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ABSTRACT

Question: When localized dispersal spatially aggregates an introduced species, so that an
introduction’s success or failure corresponds to growth or decay of invader clusters respectively,
how does the probability of cluster expansion vary with propagation rates of locally interacting
invaders and residents, with their mortality rates, and with dispersal distance?

Mathematical method: We apply the physical theory for nucleation in homogeneous spatial
systems to invader–resident competition, and focus on an invader cluster’s critical radius. At
the critical radius, growth and decay of an invader cluster have equal probability. Using this
definition, analytically and computationally, we explore the effects of individual-level vital rates
on the probability of invader-cluster growth.

Key assumptions: The two species compete preemptively for space. Invader and resident have
the same mortality rate, but the invader has the greater rate of local propagation. Invader
clusters are (on average) circular, and advance or decline of the invader occurs at the cluster’s
perimeter.

Conclusions: The probability that an invader cluster grows, so that introduction succeeds,
increases with an error function of the logarithm of the cluster’s radius. Variation in
lattice-neighbourhood size has little effect on cluster-growth probability in simulation. For
small differences in propagation rates, increasing the common mortality rate increases the
invader’s critical radius, but may also increase the probability that large clusters invade
the resident. That is, increased mortality hampers small invader clusters through chance
extinction, but provides more opportunities for growth at the periphery of large clusters.
The (approximate) critical radius of invader clusters scales as a power law of the difference
in the two species’ propagation rates.

Keywords: cluster growth, invasive species, nucleation theory, spatial competition.

INTRODUCTION

Invasion analyses address the dynamics of rarity, and so integrate concepts common to
ecology, evolution, and epidemiology (Ferriere and Gatto, 1995; Caraco et al., 1998; Shea and Chesson, 2002;
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White et al., 2006). The study of ecological invasion has additional, practical significance;
the breakdown of biogeographic barriers (Rosenzweig, 2001) has accelerated introductions
of exotics, including species that endanger agriculture or native biodiversity (Pimm, 1987;

Andow et al., 1990; Pimentel et al., 2000; Butin et al., 2005).
Ecological invasion analyses identify conditions promoting growth of a rare, introduced

species. The majority of exotic-species introductions apparently fail to generate invasive
growth (Lonsdale, 1999; Simberloff, 2000; Cassey, 2003). Indeed, a series of failed introductions often
precedes a species’ successful introduction and subsequent advance (Veltman et al., 1996; Sax and

Brown, 2000). Lacking further detail, we take the outcome of any given introduction as
uncertain (O’Malley et al., 2005). Our study addresses one basis for this uncertainty. We model
spatially detailed competition between an invader and a resident. The invader has the
greater rate of local propagation, and hence has a per-individual advantage in competition
for space. Propagation generates clustered growth, and we define an invader cluster’s critical
radius as follows. At the critical radius, growth and decay of the invader cluster are equally
probable (Gandhi et al., 1999; Korniss and Caraco, 2005; O’Malley et al., 2005, 2006a). The critical-radius
concept frames an understanding of the way variation in local demographic rates can
govern the likelihood a given cluster increases in size or declines to extinction.

SPATIAL COMPETITION AND CLUSTERED INVADERS

Biological invasions ordinarily exhibit spatial organization (Ellner et al., 1998; Neubert et al., 2000;

Zadoks, 2000; Travis et al., 2005). We observe spatially structured dynamics from highly localized
(Frantzen and van den Bosch, 2000) to geographic scales (van den Bosch et al., 1992; Butin et al., 2005). Most
theoretical analyses of spatial invasion restrict attention to successful introduction,
emphasizing the asymptotic velocity of invasive advance (Dwyer and Elkinton, 1995; Kot et al., 1996;

Caraco et al., 2002; O’Malley et al., 2006b, in press). However, Lewis and Kareiva (1993) call attention
to the fundamental ecological importance of the initial phase of spatial invasion, where
introduction succeeds or fails (van Baalen and Rand, 1998; Lewis and Pacala, 2000; Thomson and Ellner, 2003).
Given spatially aggregated growth, the introduction’s success or failure equates with an
invader cluster’s expansion or decay to extinction (Gandhi et al., 1999; O’Malley et al., 2006a).

To begin our study of invader-cluster dynamics, we briefly summarize previous ecological
analyses of the critical radius. Next we turn to nucleation theory and develop our con-
ceptual approach to cluster growth under preemptive competition. We define an individual-
based, probabilistic invasion model which assumes discrete space. Then we analyse a
deterministic, geometric model for the critical radius. Finally, we test the geometric model’s
predictions in stochastic simulations of the growth and decay of invader clusters.

