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ABSTRACT 

 Questions:  How does temporal variation in competitive advantage affect advance from 

rarity and species abundances in an individual-based ecology?  In particular, how does the 

difference between the timescale of competitive invasion and the timescale of environmental 

periodicity interact with the spatial clustering underlying invasion to influence global population 

dynamics? 

 Features of Model:  We assume that two species compete preemptively for space in a 

two-dimensional environment.  We categorize invasion of one of them as either the growth of one  

cluster of the rare species, or as growth of many clusters at the same time. Simulation of a constant 

environment identifies the characteristic timescale for a competitively superior species to invade 

and numerically dominate a resident species. 

 Manipulation of Key Variables:  Given an endogenous timescale set by invasion in a 

constant environment, we introduced periodic temporal variation in competitive superiority by 

alternating the species’ propagation rates.  We set the half-period of the environment much less 

than, roughly equal to, and much greater than the endogenous timescale.  By manipulating habitat 
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size and introduction rate, we simulated environments where successful invasion proceeds 

through growth of many spatial clusters, and where invasion can occur only as a single-cluster 

process. 

 Conclusions:  In the multi-cluster invasion regime, rapid environmental variation 

produced spatial mixing of the species and non-equilibrium coexistence.  The dynamics’ 

dominant response effectively averaged environmental fluctuation, so that each species could 

avoid competitive exclusion.  Increasing the environment’s half-period to match the population-

dynamic timescale let the (initially) more abundant resident repeatedly repel the invader.  

Periodic transition in propagation-rate advantage rarely interrupted the exclusion process when 

the more abundant species had a competitive advantage.  However, at infrequent and randomly 

occurring times, the rare species could invade and reverse the density pattern by rapidly eroding 

the resident’s preemption of space. 

 In the single-cluster invasion regime, environmental variation occurring faster than the 

population-dynamic timescale prohibited successful invasion; the first species to reach its 

stationary density (calculated for a constant environment) continued to repel the other during long 

simulations.  When the endogenous and exogenous timescales matched, the species randomly 

reversed roles of resident and invader; the waiting times for reversal of abundances indicate 

stochastic resonance.  For both invasion regimes, environmental fluctuation occurring much 

slower than the endogenous dynamics produced symmetric limit cycles, alternations of the 

constant-environment pattern. 

 Keywords: ecological invasion, nucleation, population-dynamic timescale, spatial 

competition, stochastic resonance, temporal variation 

 

INTRODUCTION 

Ecologists recognize that local dispersal induces spatially correlated population densities (Ellner 

et al., 1998; Wilson, 1996; 1998). These correlations can govern interaction frequencies and, 
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consequently, impact the global dynamics of competing species (Tilman and Kareiva, 1997; 

Chesson, 2000; Dieckmann et al., 2000).  Models for spatially detailed competition generally 

predict that conditions discriminating coexistence from exclusion can depend on the degree of 

local structure (e.g., Bolker and Pacala, 1999; Mágori et al., 2005; Caraco et al., 2006).  More 

subtly, but no less significantly for our understanding of competition, interactions structured by 

local dispersal often increase the characteristic time scale of population dynamics well beyond 

that of mean-field models (Hurtt and Pacala, 1995; Lehman and Tilman, 1997; O’Malley et al., 

2006a).  For example, it may take much more time for an introduced, ecologically superior 

competitor to displace an inferior resident when individuals interact only at the neighborhood 

scale, compared to a well-mixed dynamics (Gandhi et al., 1999; Korniss and Caraco, 2005; 

O’Malley et al., 2005). 

 Ecologists further recognize that environmental variation between generations can 

strongly influence competitors’ dynamics (Chesson 1990; Ripa and Ives, 2003; Descamps-Julien 

and Gonzalez, 2005; Adler and Drake, 2008).  Environmental fluctuations might reduce densities 

sufficiently that the chance of extinction increases.  However, temporal variation, at some 

periodicities, might help prevent competitive exclusion (Hutchinson, 1961; Caswell and Cohen, 

1995; Spencer et al., 2007; D’Odorico et al., 2008).  In particular, asynchrony between competing 

species’ rates of growth in a fluctuating environment may promote coexistence via temporal 

niche differences (Chesson and Huntly, 1997; Snyder, 2007). 

 Only rarely have ecologists combined analyses of spatially heterogeneous populations 

with environmentally induced demographic fluctuation (Chesson, 1990; Holt and Barfield, 2003; 

Schoolmaster and Snyder, 2007).  Our study takes an individual-based approach to this 

interaction; we model preemptive competition in an environment subject to temporal variation.  

