduction (burst size), we
develop a branching process and derive the probability generating function for the number of
new infections per infection. The generating function permits comparison of the extinction
probability and mean growth rate for any viral life history. Then we turn to random variation in
viral generation length, which sums time spent as a free virion with time reproducing within a
host. We simulate this process to compare extinction frequency and mean growth rate for
different combinations of viral traits.

Key assumptions: We assume infections are rare as invasion of the novel host begins, and
neglect density dependence. We emphasize pleiotropic constraints, functional dependencies
between viral traits governing quantity and quality of viral reproduction, and survival of free
virions.

Conclusions: When pleiotropic interaction affects the burst-size distribution, with generation
time fixed, extinction-resistant phenotypes increase offspring quantity, at the expense of either
increased error during replication or reduced survival outside of a host, compared with growth-
rate maximizing phenotypes. When pleiotropic interaction affects the random waiting time
until lysis, extinction-resistant phenotypes delay lysis to gain either increased survival outside
of hosts or larger bursts, at the expense of slower reproduction within hosts, compared with
growth-rate maximizing phenotypes.

Keywords: burst-size variance, host-range expansion, lysis-time variation, viral extinction.

INTRODUCTION

Variation in reproductive success among generations, due to environmental stochasticity,
can impact life-history evolution in large populations (Schaffer, 1974; Orzack, 1993). But random
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variation in reproductive success within a generation, due to demographic stochasticity, can
govern the difference between extinction and persistence of small populations (Gillespie, 1974;

Haccou and Iwasa, 1996; Fox and Kendall, 2002). Extinction probabilities, in turn, may selectively
pressure life-history traits of individuals in small populations (Eshel, 1981; Fox, 1993; Shpak and

Proulx, 2007). We model bacteriophage invading a novel-host population from this perspective,
and analyse how stochasticity in the number of infections per infection affects phage
extinction. Life-history traits are often functionally constrained (Turner and Elena, 2000; Heineman

and Brown, 2012; Handel et al., 2014), and so we show how antagonistic pleiotropy can discriminate
extinction-resistant trait combinations from those maximizing expected growth rate.

Bacteriophage, commonly used in experimental biology (Bohannan and Lenski, 2000), may be the
most abundant organisms (Abedon, 2008; Weitz and Dushoff, 2008). But the artificially high phage
densities of the laboratory do not address invasion of natural host populations (Farrah, 1987;

Heineman et al., 2005; Buckling et al., 2009), and local extinction of phage populations may occur
commonly in nature (Campbell, 1961; Dennehy et al., 2007; Smith and Trevino, 2009). In particular, host-
range expansion may be limited by production of only a small number of free virions per
infection when the virus first invades a novel host (Crill et al., 2000; Kannoly, 2015); even under
laboratory conditions, a few bacteriophage have a mean burst size less than 10 (Moebus, 1987;

Wang, 2006).
We explore plausible assumptions about a lytic virus’ invasion of a novel host and

traits that reduce extinction probability (Slobodkin and Rapoport, 1974; Handel and Bennett, 2008). After
we summarize the phage life cycle, we introduce a time-homogeneous branching
process modelling phage growth. We derive the probability generating function for the
number of infections per infection. With the generating function we calculate both
the probability of ultimate extinction and expected growth for a given trait combination.
Then we ask how functional trade-offs affect extinction versus mean growth. Following
our analytical treatment, we present results of simulations where both burst size and
lysis time vary randomly, and phage traits interact. We find that extinction-resistant
viral phenotypes can differ substantially from those maximizing expected growth under
reasonable hypotheses concerning pleiotropic traits, but find no difference in the absence of
pleiotropy.

The infection cycle

Initially, a free virion attaches to a receptor on the surface of a host cell. Infection of the
host bacterium follows, initiating the eclipse period. During eclipse, the phage genome is
ejected from the virion into the host cell, and sequesters the host’s biosynthetic capacity
(García and Molineux, 1995). Maturation begins at the end of the eclipse period. Viral
replication occurs during maturation; virions accumulate within the host-cell volume. Lysis
occurs at the conclusion of maturation. Lysis ruptures the host cell’s outer membrane,
releasing free virions. Burst size is the number of virions released.