Background: reaction-diffusion approximation

Two previous papers describe a critical radius for invasive growth. Lewis and Kareiva (1993)

and Gandhi et al. (1999) apply reaction-diffusion approximations to the ecological dynamics
of cluster growth. The first study considers a single invading species whose reproduction
exhibits an Allee effect. The second study models two competing species where local
propagation is frequency-dependent and mortality is density-dependent. Each analysis first
calculates a planar wave speed, the velocity at which a linear front (cluster with an infinite
radius) would advance. That velocity is corrected by the finite cluster’s curvature, which
varies inversely with the cluster radius. Finally, a critical radius is approximated.
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Each model assumes a circular cluster with radius R(t) at time t, and writes the dynamics
of the cluster radius as:

∂R/∂t = v* − D/R (1)

where v* is the asymptotic velocity at which the invader advances as a planar wave (i.e. the
velocity reached as time advances and R → ∞, so that curvature become negligible) and D is
the effective diffusion coefficient. The cluster’s curvature is proportional to R−1, so that both
increased diffusion and a smaller radius reduce cluster expansion. When R = Rcrit, ∂R/∂t = 0,
so that Rcrit = D/v*. In the model of Lewis and Kareiva (1993), Rcrit increases as either the
diffusion coefficient D or the Allee effect increases, and decreases as the invader’s intrinsic
growth rate increases. Gandhi et al. (1999) give the same ratio for the critical radius, although
the planar velocity in their two-species competition analysis depends on model-specific
parameters. After we present our results, we comment on the applicability of the D/v*
approximation to the continuum reaction-diffusion equations that correspond to the details
of our stochastic model of spatial competition.

NUCLEATION AND THE CRITICAL RADIUS

We assume that an introduction produces a spatial aggregation of individual invaders, and
that the initial dynamics is inherently stochastic. Local densities constrain the invader’s
propagation preemptively (Amarasekare, 2003; Shurin et al., 2004; Tainaka et al., 2004), so that competition
for space drives cluster growth and decay. We have investigated invader–resident competi-
tion on a lattice (Korniss and Caraco, 2005; O’Malley et al., 2005) by applying the physical theory for
nucleation of spatial systems (Rikvold et al., 1994; Ramos et al., 1999; Kashchiev, 2000; Korniss et al., 2001). The
results link local propagation rates to global population dynamics, and indicate a critical
cluster size for invader growth (O’Malley et al., 2005, 2006a). That is, if an invader cluster attains the
critical radius (grows to critical size), further expansion and decay have equal probability
(Evans and Ray, 1994; ter Horst and Kashchiev, 2003); a nucleation ‘event’ occurs when a growing cluster
reaches the critical radius. Smaller clusters are more likely to decay than grow, either due to
competition from the resident or chance excess of invader mortality over propagation.
Expansion is more likely than decay for clusters exceeding the critical size, and continued
growth may allow the invader to exclude the resident species. Nucleation theory addresses
invasion by either a single invader cluster or multiple clusters; the critical-radius concept
applies in each mode. Korniss and Caraco (2005), O’Malley et al. (2005, 2006a), and Yasi et al.
(2006) detail the application of nucleation theory to the evolutionary ecology of invasion
dynamics.

An individual-based stochastic model of preemptive competition

Consider an L × L lattice with periodic boundary conditions; a lattice site represents the
minimum level of local resources required to sustain a single organism. Hence, each site is
either empty or occupied by a resident or an invader. The local occupation numbers at site
x, n i (x) = 0, 1; i = 1, 2 represent the number of resident and invader individuals, respectively.
Competition for space is preemptive (Amarasekare, 2003; Shurin et al., 2004; Oborny et al., 2005; Sintes et al.,

2005); an individual of either species may propagate clonally only if one or more of the δ
nearest-neighbouring sites is empty.
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If a site is empty, introduction or clonal propagation from the surrounding neighbour-
hood can occur. The rate for introduction of an invader is β. The rate for colonization by
species i occupying neighbouring sites is given by α iη i (x), where α i is the individual-level

colonization rate and η i (x) = (1/δ) �
x� ∈ � (x)

n i (x�) is the density of species i around site x. σ(x) is

the set of neighbours of site x, and δ = | σ(x) | is the size of this neighbourhood. If the site
is occupied by an individual of species i, that individual dies at rate µ i. Summarizing the
transition rates for an arbitrary site x,

0 →
�1�1(x)

1, 0
� + �2�2(x)

→ 2, 1 →
�1

0, 2 →
�2

0, (2)

where 0, 1, 2 indicate whether the site is empty, occupied by a resident or occupied by an
invader, respectively. In our simulations below, we set β = 0, µ ≡ µ1 = µ2, select the size of an
invader cluster, and ask if the cluster grows or decays.

A deterministic, geometric approach to the critical radius

Our spatial competition model and, more generally, nucleation theory base their predictions
on probabilistic growth and decline of densities. However, before turning to simulation of
the individual-based stochastic spatial model, we develop a deterministic ‘competitive
balance’ model for the geometry of local propagation to identify hypotheses to test with the
spatial model.