Given an exogenous process that periodically reverses competitive superiority between two 

locally-dispersing species, we ask how this individual-level variation affects the competitors’ 

global dynamics.  The few previous individual-based ecological models with temporal variation 
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(e.g. Holt et al., 2004) ordinarily consider a single population’s growth only.  But recently Chan 

et al. (2009) studied competitive coexistence with a multitype contact process subject to seasonal 

variation; see Discussion. 

We categorize our results according to the difference between two fundamental 

timescales, in each of two competitive-invasion regimes.  The first temporal scale is the expected 

time   required for a superior competitor to invade a resident species and advance to numerical 

dominance in a constant environment (endogeous timescale).  The second temporal scale is the 

half-period of the environmentally induced demographic-rate variation , the time elapsing 

between changes in competitive rank (exogenous timescale).  Invasion regimes distinguish 

between a successful invader growing as a single spatial cluster and invasive growth distributed 

among many clusters (Korniss and Caraco, 2005).  Similar analyses of interacting timescales in 

physical systems (e.g., Korniss et al., 2000; Buendia and Rikvold, 2008) suggest a set of metrics, 

and offer predictions paralleling our results on the ecology of spatial growth; see Discussion.  

2/1t

 We organize the paper as follows. First, to compare the endogenous timescales of 

single-cluster and multi-cluster invasion in a constant environment, we briefly summarize 

an individual-based model for preemptive competition. Next, we introduce periodic variation 

in reproductive rates, and interpret a series of model simulations. To reveal the range of dynamic 

complexity emerging from the interaction of the time-scale comparison with invasion regime, we 

employ some simple metrics that are functions of the difference between the competitors’ 

densities. Finally, we summarize the dynamics and place our work in context. 

NUCLEATION AND ECOLOGICAL INVASION 

Before addressing temporal variation, we recall our constant-environment model. It draws on 

nucleation theory for clustered growth. Nucleation theory is sometimes referred to as KJMA theory 

- for Kolmogorov (1937), Johnson and Mehl (1939) and Avrami (1940, 1941). Nucleation theory 

predicts timescales associated with spatial growth in multi-cluster systems. Recent applications of the 
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theory span the physical (Rikvold et al., 1994; Ramos et al., 1999; Korniss et al. 2002) and 

biological sciences (Gandhi et al., 1999; Herrick et al., 2002; Jun et al., 2004; O’Malley et al., 

2005; Zhang and Bechhoefer, 2006). 

  Suppose that a competitively inferior species advances to its self-regulated, equilibrium 

global density.  Thereafter, individuals of a competitively superior species are introduced 

stochastically at a rate much smaller than the two species’ birth and death rates. Introduction 

occurs rarely but repeatedly.  Given a sufficiently high initial density of the competitively 

inferior resident, and preemptive competition (Platt and Weis, 1985; Connolly and Muko, 2003; 

Yurkonis and Meiners, 2004; Rácz and Karsai, 2006), the resident can resist invasion for a long 

time before declining (perhaps suddenly) toward competitive exclusion.  A dynamics where rare, 

random introduction events combine with strongly clustered growth of the invader – features of 

many plant and animal invasions (D’Antonio, 1993; Holway, 1988; Herben et al., 2000) – cannot 

be captured faithfully by either mean-field models (homogeneous mixing) or deterministic partial 

differential equations (Moro, 2001; Antonovics et al., 2006).  However, nucleation theory 

provides a powerful framework to model growth of a locally dispersing invader. 

Individual-based model of spatial competition 

To model preemptive competition, we consider an LL   lattice with periodic boundaries.  Each 

site represents the resources required to sustain a single individual.   The local occupation number 

at site x is ni(x) = 0, 1 with  representing the number of resident and invader individuals, 

respectively.  An empty site may be occupied by species i through propagation from a 

neighboring site at rate 

,2,1i

 xii , where i  is the individual-level propagation rate for species i, 

and      xin 
 





xnnx

xi  1  is the density of species i in the neighborhood about site x.  nn(x) is 

the set of the  nearest neighbors of site x; in this study we fix .4   Each species also may 

occupy an empty site through immigration from outside the environment; each species has 
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introduction rate  per open site.  Introduction and local propagation occur independently, so that 

species i occupies an open site at total probabilistic rate iii   , for .2,1i   An occupied site 

opens through density-independent mortality of the individual; here each species has mortality 

rate . 

;21   For constant environments, we take   introduction is rare, and invaders 

have a per-individual reproductive advantage.  In simulation we track the time-dependent global 

density of each species,    ;, itni x1
2 



 L

ti x
 .2,1   We define the resident's lifetime   

as the first passage time of the resident's global density to ½ its initial (hence, quasi-equilibrium) 

density .  For given parameters, we take the resident’s mean lifetime *
1  , invasion time for 

simplicity, as the characteristic time scale of the population dynamics.  The ½ is arbitrary; we 

choose it since the invader’s global density  t2  should just exceed the resident’s density when 

  .2

*
1

1 t   The term “invasion time” fits the constant-environment dynamics, since the 

superior invader always becomes common (though the elapsed time varies randomly).  Since we 

introduce individuals of each species, competitive exclusion does not imply true extinction.  