Some free virions decay physically in the extracellular environment (De Paepe and Taddei, 2006;

Heineman and Brown, 2012). Others adsorb to either cellular debris or previously infected hosts
(Aviram and Rabinovitch, 2008; Keen, 2014). To contribute to the next generation of infections, a virion
must encounter a susceptible host, infect, replicate within the host, and then induce lysis.
Any of these processes may impede a phage ‘jumping’ to a novel host, but ultimately the
distribution of infections per infection will govern the probabilities of successful versus
failed invasion (Crill et al., 2000; Dennehy et al., 2006).
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RANDOM BURST SIZE

In this section, we let burst size vary randomly among infected hosts. Nutrient-driven
metabolic rates differ among host cells, and phage replication varies in response to host
physiology (Abedon et al., 2001; Bull et al., 2004); intracellular processes are intrinsically noisy. We
take successive generations of infected hosts as a branching process; Table 1 lists model
symbols. The virus persists as long as the number of infected hosts remains positive; zero
infections is a trapping state, implying that neither infected hosts nor free virions remain.
Let Xn represent the number of nth generation infected hosts (n = 0, 1, 2, . . . ). X0 is the
number of novel-host cells initially infected; virions released from the 0th generation pro-
duce the X1 infections of the first generation. The assumption of discrete generations is
tolerable; if the time scale of adsorption is fast relative to lysis time, discrete generations
model lytic viruses reasonably (Patwa and Wahl, 2008).

Each of the Xn infections independently releases a random number β of free virions at
lysis. Let Pr[β = b] = pb , where b = 0, 1, 2, . . . , and Σ∞

b == 0 pb = 1. The burst-size mean and
variance, both finite, are E[β] and V[β] respectively. The probability generating function for
the burst-size distribution is G�(z) = Σ

∞
b == 0 pb z

b, where | z | < 1 (Karlin, 1966).
During the free-living stage, each virion independently infects a susceptible host at con-

stant probabilistic rate αH. We let H represent host-cell density, a constant since infections
are rare at invasion, and α is the adsorption rate. Not all virions infect host cells. Some
diffuse out of the system, some attach to cellular debris, and some virions decay (Moebus, 1987;

Gallet et al., 2009). In the experimental absence of host cells, phage densities can decay between
three and five orders of magnitude within 2 days (Lindberg, 2013), although many viruses decay
more slowly (De Paepe and Taddei, 2006). Furthermore, multiple phage may attach to the same
host (Smith and Trevino, 2009), but co-infection, should it occur, apparently does not affect mean
burst size (Abedon, 1994). Each free-living virion independently is lost to one of these events at
combined probabilistic rate ξ. Each virion released from the nth generation of infections
either contributes to the (n + 1)st generation or is lost. Then the probability that a free virion
infects a susceptible host, adding to the next generation of infections, is θ = αH/(αH + ξ). A
given infection fails to generate new infections if viral reproduction fails, or if each virion
released at lysis fails to infect a susceptible host cell.

Infections per infection

F(z) designates the probability generating function for the number of infections in
generation (n + 1) per infection in the nth generation. Consider the ith infection among the Xn

independent infections of generation n. Lysis of the ith infected host releases a random
number of free virions βi; let βi = b. The number of next-generation infections arising
from this single infection has a binomial distribution with expectation θb, so that the con-
ditional generating function for the number of new infections is F(z | βi = b) = (1 − θ + θz)b.
Then the unconditional generating function for the number of infections per infection
is F(z) = Σ

∞
b == 0 pb F(z | βi = b) = Σ

∞
b == 0 pb (1 − θ + θz)b, where (1 − θ + θz) < 1. Recalling the

definition of G�(z), we have:

F(z) = G�(1 − θ + θz) = G� �αHz + ξ

αH + ξ �, (1)

the generating function of the burst-size distribution evaluated at (1 − θ + θz).
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F(z) permits calculation of several quantities essential to our analysis. First, the expected
number of infections per infection is R0 = (dF/dz)z = 1 = [αH/(αH + ξ)] E[β].

Second, we let σ
2 represent the variance of the number of new infections per

infection. Standard methods, involving derivatives of F(z) (Feller, 1957; Fox, 1993), yield, after
rearrangement:

σ
2 =

αHξ

(αH + ξ)2 E[β] + � αH

αH + ξ�
2

 V[β]. (2)

Note that variance in the number of infections per infection increases with both burst-size
variance and with variance in the adsorption success of free-living virions. R0 and σ2 are the
mean and variance for a single infection; the Appendix (evolutionary-ecology.com/data/
2953Appendix.pdf) lists corresponding population-level properties.

The probability that a single infection produces no infections is simply F(z = 0). Let ρ0

represent this probability. ρ0 ≥ p0 , since ρ0 = Σ
∞
b == 0 pb (1 − θ)b.