Here, we assume continuous space and take both the invader cluster and the local
colonization neighbourhood as circles. The environment is a finite two-dimensional space,
where individuals of two species occur as events of a spatial point process. The α i are
propagule-production rates, and the µ i (i = 1, 2) are mortality rates per unit density (see
definitions above). We assume that propagation rates are sufficiently large that either
species, when alone, avoids extinction due to mortality. The invader possesses a competitive
advantage: α2 /µ2 > α1 /µ1. In this paper, we restrict attention to the case where µ ≡ µ1 = µ2

(implying that α2 > α1).
An invader cluster lies within C, a circle with radius R; C is centred at the origin O

(see Fig. 1). No residents occur within C, but individuals of the resident species surround C,
at density ρ1, a function of α1 and µ. The invading species may equilibrate stochastically
within C, or, as an initial condition for small R, may take some arbitrary density on C. For
either case, we represent the expected density of invaders within C by ρ2. Competition
constrains the total density of individuals per neighbourhood, defined below, to lie on [0, 1].
Therefore, 0 ≤ ρ i ≤ 1; i = 1, 2.

Consider a location, designated k, on the perimeter of C (Fig. 1). Assume that species i
has just dispersed an offspring to k, but we do not know whether i = 1 or 2. Given the spatial
constraint on propagation, and assuming that introduction from outside the environment
occurs rarely (equivalently, β = 0), only individuals occupying the colonization neigh-
bourhood around k can place offspring there. Designate the colonization neighbourhood
δk, a circle with radius r, centred at location k (Fig. 1). The neighbourhood radius r
represents the maximal directed distance over which an individual can disperse propagules.
Both species occur on δk, but the invader’s spatial clustering implies that the two species
will occupy distinct areas within the neighbourhood δk. The invader occurs on region
{C ∩ δk}; the resident occurs on region δk \ {C ∩ δk}. Let m(2) represent the measure
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of region {C ∩ δk}, where species 2, the invader, occurs. m(1) is the measure of the region
δk \ {C ∩ δk}, where the resident, species 1, occurs. Then m(1) + m(2) = πr2.

We represent the critical radius of the invader cluster by Rcrit. Given that a newly ‘born’
individual has just appeared at k, R = Rcrit if that individual is equally likely to be a resident
or an invader. Therefore, each species must have attempted to colonize site k at the same
total probabilistic rate. So, we have ‘competitive balance’:

R = Rcrit ⇔ m(1) ρ1 α1 = m(2) ρ2 α2 (3)

Equivalently, invader-cluster size (πR2) reaches a critical size (ter Horst and Kashchiev, 2003) when
R = Rcrit. To analyse the critical radius, we first obtain the areas m(i) as functions of R
and r, using elementary geometrical considerations. Then, invoking the simple balance
assumption of equation (3), we find Rcrit as a function of α1, α2, µ, r. The ‘quasi’-equilibrium
densities ρ1 and ρ2 depend on underlying model parameters α1, α2, and µ. Given values
of these parameters, we can evaluate the densities using the stochastic model’s mean-field
or pair approximation (see Appendix 2).

Partitioning the interaction neighbourhood

We generally expect that r < 2R. If r ≥ 2R, the invader cluster lies entirely within the
colonization neighbourhood and, trivially, m(2) = πR2. Then, for the resident,
m(1) = π(r2 − R2). Here, we obtain m(2) for the relevant case, r < 2R, by finding the area
common to partially overlapping circles.

First, we determine the area, inside the colonization neighbourhood, corresponding to
the invader-region {C ∩ δk}. As can be seen in Fig. 1, this is the overlap of the two circular
regions; one has radius R and the other has radius r. We divide this region of overlap into
two segments: a circular segment with radius R and opening angle 2θ (lighter shading in

Fig. 1. Partitioning of the interaction neighbourhood. C is the invader cluster and δk is the
neighbourhood about site k. See text for details.
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Fig. 1), and another circular segment with radius r and opening angle 2γ (darker shading
in Fig. 1). Clearly, the two angles are related by θ + 2γ = π, and furthermore,
r/(2R) = cos(γ) = sin(θ/2). Elementary geometric identities yield the areas of the circular

segments as 
R2

2
[2θ − sin(2θ)] and 

r2

2
[2γ − sin(2γ)], respectively. Combining areas of these

segments yields the area of {C ∩ δk}. Using standard trigonometric identities, we find:

m(2) =
R2

2
[2θ − 2sin(θ)cos(θ)] +

r2

2
[π − θ − sin(π − θ)]

= 2R2 arcsin�r�2R� − Rr�1 − �r�2R�2 �1 − r2

�2R2� +

πr2

�2 − r2 arcsin�r�2R� − r3

�2R �1 − �r�2R�2

(4)

= πr2

�2 + 2R2�1 − r2

�2R2� arcsin�r�2R� − Rr�1 − �r�2R�2

and, trivially, m(1) = πr2 − m(2). In general, by substituting equation (4) into equation (3),
one can obtain the critical radius numerically for any given set of parameters, so
that Rcrit = Rcrit (α1, α2, µ, r). Appendix 1 describes the approximate behaviour of m(2) for
r /R � 1, which can be used to obtain Rcrit in the (α2 − α1) → 0 limit (see next section).