Rather, we equate exclusion with a small global density  O , where the common introduction 

rate satisfies  .1010 48   

 As simulation proceeds, individual invaders occasionally appear interspersed among the 

initially common residents.  An invader lacking access to empty, neighboring sites may die before 

propagating.  If a site opens in the local neighborhood, the invader may colonize it.  However, the 

resident's greater local density may compensate for its lower individual-level propagation rate, so 

that the resident species has the greater chance of colonizing the empty site.  Consequently, most 

small invader clusters shrink and disappear.  Residents, though weaker competitors, can avert 

exclusion for extended periods, since preemptive competition constrains invader growth. Invaders 
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can succeed only after they generate a cluster sufficiently large (the radius exceeds a critical 

radius ) that it tends to grow at its periphery (Yasi et al., 2006; Allstadt et al., 2007).  We say 

a nucleation event occurs when a cluster’s radius first reaches . 

critR

critR

Single-cluster and multi-cluster invasion 

For given parameters, let   ,,, 21D  represent the average distance separating invader 

clusters.  If the environment is sufficiently small, DL  , then invasion almost always proceeds 

through the growth of a single cluster (SC) invasion.  However, when , invasion involves 

many invader clusters [multi-cluster (MC) invasion].  Furthermore, suppose that we fix linear 

habitat size L, as well as other parameters - except the introduction rate.  Then there exists a 

characteristic value of the introduction rate

DL 

  (now governing D ) such that MC invasion crosses 

over to the SC pattern for levels of   less than the characteristic value (O’Malley et al., 2006a). 

 We can distinguish SC and MC invasion, and identify ecological implications, within the 

framework of homogeneous nucleation (Korniss and Caraco, 2005).  We outline the essentials in 

Appendix 1; here we specify how the endogenous time scale differs between modes of invasion. 

 For SC invasion, the lengthy waiting time until the first successful cluster nucleates 

dominates the lifetime   of the competitively inferior resident.  Differences between the 

competitors’ demographic rates govern the time required for the cluster to grow, but growth time 

is short compared to the exponentially distributed waiting time for nucleation (O’Malley et al., 

2006a).  Hence if  is the random waiting time until nucleation occurs (the first invader cluster 

with a radius as large as ), then 

nt

critR nt .  From Appendix 1,   12 
 Ltn .  Therefore, 

the characteristic timescale,  , varies inversely with both habitat area and the introduction rate 

(O’Malley et al., 2005).  To compare invasion modes, we can say the endogenous timescale   

scales with  in the SC regime.  Single-cluster invasion predicts that an invader maintains a 

low mean density, perhaps below a detection threshold, for an uncertain length of time – which 

1
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can be quite long.  Then, stochastically, a cluster grows beyond critical radius, and the invader 

drives the resident toward competitive exclusion. 

 For large environments (or large introduction rates), ; the environment's size 

exceeds the typical distance between invader clusters.  Consequently, many randomly nucleated, 

expanding clusters drive the resident's decline.  In the limit of a large environment, we can 

approximate the time-dependent global densities by Avrami’s law (see Appendix 1) which 

provides a functional form for global densities during MC invasion.  Note that for MC invasion, 

DL 

  is essentially independent of the habitat size (Korniss and Caraco, 2005). Finally, for yet 

larger  , invader clusters coalesce immediately, and nucleation theory breaks down; in fact, 

homogeneous mean-field equations may apply as the clusters mix (O’Malley et al., 2006b). 

 Invasion time  , our population-dynamic timescale, depends on the introduction rate  , 

and this dependence differs between invasion regimes.  For MC invasion, the timescale of the 

invader’s advance to numerical superiority in simulation scales as 015.030.0~  , close to 

3
1 , the value predicted by Avrami’s law  (O’Malley et al., 2006a).  However, for any finite 

environment with linear size L, a sufficiently small  , such that   ,L~,,, 3
1

21D 
  

implies SC invasion.  In the SC regime, the average lifetime (and its standard deviation) scales as 

,~ 1  reflecting the Poisson nature of an invader cluster's nucleation; see Appendix 1.  For 

extended analysis of invasion time versus invasion regime, see O’Malley et al. (2005). 