For our analysis, the most important quantity is the extinction probability π0. Consider
the probability that the viral population goes extinct (the branching process terminates)
at or before the nth generation. As n increases, π0 , formally, is the limiting probability of
extinction after finitely many generations (Feller, 1957). Let X0 = 1; we generalize below.
Assume that R0 > 1; otherwise extinction is certain. Then the extinction probability π0

satisfies (Karlin, 1966):

π0 = F(z = π0) = G�(1 − θ + θπ0). (3)

π0 is the smallest positive root of equation (3); 0 < π0 < 1, since R0 > 1. Feller (1957) termed π0

the chance of rapid extinction. Demographic stochasticity implies that extinction will more
likely occur soon after invasion, or following disturbance reducing the number of infections
to rarity (Alexander and Wahl, 2008; Allen and van den Driessche, 2013). If X0 > 1, then the probability
of ultimate extinction is (π0)

X0, since the various lineages are independent replicates of
the same process. Then 1 − (π0)

X0 is the probability that the virus successfully invades the
novel host.

Table 1. Symbols and definitions: branching process

Xn Number of nth generation infected host cells
β Burst size, a discrete random variable
pb Probability β = b; b = 0, 1, 2 . . . 
α Virion adsorption parameter
H Host cell density
ξ Free-virion loss parameter
R0 Infections per infection when virus invades susceptible host population
σ

2 Variance in number of infections per infection
π0 Probability of viral extinction
ρ0 Probability any particular infection produces no new infections
� Virion-assembly error frequency, a negative binomial parameter
ν Virion maturation rate, a negative binomial parameter
ν* Maturation rate maximizing R0

ν̃ Maturation rate minimizing π0
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GROWTH RATE vs. PERSISTENCE

Dennehy and Wang (2011) found that variability in the duration of lysis increased with its
mean among genotypes of a single phage. Wang (2006) reported a positive correlation
between lysis time and burst size. We can infer that burst-size variance should increase with
E[β]. Therefore, in this section we assume that burst-size counts follow a negative binomial
probability function with parameters ν and �; ν > 0 and 0 < � < 1 (see 2953Appendix.pdf).
The mean is E[β] = ν (1 − �)/�, and the burst-size variance is V[β] = ν(1 − �)/�2 = E[β]/�. We
associate ν with the pace of viral replication during the maturation period. As ν increases,
the mean burst size increases and the distribution shifts from positively skewed to nearly
symmetric about a single mode. We take (1 − �) as the probability that any given virion
assembles properly: the likelihood that the viral genome, protein capsid, and adsorption
structures are replicated and combined structurally with sufficient accuracy to infect a host
cell. In some RNA viruses, the percentage of assembled virions capable of infecting the next
host cell is as low as 10% (Hirst and Pons, 1973).

Given a negative binomial, the generating function for burst size is G�(z) = �
�/(1 − z + �z)�.

Then the generating function for the count of infections per infection becomes:

F(z) = G�(1 − θ + θz) = �
� �� + 

αH

αH + ξ
 [1 − �] [1 − z]�

−�

. (4)

The expected growth rate is R0 = ναH(1 − �)/[� (αH + ξ)]. The requirement R0 > 1 implies
that E[β] > θ

−1 > 1, so that π0 < 1. The variance in the number of infections per infection is:

σ
2 = ναH (1 − �)(αH + �ξ)/(�2[αH + ξ]2) = R0(αH + �ξ)/�(αH + ξ). (5)

Clearly, σ2/R0 > 1.
The probability of ultimate extinction π0 is given by equation (4) evaluated at z = π0 when

R0 > 1 and X0 = 1. We can write the probability that any particular infection produces
no new infections, ρ0 , directly from equation (4):

ρ0 = (� [αH + ξ]/[αH + �ξ])ν = (R0/σ2)ν. (6)

Independent traits

If viral traits are unencumbered by functional dependence, the basic reproduction number
R0 , the mean growth rate of the branching process, increases as either virion maturation ν
or the free-virion adsorption rate α increases. Just as clearly, R0 decreases as either the
assembly-error frequency � or the free-virion loss rate ξ increases. Without trait
dependence, any increase in R0 implies a decrease in the extinction probability π0. In the
special case where ν = 1, β has a geometric distribution, and π0 = R −1

0 < 1. This is Whittle’s
(1955) approximation (Allen and van den Driessche, 2013; Lahodny et al., 2014). Examination of equation (4)
shows that an increase in either � or ξ must increase the extinction probability π0. Further-
more, as either α or ν increases, π0 must decline (Fig. 1). For functionally independent traits,
greater expected growth always reduces the chance of extinction.