CRITICAL RADIUS AND ECOLOGICAL INVASION

Before quantifying the critical radius’ dependence on propagation and mortality rates, we
list intuitive, qualitative predictions about cluster-growth probabilities. From equation (3)
we have m(2) = m(1)(ρ1 α1/ρ2 α2) when R = Rcrit, i.e. when cluster growth and decay have
equal probability. Since m(1) + m(2) = πr2,

m(2) = πr2�ρ1 α1�[ρ1 α1 + ρ2 α2]� (5)

Any increase in m(2) required to maintain equality of the two species’ expected colonization
rates, as expressed in equation (3), implies an increase in Rcrit. Simple consequences of
equation (5) include the following:

• ∂Rcrit /∂α1 > 0. Resident density, ρ1, increases with its propagation rate α1. To maintain
criticality, m(2) must then increase with α1; the invader cluster must be larger if the
resident’s total rate of propagule production per unit area increases.

• ∂Rcrit /∂α2 < 0. The invader cluster need not be as large if the individual rate of propagule
production, hence production per unit area, increases.

These two predictions imply that ∂Rcrit /∂ (α2 − α1) < 0 (Appendix 2 provides some detail).
Generally, we expect that the critical radius scales as (α2 − α1)

−
, where 
 > 0, as
(α2 − α1) → 0; that is, Rcrit grows exceedingly large as α1 → α2 (Evans and Ray, 1994; O’Malley et al.,

2006a).
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• ∂Rcrit /∂δk > 0. As the size of the colonization neighbourhood δk increases (equivalently,
r increases), more resident individuals attempt to colonize space at the periphery of the
invader cluster. To counter this numerical effect, Rcrit must increase, so that the curvature
of the invader cluster declines.

• ∂Rcrit /∂µ < 0. Mortality rates can influence Rcrit through the densities ρ i, which in turn
affect total propagule production. Appendix 2 evaluates two equilibrium models for the
ρ i, based respectively on a mean-field approximation and a pair approximation to the
dynamics associated with our individual-based cluster-growth model (O’Malley et al., 2006a).
For the case we study in this paper (µ = µ1 = µ2), each analysis in Appendix 2 finds that
increased mortality permits the invader to advance more readily.

The last prediction has a simple basis. For convenience, suppose the two species take
mean-field densities in their respective regions. Then ρ2 = 1 − (µ/α2) for the invader on
{C ∩ δk}, and ρ1 = 1 − (µ/α1) for the resident on δk \ {C ∩ δk}. Since α1 < α2, an increase
in mortality rate µ reduces the density of the resident faster than it reduces the density
of the invader. Hence the invader cluster can grow more readily, and the critical radius
will decline. However, our geometric model of the critical radius is deterministic and,
as stressed above, invasion dynamics is inherently stochastic. For smaller invader clusters,
an increase in mortality might increase the likelihood of chance extinction sufficiently
to more than offset the greater availability of open sites at the cluster’s periphery (e.g. Caraco

et al., 1998).
These properties of the geometric model’s Rcrit suggest predictions for cluster-growth

probabilities. Consider an invader cluster of radius R. Ps(R) represents the probability that
the cluster succeeds – that is, grows and generates an invasion. The cluster decays with
probability 1 − Ps(R). For any given radius R, Ps(R) varies inversely with Rcrit, since factors
inhibiting invasion should increase the critical radius. Given these assumptions, the
geometric model implies that the probability a cluster with radius R generates a successful
introduction varies inversely with the resident’s propagation rate α1, varies directly with the
invader propagation rate α2, varies inversely with colonization-neighbourhood size δk, and
increases with the common mortality rate µ.

To quantify these predictions, we calculated the critical radius according to the geometric
partitioning of the interaction neighbourhood, and separately addressed cluster-success
probabilities by simulating the stochastic individual-based model. The first analysis
substitutes the area of δk occupied by the invader, equation (4), into equation (3) and solves
for Rcrit as explained above. For the densities, we used values given by pair approximation,
equation (A2.4) of Appendix 2. We repeated the calculation using mean-field densities of
Appendix 2 and obtained very similar values for Rcrit.

Figure 2a plots the geometric model’s critical radius against the difference in propagation
rates (α2 − α1), for α2 = 0.7 and 0.5 ≤ α1 ≤ 0.68. Given our parameter values, Rcrit increased
with an increase in neighbourhood size δk, and decreased as the common mortality rate
µ increased. Not surprisingly, Rcrit decreased as (α2 − α1) increased. More specifically, the
logarithmic scaling of Fig. 2 shows that Rcrit ∼ (α2 − α1)

−
, where 1.06 ≤ 
 ≤ 1.12 (least
squares estimates). Hence (α2 − α1) Rcrit ≈ 1 in these calculations, when the ρ i have
either the pair-approximation or mean-field equilibrium values. This scaling need not hold
if the densities ρ i are functionally decoupled from the α i (results not shown).