 TEMPORAL VARIATION AND SPATIAL COMPETITION 

Most communities experience some level of temporal variation (Descamps-Julien and Gonzalez, 

2005; Greenman and Norman, 2007; Adler and Drake, 2008; Loreau and de Mazancourt, 2008), 

and these environmental fluctuations may impact ecological and evolutionary processes (Caswell 

and Cohen, 1995; Ives, 1995; Chesson, 2000; Neubert et al., 2000; Travis et al., 2005; Altizer et 

al., 2006; Spencer et al., 2007).  Given our model’s behavior in a constant environment, we ask 
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how the dynamics responds to periodic temporal variation.  The distinction between single and 

multi-cluster invasion proves useful in a periodically varying environment (Korniss et al., 2002). 

Time-dependent propagation rates 

To study a symmetric demographic response to environmental fluctuation, we modified our 

individual-based model by setting    tt 1 , and    tt 2 .  We report results 

where  is a square-wave with amplitude  t   and half-period 21t ; see Buceta et al. (2003). 

Since each species has the same individual mortality rate (we fix 1.0  throughout this paper), 

the environment alternately favors one, then the other species via the propagation-rate difference.  

Here we let 75.0  and , so that 05.0     t2t1 ,  alternates between [0.8, 0.7] and [0.7, 

0.8].  We selected the invasion regime, MC or SC, by choosing habitat size  and introduction 

rate 

L

  appropriately.  Given   , , these parameter selections also determine the population-

dynamic timescale  .  In simulation, we varied the exogenous timescale, the environmental 

half-period 21t , from near-zero to levels far exceeding  . 

Metrics 

For parameter values we used, summed global densities   ttttot 21)(    exhibit little 

temporal variation.  However, the difference of the species’ densities,      tt 21tm   , 

proves relevant and informative (see Ripa and Ives, 2003).   tm m, with range , 

indicates numerical superiority at time t.  If 

   1,1t

  0tm  persistently, species 1 dominates 

numerically; if  persistently , species 2 dominates.  If   0tm   0tm

)(tm

, or fluctuates about 0, the 

competitors co-occur with roughly equal global densities. Figure 1 (A-D) shows two time series 

from our simulations. These illustrate the role of the density metrics. Note:         plays a role here 

analogous to the order parameter in ferromagnetic systems (Lo and Pelcovits, 1990;  Tomé and de 

Oliveira, 1990; Chakrabarti and Acharyya, 1999). 
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 Since we are interested in the competitive system’s behavior in a periodically changing 

environment, a natural quantity to monitor is the period-averaged density difference (Tomé and 

de Oliveira, 1990; Sides et al., 1998a, b; Korniss et al.,2002; Buendia and Rikvold, 2008): 

 dttm
t

Q b

a
212

1
 ,     (1) 

where an environmental period begins at at   and ends at 212tab  .  The period-averaged 

density difference Q  is also referred to as the dynamic order parameter (Sides et al., 1998a; 

Korniss et al., 2000).  For 2/1t

)t

, the environment changes slowly; decay of the respective 

resident’s density is complete, and the system approaches competitive exclusion in each half 

period.  Consequently,  reaches a limit cycle symmetric about zero, and in turn . On 

the other hand, for 

(m 0Q

2/1t  the two species’ densities do not have enough time to “switch” during 

each environmental half-period.  Therefore,  reaches an asymmetric limit cycle, and in turn, 

.  Although, as we shall see in the next subsection, the scenarios can be more subtle than 

these two naïve cases, the quantity Q  provides an important measure of difference in abundance 

in periodically varying environments.  In the simulations, we evaluated Q by averaging 

)(tm

0|| Q

 tm  

through each full period, and we define Q  as the average of Q over many successive periods.  

We also calculated the average absolute value, Q , from the same data.  Finally, we estimate a 

scaled, among-period variance of Q (Sides et al., 1999; Korniss et al., 2000; Buendía and 

Rikvold,  2008): 






 

222

LL

Q
L QQLX      (2) 

for different habitat sizes L. 

 These metrics do more than describe patterns in the  ti .  They identify transitions 

(“crossovers”) in the competitive dynamics as functions of 21t .  That is, Q  declines rapidly 
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toward zero, and  peaks, at critical values of Q
LX 21t  where transitions in the dynamics occur 

(Sides et al., 1998a; Korniss et al., 2002; Robb et al., 2007; Buendía and Rikvold, 2008).  

 We also estimated the logarithmic growth rate of species i (i = 1, 2) as: 

        
 



  t

ttLtLt
i

i
iii 

 1lnln1ln 22G .  (3) 

We were particularly interested in growth rates at low density, where clusters of the rare species 

should be small. 