Under antagonistic pleiotropy, improving one viral trait imposes a cost on another
(Cooper and Lenski, 2000; Duffy et al., 2006; Handel and Bennett, 2008). Trade-offs clearly affect life-history
traits of coliform phage (De Paepe and Taddei, 2006). Genes overlap in many phage genomes, so
that a single mutation can affect more than one gene product (Atkins et al., 1979; Elena et al., 2009;
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Kazaks et al., 2011). Phage traits are often mediated structurally; consequently, capsid mass can
play a role in trade-offs between survival and reproduction (Caraco and Wang, 2008; Dessau et al., 2012).

Varying functionally dependent traits in our model can disentangle R0 and the extinction
probability π0; the phenotype maximizing R0 at invasion can differ, sometimes strongly,
from the type minimizing the chance of extinction. A number of models find that a
sufficiently large variance in reproductive success increases the chance of extinction despite
a large mean (Gillespie, 1974; Moreno et al., 2003; Shpak and Proulx, 2007; Lahodny et al., 2014). Our model’s
contribution lies in recognizing how particular trade-offs can generate dependence of
extinction (hence, the chance of host-jumping) on variance in reproductive success.

Faster developing, faster decaying virions

De Paepe and Taddei (2006) find that free-virion decay rate correlates strongly and positively
with the rate of virion assembly within host cells. That is, ∂ξ/∂ ν > 0 in our model. Phage
with less capsid mass assemble faster. Reducing the mass of the capsid results in virions less
able to withstand abiotic stress in the extracellular environment, and these virions decay
faster. This trade-off links within-host replication with between-host infection transmission
(Handel and Bennett, 2008; Heineman and Brown, 2012); ∂ξ/∂ν > 0 implies that increased intracellular
reproduction reduces extracellular survival (Goldhill and Turner, 2014).

Hypothesizing a maturation–decay trade-off, we let ξ(ν) = c1ν
z1, where c1 , z1 > 0. If z1 ≤ 1

(so that ξ is a concave function of ν), R0 always increases with an increase in ν. That is, if
free-virion decay increases sufficiently slowly with maturation rate, faster virion maturation
always increases R0. But suppose z1 > 1 (so that ξ is a convex function of ν); then R0 has
a maximum at ν* = (αH/[c1 (z1 − 1)])1/z1. If the decay rate increases sufficiently quickly with
maturation rate (z1 > 1), R0 declines when ν > ν*.

Figure 2 summarizes patterns generated when increased maturation implies greater
virion decay. Each panel shows effects of increasing z1 , incrementing the pleiotropic cost
of a greater maturation rate. For z1 = 1, R0 strictly increases, and π0 strictly decreases, as

Fig. 1. Ultimate extinction probability when burst size follows the negative binomial. Left:
π0 increases strictly monotonically as either � or ξ increases independently. ν = 5, αH = 5. Right:
π0 decreases strictly monotonically as either ν or αH increases independently. � = 0.1, ξ = 10.
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maturation rate ν increases. But when the cost function ξ(ν) is convex (z1 = 1.25), R0 declines
sufficiently slowly past its maximum that the simultaneous decline in σ2 combines to reduce
the extinction probability further. Under sufficiently strong antagonistic pleiotropy, the
extinction probability is minimal at a maturation rate beyond the value where R0 is
maximal. In our example (z1 = 1.5), the phenotype maximizing R0 has twice the extinction
probability of the type minimizing the chance of extinction (ν̃).

From Fig. 2 we see that when increasing mean burst size (E[β] ∼ ν) implies an accelerating
increase in the probability a virion fails to produce a new infection (1 − θ = ξ/[αH + ξ]); R0

is maximal when a smaller burst is combined with high virion survival. But the variance in
infection counts is sufficiently large that the chance of rapid extinction continues to decline
as mean burst size increases and, consequently, free-virion survival declines. Given that
R0(ν*) is a maximum, π0 may decline strictly monotonically as ν increases, or π0(ν̃) will be
a minimum, with ν̃ > ν*. Under strong pleiotropy, the chance of invading a novel host
increases for phenotypes with a larger mean burst size, but faster decaying virions, than
phenotypes maximizing mean growth. Equivalently, evading rapid extinction favours
offspring quantity at the cost of offspring quality (Keen, 2014).

Less infectious, more durable virions

Durability of free-living phage requires stabilization of the receptor-binding site and (some-
times) stabilization of side-tail fibres that anchor the virion to the host’s exterior. Increased
structural integrity of attachment proteins will diminish virion decay rate, but also could
reduce binding to host receptors (Caraco and Wang, 2008; Goldhill and Turner, 2014). In our model, this
trade-off implies ∂ξ/∂α > 0.