Figure 2b plots corresponding results as α1 → α2; α2 = 0.7 and 0.69 ≤ α1 ≤ 0.6995. A larger
neighbourhood increased Rcrit, and a greater mortality rate decreased Rcrit. For these
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Fig. 2. (a) Critical radius in deterministic (‘competitive balance’) model of cluster geometry:
0.5 ≤ α1 ≤ 0.68. Geometric model of critical radius, with each species’ density set at its respective
pair-approximation equilibrium (see Appendix 2). Rcrit ∼ (α2 − α1)

−
; where 1.06 ≤ 
 ≤ 1.12. Symbols
are � (δ = 12, µ = 0.03); � (δ = 12, µ = 0.1); × (δ = 4, µ = 0.03); � (δ = 12, µ = 0.3); + (δ = 4, µ = 0.1); �
(δ = 4, µ = 0.3). Deterministic model’s critical radius increases as neighbourhood size increases, and
decreases as mortality rate increases. (b) Critical radius in deterministic model of cluster geometry:
0.69 ≤ α1 ≤ 0.6995. Geometric model of critical radius, with each species’ density set at its respective
pair-approximation equilibrium (see Appendix 2). Rcrit ∼ (α2 − α1)

−
; where 1.0 ≤ 
 ≤ 1.01, so that
(α2 − α1)Rcrit ≈ 1. Symbols are � (δ = 12, µ = 0.03); � (δ = 12, µ = 0.1); × (δ = 4, µ = 0.03, and δ = 12,
µ = 0.3); + (δ = 4, µ = 0.1); � (δ = 4, µ = 0.3). Solid line connects values for (δ = 4, µ = 0.03) and
(δ = 12, µ = 0.3), which fall together given the ordinate’s scaling. Qualitative results are the same as
Fig. 2a.
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parameter values, Rcrit ∼ (α2 − α1)
−
, where 1.0 ≤ 
 ≤ 1.01 (least squares estimates), so that

again (α2 − α1) Rcrit ≈ 1.
To gain further insight into the basis of this power law, we obtained the approximate

behaviour of Rcrit as (α2 − α1) → 0. Since neighbourhood size (r) is fixed, r /Rcrit � 1 in
this limit, and we then can employ the approximate behaviour of the m(i) (Appendix 1) and
the mean-field approximation for the densities of the two species (Appendix 2). Substituting
mean-field equilibrium densities into equation (5), we have at the critical radius:
m(1)(α1 − µ) = m(2)(α2 − µ). From Appendix 1,

m(1,2) = πr2

�2�1 ± 2�3π[r/Rcrit]�
where the + and − signs correspond to m(1) and m(2), respectively. Inserting these
expressions into the condition for the critical radius yields, to leading order as (α2 − α1) → 0,
the approximation for Rcrit:

Rcrit ≈
2

3π

α1 + α2 − 2µ

α2 − α1

r ≈
4

3π

α2 − µ

α2 − α1

r (6)

Thus, in the asymptotic (α1 → α2) limit, the geometric competitive-balance model yields
Rcrit ∼ (α2 − α1)

−1, in agreement with the complete numerical solution of equation (4) for
small differences in propagation rates, as demonstrated by the results shown in Fig. 2b.

SIMULATION RESULTS FOR THE INDIVIDUAL-BASED SPATIAL MODEL

Employing the local rates defined earlier, we implemented dynamic Monte Carlo
simulations on a 103 × 103 lattice. The time unit was one Monte Carlo step per site, during
which 106 sites were chosen randomly, and updated probabilistically according to our
spatial model of ecological invasion. These procedures mimic the model’s continuous-time
dynamics (Korniss et al., 1999). Throughout, we fixed α2 = 0.7. We chose six values for α1 on [0.69,
0.6995] and simulated three mortality rates, µ = 0.03, 0.1, and 0.3.

We initialized the lattice with each site occupied by a resident. We ran the simulation for
50 time steps, during which the resident’s global density rapidly decayed to its single-species
equilibrium. We then set the simulation clock to t = 0 and placed a single invader cluster on
the lattice, with radius R(0); the initial number of invaders was proportional to [R(0)]2.
We simulated the spatial dynamics until t = 20,000, unless the invader first declined to
extinction. We recorded a successful introduction only if the perimeter of the cluster
expanded, and noted global densities of the invader and resident at the final time. For each
parameter combination, we simulated invader-introduction 100 times. We cannot expect
critical radii in the continuous-space geometric model to predict quantitative properties of
the discrete-space lattice model. Rather, we asked if patterns suggested by the deterministic
model of critical-radius geometry held up when clusters grow and decline probabilistically
on a lattice.

Figure 3a plots the proportion of species-2 clusters that successfully invaded the resident
(species 1) as a function of the invader cluster’s initial radius R(0). We set δk = 4 and µ = 0.3
in these simulations, and show results for six values of α1. As α1 increases, the probability of
cluster growth decreases for any R(0), and Rcrit increases.