Multi-cluster invasion in a periodic environment 

To begin, we let competitive advantage alternate periodically with , and L = 90, 128, 

180, and 256.  In a constant environment these combinations of introduction rate and habitat size 

assure MC invasion with a lifetime 

410

1240 . Note that for MC invasion, the endogenous 

timescale   is essentially independent of habitat size (Korniss and Caraco, 2005).  We advance 

simulation time as Monte Carlo system steps.  That is, during a single time unit we randomly 

select  sites for updating via the individual-based model. Then each site, on average, updates 

once per time step.   

2L

 Figure 2A plots Q  as a function of 21t .  Q  declines toward zero for both very short 

( 21t ) and very long ( 21t ) periods.  At intermediate periodicity, when 21t  is “less 

than but within the same order of magnitude” as  , which we write as 

21t , Q  takes 

distinctly non-zero values.  Hence the competitors’ dynamics should exhibit two major transitions 

as 21t  increases - implying three different dynamical behaviors.  Figure 2B verifies the 

transitions.  The scaled variance  has two peaks (more pronounced as habitat size increases), 

each indicating a crossover from one dynamics to another. 

Q
LX
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 Consider 2/1t  first.  The rapidly oscillating environment interrupts the dynamics’ 

relaxation toward equilibrium each half-period; see Buceta et al. (2004).  Hence, once both 

species have entered the habitat, neither can exclude the other (in ecological time), and we 

observe non-equilibrium coexistence.  Figure 3A shows that the difference in global densities 

responds regularly, but with small magnitude, to each brief half-period’s competitive asymmetry.  

Among periods the dynamics behaves, in effect, as if the time-varying environment had been 

replaced by its average (in physicists’ terminology, the rapid, periodic environmental variation 

“anneals” propagation rates); see inset of Fig. 3A.  In turn, the period-averaged density difference 

(or dynamic order parameter) Q  randomly fluctuates about zero (Fig. 3D). Stated very carefully, 

we may say that reproductive advantage alternates so rapidly that the competitive interaction approaches

the indeterminate case where the two species have identical demographic parameters.  Over the long 

term, the species slowly exchange roles of more and less abundant (  tm  changes sign, inset of 

Fig. 3A; see Fig. 10A), but each competitor’s global density exceeds the background level 

maintained by introduction. 

 The non-equilibrium coexistence induced by rapid environmental fluctuation inhibits large-

scale spatial order.  Species 2 is rare initially.  Introduced individuals of species 2 generate 

relatively small, randomly located clusters.  These clusters ordinarily expand and contract a bit 

during consecutive half-periods, and some (by chance) grow large enough to persist at length.  

That is, some clusters grow sufficiently large to maintain their single-species equilibrium within, 

and localize between-species competition to their periphery (Allstadt et al., 2007; 2009), promoting 

cluster longevity.  Consequently, neither competitor produces the single large-scale cluster that 

precedes exclusion of the other species (Gandhi et al., 1998; 1999; Yasi et al., 2006).  Figure 4, A 

and B, shows detail of the spatial system at the completion of consecutive half-periods.  During 

the first half-period, species 2 had the greater propagation rate and advanced (Fig. 4A), and 
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species 1 had the advantage during the second half-period (Fig. 4B).  Local correlations are 

evident, but the system does not exhibit ordering at extended distances and coexistence results. 

 Second, we increase the half-period to match invasion time, so that 

21t  for MC 

parameters.  Compared to the rapid environmental fluctuation just described, the reduced 

frequency of competitive reversal allows the dynamics to respond more strongly to the exogenous 

signal each half-period.  Within most (but not all) intervals of length , the density-difference  

cycles from  to , and then returns to 

2/12t

9.0m 0m 9.0m  (Fig. 3B).  That is, species 2 

advances from rarity during the half-period when it had the greater individual–level propagation 

rate, so that at the end of the half-period global densities are roughly equal (Fig. 5A).  During the 

next half-period, the now superior species 1 grows and excludes species 2 (Fig. 5B).  We refer to 

this pattern as an invasion-exclusion cycle. Since   is defined as the mean time elapsing until 

an inferior, resident species’ density is halved, the system’s behavior when 21t  and   are 

approximately equal follows from our understanding of invasion in a constant environment.  The 

resident species maintains a greater density over the course of an entire environmental period, 

although it has no greater average propagation rate.  Indeed, for thousands of consecutive periods, 

one species advances during one “season,” only to be excluded the next – despite the two species’ 

identical period-averaged demographic rates.   