Proceeding as above, we let ξ(α) = c2α
z2, where c2 , z2 > 0. If z2 < 1, ξ is a concave,

increasing function of α, and R0 increases strictly monotonically with α. That is, if the decay

Fig. 2. Virion persistence declines as maturation rate increases: ∂ξ/∂ν > 0. Left: R0; centre: σ
2

(variance in infections/infection); right: π0 , the extinction probability (semi-log scaling). Each panel:
dotted line is z1 = 1; dashed line is z1 = 1.25; solid line is z1 = 1.5. For z1 = 1, π0 always declines, and
R0 always increases, as ν increases. For z1 = 1.25, R0 attains a maximum at ν*, but π0 declines across
reasonable expected burst sizes, E[β] ≤ 1000. For z1 = 1.5, R0 is maximal at ν*, and π0 is minimal at
ν̃ > ν*. αH = 5, � = 0.2; c1 = 0.5.
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rate increases sufficiently slowly relative to the increase in adsorption, the expected number
of infections per infection must increase with the adsorption rate. But if z2 > 1, R0 decreases,
strictly monotonically, as α increases. Hence, mean viral growth rate will increase (decrease)
with increasing adsorption rate when the virion decay rate increases as a concave (convex)
function of the adsorption parameter.

The extinction probability mirrors the simple relationship of ξ(α) to R0. Using equation
(1) and the hypothesized functional dependence, the extinction probability π0 must satisfy:

π0 = G� �π0 + [c2/H] αz2−1

1 + [c2/H] αz2−1 � . (7)

Any probability generating function increases strictly in its argument. z2 < 1 implies that
the extinction probability declines as α increases. If z2 = 1, π0 is independent of α, whereas
if z2 > 1, π0 increases with α. An increase in mean growth rate, despite any increase in the
variance of infections/infection, decreases the chance of extinction, independently of the
particular burst-size distribution. Figure 3 demonstrates this case for a negative binomial
burst-size distribution.

Receptor specificity of adsorption often sets host-range boundaries in bacteriophage
(Coetzee, 1987). Our model suggests that a trade-off between adsorption and virion decay does
not imply a difference between faster growing and more extinction-resistant phenotypes
during invasion of a novel host; pleiotropy affects only the ‘Bernoulli trial’ parameter θ. But
the model does suggest that a costly trade-off (z2 > 1) can render a lower adsorption rate
more resistant to extinction during host invasion.

Maturation rate–assembly error trade-off

Some viral genomes are encapsulated as a set of discrete nucleic acid segments (Mindich, 1999;

Sun et al., 2010). Producing an infectious virion requires packaging a minimal number of

Fig. 3. Virion persistence declines as adsorption increases: ∂ξ/∂α > 0. Left: R0; centre: σ2 (variance
in infections/infection); right: π0 , the extinction probability (semi-log scale). Each panel: dotted line
is z2 = 0.5; dashed line is z2 = 1; solid line is z2 = 1.5. Any increase in R0 implies a decrease in
the probability of extinction. Linear trade-off, z2 = 1, renders R0 , σ2, and π0 independent of α. ν = 1,
H = 1, � = 0.2; c2 = 2.5.
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different segments to complete the genome (Odagiri and Tashiro, 1997). One model of the process,
informed by the biology of influenza A virus, assumes that RNA segments are selected
randomly for packaging (Hirst and Pons, 1973). Reliability of virion assembly (i.e. the proportion
capable of infection) can be incremented by packaging ‘extra’ nucleic acid segments,
increasing the likelihood that the minimal number of different segments is included (Scholtissek

et al., 1978; Lamb and Choppin, 1983). Hence the probability of virion assembly error declines as
genome size increases.

Most double-stranded DNA bacteriophage package genetic material as a single unit
(Fujisawa and Morita, 1997). They replicate the genome as a concatemer, linearly iterated copies
of the full genome. A molecular motor then propels genetic material into an empty capsid;
the length inserted is regulated by a ‘headful’ mechanism (Tétart et al., 2001). A terminase
cuts the DNA, and the concatemer is then available to the next virion assembled.
Interestingly, the headful mechanism ensures that the terminase cuts the DNA at a length
exceeding the size of a single genome (Sun et al., 2010). Each virion then carries multiple
copies of some gene(s). Different virions released at the same lysis carry different duplicated
genes, but most virions will have a complete copy of the genome. Again, the chance
of an error during virion assembly declines through an increase in the packaged genome
size.