The figure’s logarithmic scaling of R(0) reveals sigmoid dependence of Ps on the initial
cluster’s radius. Let x = log[R(0)], and let Ps(x) represent the probability an introduction
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with cluster radius 10x succeeds. At the critical radius, cluster growth and decay (the intro-
duction’s success or failure) are equally probable. If x* = log[Rcrit], then Ps(x*) = ½. Follow-
ing an analysis of cluster size by ter Horst and Kashchiev (2003), we can approximate Ps(x)
using an error function:

Ps(x) ≈ (1/2)[1 + erf(ξ [x − x*])], (7)

Fig. 3. (a) Probability of cluster growth; simulations of stochastic individual-based model with δ = 4
and µ = 0.3. α2 = 0.7; values for α1 are 0.69 (∗), 0.693 (+), 0.695 (�), 0.697 (×), 0.699 (�), and 0.6995
(�). Solid lines show piecewise approximation to Ps(x) ≈ (1/2)[1 + erf (ξ [x − x*])] for α1 = 0.69
(ξ = 2.5) at left, and α1 = 0.6995 (ξ = 2.2) at right (see explanation in text). Invasion probability
increases with (α2 − α1); at Rcrit, invasion probability = 0.5. (b) Data collapse. Dividing each initial
radius by the critical radius (for associated value of α1) shows the basic relationship for which plots in
Fig. 3a are examples.
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where

erf(z) =
2

π
1/2

�
z

0

exp[− s2]ds,

twice the integral of a normal density, and ξ > 0. From simulation results we read x* by eye,
and adjusted ξ numerically for the Ps values associated with each level of α1. Figure 3a
shows that expression (7) approximates the simulation results fairly well. Since [x − x*] in
expression (7) is log[R(0)/Rcrit], Fig. 3b plots invasion probability against R(0)/Rcrit. The
simulation data collapse nicely after scaling cluster radii by the critical value for each level
of α1.

Figure 4a plots the chance that introduction succeeds against initial cluster radius for
various levels of α1 when δk = 12 and µ = 0.3. Comparing Figs. 3a and 4a suggests that
this increase in neighbourhood size had no consistent effect on the probability of cluster
growth, contrary to predictions of the geometric model (Figs. 2a, b). Expression (7) again
approximates the simulation results reasonably well. Figure 4b shows the clarifying
data-collapse across levels of α1 when each initial cluster radius is scaled by the critical
radius.

Figure 5a plots the chance that introduction succeeds against initial cluster radius
for various levels of α1 when δk = 4 and µ = 0.03. Comparing Figs. 3a and 5a indicates
that the mortality-rate difference alters invasion probabilities and the critical radius. The
comparison indicates that, for larger initial clusters and larger values of α1, invasion prob-
abilities are greater at higher µ. However, for smaller initial clusters, invasion probabilities
are slightly smaller when mortality is greater; the effect again is clear for larger values of α1.
Interaction of these effects results in a larger critical radius, for small differences in propaga-
tion rates, at the higher mortality rate. An increase in the critical radius and any decrease in
cluster-growth probabilities induced by increasing the mortality rate (from 0.03 to 0.3)
contradict the deterministic predictions. Figure 5b shows the cluster-growth probabilities
when the initial radius is rescaled by the critical radius. Scaling achieves data collapse when
0.01 ≥ (α2 − α1) ≥ 0.003, but the data are more variable for the two largest values of α1.
For some of these simulations, 20,000 time steps produced no invader advance (hence
introduction failed by our conservative definition), but the invader cluster remained far
from extinction. As the two species become more similar, the time to competitive exclusion
should increase rapidly (Gandhi et al., 1999).

Figure 6 shows estimates (i.e. read from plots of Ps) of the critical radius from simulations
against the difference in propagation rates (α2 − α1). Although our data have somewhat
limited range, as a guide to a comparison with the results of the deterministic model
(where Rcrit ∼ (α2 − α1)

−
 with 
 ≈ 1), we plotted a line with a slope of −½. Our results
clearly indicate that, if there is a power-law dependence, the scaling behaviour of the
critical radius is governed by an exponent not greater than 
 = ½ for the stochastic indi-
vidual-based spatial model, in strong contrast with the result of the deterministic
approximation.

Figure 6 also indicates that for sufficiently large (α2 − α1), the critical radius varies little
with either δk or µ; a cluster of approximately 60 individuals (a radius of 4.4) is as likely to
grow as decline. However, as α1 → α2, the critical radius increases as mortality increases, and
the scaling exponent 
 appears to increase towards 1/2. Any advantage in relative density
the invader might gain by an increase in the common mortality rate (see above) is likely
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offset by an increase in chance extinction of smaller clusters. To support this interpretation,
we plot the average time to extinction for those invader clusters that fail to advance. Figure
7a shows extinction times, as a function of initial cluster radius, for δk = 4; Fig. 7b plots
corresponding means for δ = 12. The figures indicate the relative rapidity at which small
clusters disappear at the higher level of mortality (O’Malley et al., 2006a).