 However, rough equivalence of the competitors’ average densities appears over extended 

timescales. Although the same invasion-exclusion cycle repeats for a long time, noise can generate 

spontaneous density fluctuations large enough to “flip” global densities so that the rare species 

becomes the more abundant.  Figure 3E shows that Q, at apparently random times, switches from 

 to , reversing roles of common and rare species in less than 102 periods.  This 

lengthy-timescale switching between the two phases, each of which has a single, numerically 

dominant species throughout, is the manifestation of spontaneous symmetry-breaking in an 

6.0Q 6.0Q
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interacting particle system (Binder and Heerman, 1997).  This process, often referred to as a 

dynamic phase transition, has been well studied in physical systems with local interactions (e.g., 

Korniss et al., 2000; Machado et al., 2005; Robb et al., 2007).  Applying an insight from these 

studies yields an interesting ecological prediction: as a function of habitat size, the switching time 

between the two symmetric phases should increase faster than any power law.  That is, the 

waiting time for fluctuations spanning the habitat, and consequently capable of switching the 

species’ abundances, should increase exponentially with the size of the habitat (Goldenfeld, 

1992).  Figure 6 demonstrates this effect in our model.  Matching of the fundamental timescales 

gives rise to symmetry breaking, i.e., long-term dominance of one of the species (in very large 

habitats) despite the same mean demographic rates.  At any given time, it is highly probable that 

one species holds numerical superiority; the other is introduced and then excluded each period.  

But one cannot predict, a priori, which species will be common. 

 Third, when the half-period exceeds the timescale of invasion, 21t , the currently 

superior species excludes the other following each environmental change.  Invader clusters grow, 

coalesce, and the invader’s global density advances to single-species equilibrium before roles 

reverse, i.e., competitive exclusion is completed each half period.  The symmetric limit cycle of 

 and associated Q values are plotted in Figs. 3C and 3F, respectively.  tm

Growth rates and global densities 

Our model’s preemptive competitors are equally subject to self-regulation and interspecific 

competition; hence we observe near constancy of summed densities during simulation (Fig. 1, C 

and D).  Given the symmetry in the temporally varying propagation rates, each growth rate 

 iG  , averaged over time, should be zero.  But the difference between the dynamics of non-

equilibrium coexistence and invasion-exclusion cycles (i.e., the absence/presence of time for the 

system to relax to equilibrium) might be revealed in growth-rate variation.  Large samples of per

capita growth rates reflect this difference only subtly.  Figure 7 (A - D) plots 103 logarithmic 
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growth rates (   tG i  ) of the initial resident (species 1) and initial invader (species 2), for both 

2/1t  and 


21t .  We sampled each species regularly at intervals large enough to assure 

statistical independence. 

 Figures 7A and 7B reiterate the point that under rapid environmental oscillation, 

nonequilibrium coexistence allows each species, over lengthy timescales, to explore the same 

range of global densities.  Comparing Figs. 7A and 7C shows that for species 1 (the initial 

resident) neither the spatially averaged growth rates nor their levels of variability depend on that 

species’ global density.  For matching timescales (Figs. 7C and 7D), we observed the invader’s 

growth rate more often at low density, a result of its initial rarity.  Figure 7D indicates invasion-

exclusion cycles of invader growth; growth-rate variability is larger for lower levels of   .2 t   

This pattern of variability is likely more than an effect of increased samples at low density.  Invasion-

exclusion cycles imply negative growth rates for species 2 even at low density when it has the lesser  

propagation rate and faster growth when it is rare during half-periods when it has the greater propagation rate. 

 Single-cluster invasion in a periodic environment 

Setting  and letting L = 64 or 128 assure SC invasion in a constant environment.  

Waiting times for successful introduction and invader nucleation are much longer for SC than for 

MC invasion (O’Malley et al., 2005).  For L = 64, we estimate invasion time 

610

  14000, and 

estimate   6000 for L = 128.  Therefore, we simulated a greater range of 21t  for SC invasion 

than for the MC case. 

 Figure 8A plots Q  against the environment’s half-period.  Q  takes distinctly non-

zero values at small 21t , and declines toward zero as period length increases.  The scaled variance 

, Fig. 8B, has a single peak, for given habitat size L, where Q
LX 21t .  The two results concur; 

scarab
Typewritten Text
a
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the dynamics exhibits a single major transition as 21t  increases, crossing over where the 

exogenous and endogenous timescales match. 

 For a rapidly alternating environment ( 21t ), the rare species never can invade 

successfully (over 105 to 106 periods).  Invader appearance and minimal spatial growth occur 

when the rare species has the greater propagation rate; see Figs. 9A and 9D.  But exclusion of the 

invader follows quickly after competitive advantage switches to the resident.  The frequency of 

environmental change, combined with a very small introduction rate, inhibits formation of a 

critically sized cluster of the rare species.  Given an initially common species, the likelihood that 

the invader can establish a persistent cluster before losing competitive advantage and being 

excluded remains quite small. 

 When the environment changes very slowly, so that 21t , sufficient persistence of 

its propagation-rate advantage lets the currently superior competitor invade and exclude the other 

species in almost every half-period.  Species’ densities, hence  tm , exhibit limit cycles, and Q 

fluctuates about zero; see Figs. 9C and 9F.  