These observations indicate that larger genomes may increase functional reliability. In
coliform phage, genome size correlates positively with capsid mass (and surface area)
(De Paepe and Taddei, 2006), and larger virion mass reduces the assembly rate during maturation.
Consequently, larger, more reliable virions develop more slowly, implying a constraint such
that ∂�/∂ν > 0. Effectively, virion quality declines as burst size increases.

Hypothesizing that accelerated replication increases the chance of virion error, we let
�(ν) = c3ν

z3, where c3 , z3 > 0, and 0 < �(ν) < 1. If z3 > 1, ∂R0/∂ν < 0. That is, if the error
probability � increases convexly, any increase in ν reduces R0. But if 0 < z3 < 1, a concave
trade-off, R0 can have a maximum at ν* = [(1 − z3)/c3]

1/z3.
Figure 4 plots consequences of the maturation rate–assembly error trade-off. Each panel

shows the effects of increasing the pleiotropic cost. For 0 < z3 < 1, R0 attains a maximum
at ν*. However, infection-number variance declines monotonically in ν, and consequently
the extinction probability π0 declines monotonically as the maturation rate increases.
Again, the phenotype with maximal mean growth rate does not minimize the chance of
extinction.

For (z3 ≥ 1), the functional dependence produces a strong mean–variance interaction. As
pointed out above, R0 declines as the maturation rate increases. But σ2 declines much more
quickly. Consequently, π0 attains a minimum at an intermediate maturation rate ν̃.

The convex trade-off indicates that minimizing extinction offsets errors by increasing
mean burst size, and extinction-resistant phenotypes can have trait combinations differing
substantially from traits maximizing mean growth rate. Again, increasing offspring
quantity, at the expense of offspring quality (Keen, 2014), reduces the extinction probability
and so increases the chance of successful invasion of a novel host.

RANDOM LYSIS TIME

The branching process suppressed variation in the time elapsing between infections, to
allow us focus on variation in infections per infection. Here, we model an infection cycle
where both lysis time and adsorption time vary randomly.
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Time advances discretely. Each time t we count the number of free virions P(t) and the
number of infected host cells I(t). Independently of P(t) and I(t), an infected cell may
undergo lysis or die prior to lysis during each ∆t. Otherwise, the cell remains an infected
host. The probability of lysis during ∆t is ν̂, the host-mortality probability is µ̂, and the
probability of no change is 1 − ν̂ − µ̂ (the caret identifies simulation-model parameters;
see Table 2). An infected host’s longevity has mean duration (ν̂ + µ̂)−1, and the probability
that an infection leads to viral reproduction is ν̂/(ν̂ + µ̂). Host mortality reduces I(t) by one,
and does not directly affect P(t). When lysis occurs, I(t) decreases by one, and β free virions
are released.

Next, consider a free virion at time ∆t. Independently of both P(t) and I(t), the virion
may infect a host cell, may decay, or neither may occur during ∆t. The probability of a new
infection is α̂; infection decreases P(t), and increases I(t), by one. The probability the virion
decays during ∆t is ξ̂ ; decay decreases P(t) by one. The probability of no change is 1 − α̂ − ξ̂.
The expected time over which a virion remains free is (α̂ + ξ̂ )−1, and the probability that a
free virion ever infects a new host is α̂/(α̂ + ξ̂).

Fig. 4. Virion error increases as maturation increases: ∂�/∂ν > 0. Left: R0; centre: σ
2 (variance in

infections/infection); right: π0 , the extinction probability (semi-log scale). Each panel: dotted line is
z3 = 0.75, ν* = 29; dashed line is z3 = 1; solid line is z3 = 1.25. For the latter two values of z3 , extinction
probability declines, despite a decrease in R0 , until ν = ν̃. αH = 5, ξ = 1.75; c3 = 0.02.

Table 2. Symbols and definitions: simulation model

P(t) Free virions at time t
I(t) Infected hosts at time t
ν̂ Probability of lysis
µ̂ Probability infected host dies; prevents lysis
α̂ Probability free virion infects host
ξ̂ Probability free virion decays
βmax Maximal burst size
λ Finite rate of increase when extinction averted
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Since the virus is rare during invasion, we assume host density to be constant and treat it
implicitly. The dynamics of the conditional expectations becomes:

E[(P(t + ∆t) | Pt ,It)] = (1 − α̂ − ξ̂)Pt + E[β]ν̂It , (8)

E[(I(t + ∆t) | Pt ,It)] = αPt + (1 − ν̂ − µ̂)It , (9)

for P(t), I(t) ≥ 0. The process will either exhibit rapid extinction or will grow very large if
extinction is averted.