Fig. 4. (a) Probability of cluster growth; simulations of stochastic individual-based model with δ = 12
and µ = 0.3. α2 = 0.7; values for α1 are 0.69 (∗), 0.693 (+), 0.695 (�), 0.697 (×), 0.699 (�), and 0.6995
(�). Solid lines show piecewise approximation to Ps(x) ≈ (1/2)[1 + erf(ξ [x − x*])] for α1 = 0.69 (ξ = 2.7)
at left, and α1 = 0.6995 (ξ = 2.3) at right (see text). At Rcrit, invasion probability = 0.5. (b) Data collapse
as in Fig. 3b.
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NOTES ON THE REACTION-DIFFUSION APPROXIMATION

For the local rates defining our stochastic spatial model, one can systematically derive
a deterministic partial differential equation (PDE) (see O’Malley et al., 2006b, in press). Taking
the exact Master equation for the many-particle stochastic process given by those rates
on a lattice, neglecting correlations between densities at different sites (McKane and Newman,

2004), and taking the naïve continuum limit, one obtains the equations of motions
(O’Malley et al., 2006b, in press):

Fig. 5. (a) Probability of cluster growth; simulations of stochastic, individual-based model with δ = 4
and µ = 0.03. α2 = 0.7; values for α1 are 0.69 (∗), 0.693 (+), 0.695 (�), 0.697 (×), 0.699 (�), and
0.6995 (�). Solid lines show piecewise approximation to Ps(x) ≈ (1/2)[1 + erf(ξ [x − x*])] for α1 = 0.69
(ξ = 2.3) at left, and α1 = 0.6995 (ξ = 0.82) at right (see text). At Rcrit, invasion probability = 0.5.
(b) Data collapse as in Fig. 3b; results good for four lowest values of α1.
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∂ρ i /∂t = (α i /4)(1 − ρ1 − ρ2)∇
2 ρ i + α i (1 − ρ1 − ρ2)ρ i − µρ i ; i = 1,2 (8)

where ∇2 is the Laplacian. (Note that the diffusive term in the present model is not the
result of individual mobility, but a consequence of local vegetative propagation.) A
simple analysis of the above equations (for µ < α1 < α2) implies that starting from a
sufficiently sharp initial interface separating the competing species, invaders (species 2)
propagate into an unstable phase, dominated by residents (species 1). This phenomenon
has generated a vast literature since the original papers by Fisher (1937) and Kolmogorov
et al. (1937). At the level of the above deterministic continuum PDE, the front is ‘pulled’
by the leading edge into the unstable phase (Ebert and van Saarloos, 2000; Murray, 2002; van Saarloos,

2003). For circular fronts in two dimensions, however, the curvature correction to the radial
velocity in equation (1), [ − D /R(t) ∼ O(1/t)], is comparable to the temporal correction
(or rate of convergence) to the asymptotic velocity of linear fronts, also of O(1/t) (Ebert and

van Saarloos, 2000; van Saarloos, 2003). Hence, for pulled fronts, one cannot use equation (1)
to determine the critical radius in a self-consistent fashion. The scenario is drastically
different for ‘pushed’ fronts, or propagation into (meta)stable states [as is the case in
the Lewis and Kareiva (1993) model with an Allee effect], where convergence to the
asymptotic velocity is exponentially fast, so that equation (1) indeed represents the
asymptotic leading order correction to the velocity of a circular front (Ebert and van Saarloos,

2000; van Saarloos, 2003).

Fig. 6. Critical radius from simulations. Values read by eye from simulation plots of invasion
probability against initial cluster radius. α2 = 0.7 throughout. Symbols are � (δ = 12, µ = 0.3), � (δ = 4,
µ = 0.3), × (δ = 4, µ = 0.1), � (δ = 12, µ = 0.1), + (δ = 12, µ = 0.03), and ∗ (δ = 4, µ = 0.03). Since the
values were read by eye, we simulated the model using plotted radii; mean proportion of successful
invasion was 0.504 (± 0.025, 95% confidence interval), not different than 0.5. The bold solid line with
a slope of −½ serves as a guide to compare the results with the behaviour of the deterministic model
(which predicts a slope of −1).
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DISCUSSION

Our deterministic model of the critical-cluster radius, while it appreciates geometric aspects
of preemptive competition between species, failed to predict effects of varying the common
mortality rate observed in simulation of the stochastic invasion process. Furthermore,
our individual-based simulation results indicate that the critical radius scales with the
difference in propagation rates as Rcrit ∼ (α2 − α1)

−
 with 
 ≤ ½, in strong contrast with the
deterministic geometrical approximation (
 ≈ 1).

Fig. 7. (a) Mean time to extinction in simulation for failed invader clusters; δ = 4. For µ = 0.03,
α1 = 0.693 (×), 0.697 (�), and 0.6995 (�). For µ = 0.3, α1 = 0.693 (∗), 0.697 (+), and 0.6995 (�).
α2 = 0.7. Values for µ = 0.1 intermediate to results plotted. (b) Mean time to extinction in the
simulation for failed invader clusters; δ = 12. Symbols as in (a). Small clusters are subject to relatively
rapid, chance extinction at higher mortality rate.
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Our simulations suggest that an increase in mortality can increase the chance of invasion
for large clusters, but can decrease the chance of invasion for small clusters. Our model
assumes preemptive competition, so that a site occupied by a resident becomes available for
colonization by the invader only through the resident’s mortality. We suppose increased
mortality more often drives small invader clusters extinct through chance events
(Kot et al., 2004). But larger clusters are, of course, safer from chance extinction. Increased
mortality more often opens resident-occupied sites around the periphery of a larger cluster,
and can consequently increase the chance of further expansion by the competitively
superior invader (Korniss and Caraco, 2005).