For rapid environmental change, the invader cannot disrupt the resident’s spatial order, 

even though the species are “on average” equivalent.  For very slow environmental change, 

invasion and invader growth from rarity to numerical abundance are assured. 

Single-cluster invasion and stochastic resonance 

Finally, consider matching timescales ( 21t ) in the SC regime.  Figure 9B shows that  tm  

responds to environmental periodicity but does not track it faithfully.  In some half-periods the 

species with temporary competitive advantage advances from rarity and excludes the resident. But 

successful invasion in any given period is uncertain.  That is, the dynamics unpredictably 

switches between exclusion of one species and exclusion of the other; see Fig. 9E.  Hence the 
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competitive system exhibits a transitional behavior between (essentially) no invasion 

( 21t ) and almost certain invasion each half-period ( 21t ). 

 Erratic switching between competitive-exclusion states when the two timescales match 

suggests stochastic resonance (Gammaitoni et al., 1998).  Consider a nonlinear system with two 

locally stable, equilibrium nodes. To this we add a relatively small periodic input (alternating 

propagation rates).  Depending on the initial conditions, the dynamics will then oscillate gently 

around one or the other equilibrium; the system will not “switch” between alternative equilibria.  

        Next we add noise. The system now has a non-zero switching probability. That is, with

stochasticity added, the dynamics may move from one attractor to the other.  This switching in 

the presence of noise, whether randomly erratic or approaching the pattern of the periodic input, 

defines stochastic resonance (Marchesoni et al., 1996; Huppert and Stone, 1998; Sides et al., 

1998a; Vilar and Solé, 1998; Korniss et al., 2002). 

 Our competition model does not exhibit bistability.  In a constant environment, exclusion 

of the inferior species is the sole positive equilibrium.  However, the competitively inferior 

resident can resist invasion for a long time because competition is preemptive (Korniss and Caraco, 

2005).  The constant-environment model possesses a stable equilibrium and a metastable “quasi-

equilibrium.” Over a half-period, the latter may prevent the system from moving to the stable 

equilibrium.  This sort of asymmetric system also can exhibit stochastic resonance when stability 

properties periodically reverse (Stocks et al., 1993; Leung and Néda, 1999). 

 To demonstrate stochastic resonance in the simulation data, we estimated frequencies of 

waiting times elapsing between consecutive occurrences of equal species’ abundance (i.e., 

consecutive times when  = 0).  Designate the random waiting time .  For square-wave 

external variation, Korniss et al. (2002) assume that the time for growth of a nucleated cluster is 

negligible and approximate the probability density of analytically.  The density, , has a 

shape symmetric about odd multiples of the half-period 

 tm rt

rt  rtf

21t : 
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where 2/1t ,     eeg n 1)(
1 , and n = 1, 2, ...  Figure 10 plots observed 

 for )( rtf 4
21 102.1 t .  Observed frequencies peak at odd multiples of the half-period, the 

signature of stochastic resonance (Gammaitoni et al., 1998; Acharyya, 1999; Sides et al., 1998b; 

Korniss et al., 2002), and match predicted  rtf  reasonably well. 

DISCUSSION 

Our simulation study examines spatial competition in light of interaction between the timescale of 

environmental variation, relative to mean invasion time, and the spatial-clustering pattern 

underlying those invasions that succeed.  When the environment varies slowly relative to the 

population-dynamic timescale, multi-cluster and single-cluster invasion processes predict the 

same qualitative behavior.  Each half-period the currently advantaged competitor invades and 

excludes the resident; the environment never interrupts the endogenous relaxation to equilibrium.  

However, the timescale-difference interacts with invasion regime when the environmental half-

period matches, or is less than, mean invasion time.  We observe a range of dynamics, from 

exclusion of the rare species to unpredictable exclusion of the resident. 

Figure 11A shows time-dependent densities for a rapidly alternating environment in the 

MC-regime.  The two species are effectively equivalent competitively, and we observe non-

equilibrium coexistence.  Decreasing the pace of environmental change to match invasion time 

(Fig. 11B) generates invasion-exclusion cycles, since the longer half-period often permits 

relaxation to the currently favored single-species equilibrium.  For the SC-regime, Fig. 11C 

shows the results for rapid environmental variation; the rare species cannot generate a cluster 

large enough to invade.  Finally, increasing the half-period length to match invasion time in the 

SC-regime generates stochastic resonance; see Fig. 11D. 
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 When the environmental and endogenous timescales match, the long-term dynamics is 

least predictable.  In the MC-regime the short-term dynamics is dominated by invasion-exclusion 

cycles driven by introduction events and alternating competitive advantage.  However, randomly 

(though rarely) the species quickly exchange roles of common and rare.   The period-averaged 

density difference (Q) exhibits little short-term variation, but varies bimodally over the long term 

(Fig. 3E).  Hence the norm of the dynamic order parameter Q  (see subsection on Metrics) best 

captures the symmetry breaking associated with the dynamic phase transition from numerical 

dominance by one species to dominance by its competitor.  Deterministic environmental 

periodicity and stochastic spatial propagation combine to render long-term prediction uncertain 

for MC-invasion.  For the SC-regime, uncertainty inherent to stochastic resonance is summarized 

by the distribution of waiting rimes between switches in roles of common and rare species (Fig. 