This section treats burst size β as a discrete random variable independent of lysis
and adsorption times; we consider the negative binomial, discrete uniform, and a discrete
normal distribution. We also take β as a constant, to isolate effects of random duration in
the infection cycle. Finally, we let burst size increase with the expected duration of the lysis
period (Wang, 2006). We assume that all virions released at lysis can productively infect a
susceptible host.

Simulated host-jumping

We initialized the infection dynamics at [P(0) = 0, I(0) = 1], a single infection and no free
virions. A simulation ended when the first terminating event occurred: viral extinction
[P(t) = I(t) = 0], or the virus remained extant for 25 time units. For each parameter com-
bination, we estimated π0 by the frequency of extinction among 500 simulations. When the
virus escaped extinction through t = 25 (i.e. conditional on persistence), we took the realized
finite rate of increase as λ = [I(25)/I(0)]1/25.

Note that neglecting demographic stochasticity yields a stage-structured model. The
asymptotic growth rate AG is the leading eigenvalue of the matrix of stage-structured
transitions:

AG = 1 − 1–
2(α̂ + µ̂ + ν̂ + ξ̂ ) + X, (10)

where

X = 1–
2[([α̂ + ξ̂ ] − [ν̂ + µ̂])2 + 4α̂ν̂B]1/2 (11)

and B = E[β].
We report two simulation series. The first series assumed that more persistent virions

require lengthier maturation. Hence a greater lysis probability ν̂ implied an increased decay
probability ξ̂. We let ξ̂(ν̂) = c4ν̂

2, choosing c4 so that 0 < ξ̂(ν̂) + α̂ < 1. In simulations assuming
independent traits (i.e. ξ̂ did not depend functionally on ν̂), we found that any increase in the
realized growth rate λ implies a decrease in extinction probability π0. As in the branching
process, pleiotropic interaction is required for differences between faster-growing and
extinction-resistant trait combinations.

The second simulation series addressed dependence of burst size on lysis time. A longer
lysis period can allow more virions to mature  (Wang et al., 1996; Heineman and Bull, 2007). Extending
the expected duration of an infection might change the expected growth rate, but it
necessarily will increase the chance that an infected host dies before lysis, resulting in failed
(or inordinately delayed) viral reproduction. To implement these assumptions, we let
β = βmax(1 − ν̂), so that ∂β/∂ ν̂ < 0; faster lysis limits burst size, but increases the chance of
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successful reproduction (µ̂ is fixed). Under these simple assumptions, the expected number
of infections per infection is:

R̂0 = βmax α̂ν̂ (1 − ν̂)/(ν̂ + µ̂) (α̂ + ξ̂ ).

R̂0 has a maximum when ν̂* = √µ̂2 + µ̂ − µ̂, provided that 0 < ν̂* + µ̂ ≤ 1. Note that R̂0

is an infection number, not a rate; the model’s mean growth rate is given by equation (10).

Virion survival trade-off

Figure 5 shows simulation results when faster lysis accelerated the decay of free virions.
These results, whether burst size was fixed or followed any of three discrete probability
distributions, reveal that more extinction-resistant trait combinations have greater per-
sistence (lower ξ̂), hence longer lysis times, than do phenotypes maximizing average growth
conditional on survival. These examples are typical for the extensive simulation series.
Longer lysis time reduces model growth rate but increases the fraction of free virions that
successfully infect a host; the consequence is reduced extinction frequency, compared
with growth-rate maximization. In these results, the most extinction-resistant invaders have
relatively low realized growth rates. Furthermore, maximizing the growth rate of the
model’s deterministic approximation (equation 10) implies near-certain extinction in these
examples, hence almost certain failure invading the novel host.

Fig. 5. Pleiotropy and virion decay probability ξ̂. ∂ ξ̂/∂ ν̂ > 0; ξ̂(ν̂) = 1.5 ν̂
2, α̂ = 0.65, and µ̂ = 0.15.

Top left: burst size follows negative binomial with mean = 7, variance = 14. Top right: burst size
follows discrete normal with mean = 8.5, variance = 16. Lower left: burst size follows uniform with
mean = 8.5. Lower right: fixed burst size = 10. In each plot, o is π0 < 1, + is λ > 1, and the broken line is
the asymptotic growth rate, equation (10).
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Lysis probability and burst size

Figure 6 shows results when burst size increases with mean lysis time. Equivalently, a larger
lysis probability implies a greater chance of successful reproduction, but a smaller burst.
Reduced extinction probabilities are associated, although only weakly, with lower lysis
probabilities, hence with longer lysis times and larger burst sizes. We did not observe the
opposite result in simulation.