The concept of a critical radius for invasive growth suggests a framework for organizing
understanding of the apparent uncertainty associated with the outcome of any given
species’ introduction (Veltman et al., 1996; Simberloff, 2000), at least for species that aggregate
as a consequence of local dispersal. The outcome of an invader’s initial introduction and,
more generally, the dynamics of rarity can be inherently stochastic, discrete, and spatially
structured (Durrett and Levin, 1994; Ellner et al., 1998; Lewis and Pacala, 2000; Korniss and Caraco, 2005).
Nucleation theory, applied to the invasion problem, appreciates each of these fundamental
properties (O’Malley et al., 2005, in press). More importantly, nucleation theory offers a general
framework for predicting global dynamics of invader and resident species, as a function of
demographic rates at the level of individuals (O’Malley et al., 2006a, 2006b).
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APPENDIX 1

We obtain an approximate expression for m(2) in the limit where r/R � 1. To that end,
we use an asymptotic small-argument, z ≡ (r/2R), as well as using the following expansions
for the non-linear functions appearing in equation (4):

arcsin(z) = z + z3

�6 + O(z5)

and

√1 − z2 = 1 − z2

�2 + O(z4)

For m(2), we find:

m(2) = πr2

�2 + 2R2(1 − 2z2)arcsin(z) − 2R2z √1 − z2

= πr2

�2 + R2 �2(1 − 2z2) �z + z3

�6 + O(z5)� − 2z �1 − z2

�2 + O(z4)�� (A1.1)

= πr2

�2 + R2 [ − 8z3/3 + O(z5)] ≈ πr2

�2 − R28�3 �r�2R�3

= πr2

�2 �1 − �2�3π��r�R��
Since m(1) = πr2 − m(2), we have:

m(1) = πr2

�2 �1 + �2�3π��r�R�� (A1.2)

APPENDIX 2

A mean-field approximation to a spatial model assumes homogeneous mixing, so that
spatial correlations do not influence the dynamics (Duryea et al., 1999; Yoshimura et al., 2006). The
mean-field approximation to our individual-based model has dynamics:

dρ i /dt = α i ρ i (1 − ρ1 − ρ2) − µ i ρ i ; i = 1, 2 (A2.1)

where ρ i, 0 ≤ ρ i ≤ 1, is (in the mean-field model) the global density of species i; i = 1, 2.
Assume for simplicity µ1 = µ2 = µ. Since α i > µ for both species, mutual extinction cannot be
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stable. In the absence of species j, the stable mean-field equilibrium density of species i is
ρ*i = 1 − (µ�αi

) (Korniss and Caraco, 2005; O’Malley et al., 2006a).
In the context of critical cluster size, we do not assume global mixing. Rather, we assume

that ρ*1 gives densities in the area surrounding the invader cluster (where only residents
occur), and that ρ*2 gives densities within the invader cluster (where no residents occur).
Applying the mean-field densities to the continuous-space model, equation (5) of the text
becomes:

m(2) = πr2 
α1 − µ

α1 + α2 − 2µ
(A2.2)

at R = Rcrit. By inspection, ∂m(2)/∂α1 > 0 and ∂m(2)/∂α2 < 0. Then Rcrit varies directly
(inversely) with the resident’s (invader’s) propagation rate. From (A2.2):

∂m(2)/∂µ = πr2 (α1 − α2)/(α1 + α2 − 2µ)2 (A2.3)

The critical radius should vary with µ according to the sign of (α1 − α2). The invader has the
greater propagation rate, and an increase in the common mortality rate should decrease the
critical radius.

Pair approximation for lattice models tracks the deterministic dynamics of both global
densities and local densities conditioned on the state of a neighbouring site (Dickman, 1986;

Matsuda et al., 1987). By incorporating correlations of nearest neighbours into the dynamics,
pair approximation may predict equilibrium densities more accurately than mean-field
models (Ellner et al., 1998; Bauch and Rand, 2000; Satō and Iwasa, 2000; Tainaka, 2003; Caraco et al., 2006).

In the pair approximation to our spatial model, the stable equilibrium density of species i,
in the absence of species j, is:

ρ*i =
δ − 1 − δ(µ/α i)

δ − 1 − (µ/α i)
, i = 1,2 (A2.4)

Using equation (5), we have:

m(2) ∝
α1(δ − 1) − δµ

(α1 + α2)(δ − 1) − 2δµ
(A2.5)

Differentiation again shows that the sign of ∂m(2)/∂µ has the sign of (α1 − α2), and so the
critical radius should decline with increased mortality.
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