Summary of results

The branching process treated demographic stochasticity as random variation in the
number of infections per infection. The model assumed that varying functionally dependent
viral traits altered both the mean and variance of infection number. When virion decay
increased with maturation rate, and when virion reliability declined with maturation rate,
the biological results were similar. Compared with phenotypes with maximal expected
infection number, extinction-resistant phenotypes had lower mean infection number, but
also had a lower variance in the number of infections per infection. The ‘mechanism’
yielding extinction resistance was production of more virions of lower quality, i.e. π0

Fig. 6. Burst size increases with lysis time. β = 12 (1 − ν̂). Each plot: ξ̂ = 0.25; in each plot, o is π0 < 1,
+ is λ > 1. When α̂ < ξ̂ (left column), virion decay exceeds successful infection; when α̂ > ξ̂ (right
column), the majority of free virions infect a host; extinction probabilities are lower, and realized
growth rates are higher. Upper row, µ̂ = 0.5; lower row, µ̂ = 0.1.
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declined as burst size grew, and as the mean and variance of infection number declined.
Good invaders avoid too great a variance in infections produced, though not necessarily
variance in burst size per se (Smallwood, 1996; Caraco, 1998; Rubenstein, 2011). However, when virion
decay increased as a power function of adsorption probability, any trait variation that
increased the mean infection number simultaneously decreased the extinction probability.

The first simulation series focused on demographic stochasticity in the duration of the
infection cycle, hence generation length. The functional dependence linked the time elapsing
between infection and lysis (via lysis probability) to the virion decay probability (which
affects the probability of adsorption before decay). Compared with phenotypes with
larger mean growth rates, given that they invade the novel host, extinction-resistant trait
combinations produced virions with greater survival in the extra-host environment, at a cost
of a longer time between infections (lower lysis probability).

Our final simulations assumed that burst size increased as lysis probability decreased,
which, in turn, decreased the probability of successful reproduction. Again, extinction-
resistance appears to favour slower lysis and greater burst size than found in trait
combinations with larger mean growth rates.

DISCUSSION

Several recent epidemics in human populations have been preceded by viral host-range
expansion (Crill et al., 2000; Woolhouse et al., 2005). Ordinarily, viral host-jumping begins with a
period where the virus must overcome ecological challenges of niche expansion: slow
adsorption to, and low reproduction within, the novel host (Dennehy et al., 2006). Furthermore,
host-range expansion will ordinarily begin with only a few infections, particularly if only a
rare mutant can successfully infect the novel host. Therefore, we focus on extinction versus
persistence when encountering a new host. Once the virus has invaded the novel host
ecologically, genetic adaptation may improve its performance.

Each of our analyses makes different assumptions, to ask different questions. We see that
when functional dependence involves burst size, extinction declines as burst size increases,
despite a reduction in virion survival (branching process) or in the chance a host survives
until lysis (second simulation set). Furthermore, we see that when functional dependence
involves the length of the lysis period, extinction-resistant phenotypes, compared with types
with larger growth rates, extend the expected time to lysis, to increase survival of free virions
(first simulation set) or to increase reproduction given survival (second simulation set).

Our models differ from recent applications of branching processes to experimental
evolution of phage (Hubbarde et al., 2007; Alexander and Wahl, 2008); we emphasize that functional
constraints on viral life-history traits are common and important. Rather than equating
successful host-jumping with rapid proliferation, we invoke an idea in Slobodkin and
Rapoport (1974). Persisting through rarity when a novel host is first infected will usually
precede an increase in abundance, and our examples suggest that extinction-resistance when
rare may sometimes require (or favour) traits distinct from those maximizing average
growth. Pleiotropic effects between phage traits may be exaggerated during an increase in
niche breadth (Duffy et al., 2006). Keen (2014) hypothesizes that increased host range slows virion
development, reducing burst size.

Empirical evidence clearly indicates that trade-offs do, in some cases, constrain trait
combinations of lytic-virus life histories (Turner and Elena, 2000). Note, however, that pleiotropy
in phage may be negative or positive (Evans et al., 2010). Interestingly, McGee et al. (2014),
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working with laboratory phage, selected for rapid growth within hosts. They found that
increased growth reduced virion stability in the extracellular environment, the sort of trade-
off we assume. Separately, the authors alternated selection for faster within-host growth and
capsid stability in a harsh extracellular environment. Each trait improved; no trade-off was
detected.
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