10). 

 We began simulations with one species common and the other at zero density, focusing 

on the dynamics of rarity.  We wondered if the invader’s consistent failure to advance in the SC-

regime ( 21t ) and/or the exclusion-invasion cycles in the MC-regime ( 


21t ) were 

consequences of initial conditions.  We repeated these simulations (only once each) with initial 

condition  48.0,5.0 21   .  The results, presented in Fig. 12, closely resemble those in Fig. 

11, after transients disappear.  We conclude that the dynamics does not depend on initial 

conditions. 

 Any approximation to our model that assumes strong spatial mixing will fail to produce 

the observed range of dynamics (Antonovics et al., 2006).  Our model’s properties of discreteness 

and stochasticity define its fundamental character (O’Malley et al., 2009), and the dynamics of 

rarity is studied realistically by assuming discrete individuals and stochastic demographic events 

(Durrett and Levin, 1994; Ellner et al., 1998; Duryea et al., 1999; Escudero et al., 2004). 
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 We described our work as examining interaction of the difference between timescales 

with invasion regime.  This categorization organized our simulation study.  However, scaling 

arguments of nucleation theory allow us to simplify the description as interaction between the 

exogenous timescale 21t  and the introduction rate  , since both the characteristic time scale   

and the characteristic length scale D of the endogenous dynamics depend on  . 

 Consider MC-invasion in a constant environment, and let habitat size L grow large.  Then 

  3/12~


 I , where I is the nucleation rate/unit area, and  is the radial velocity at which 

nucleated clusters of the superior competitor grow.  We noted above that 3/1~  , since 

~I  (see Appendix 1).  That is, the characteristic time scale for MC-invasion increases as the 

inverse of the cube root of the introduction rate (Korniss and Caraco, 2005).  The characteristic 

length scale D, the expected distance between nucleated invader clusters, scales as   3/1~ ID  , 

and we have  (O’Malley et al., 2006a).  That is, the characteristic length scale for MC-

invasion also increases as the inverse of the cube root of the introduction rate. 

3/1~ D

 Propagation and mortality rates are fixed in a constant environment.  From above, for any 

fixed habitat size L, there is a critical introduction rate C  such that for C  , we have 

.  Then constant-environment invasion crosses over to the SC-regime where LD  3/1~ 

1~  .  Therefore, both the endogenous timescale and invasion mode (given habitat size) 

depend on the introduction rate, and our results reveal an interaction between 21t  and  . 

Model context 

Our model assumes rare, but repeating, introduction of individuals, an assumption prompted by 

observed invasions of non-native species (Veltman et al., 1996; Loreau and Mouquet, 1999; Sax 

and Brown, 2000).  Not every introduction succeeds; those that do initiate spatially clustered 

growth.  The assumption of spatially explicit introduction contrasts with models treating a rare 
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species’ as spread uniformly across an environment (Snyder and Chesson, 2004).   The period-

averaged competitive symmetry of our model’s two species is less realistic.  However, the results 

offer a comparison for spatial competition where a superior species’ advantage varies temporally. 

 A number of previous models examine competition under temporal variation; this study 

and Chan et al. (2009) differ by taking an individual-based perspective.  Chesson’s (1990) study 

represents a standard class of models for competition under temporal variation.  Seed-bank 

densities of two, homogeneously mixing plant species are tracked in discrete time.  A varying 

environment and density-dependence affect each species’ annual growth rate/unit density.  That 

is, the fraction of a species’ seeds germinating varies randomly between generations, and 

competition reduces the seed yield/adult.  Analysis focuses on growth-rate responses to 

competition in good vs bad environments, and on differences in the growth rates’ response to 

increasing competition across environments.  This type of model permits greater between-species 

differences than do our assumptions; coexistence mechanisms are therefore more general.  Model 

construction assumes a single scale for temporal variation; the environment changes randomly, 

independently each discrete generation.  However, autocorrelation can be used to manipulate the 

exogenous time scale (Chesson, 1990).  

 Another approach considers timescale interaction explicitly, but retains the 

homogeneous-mixing assumption.  Abrams (2004) develops a continuous-time model where two 

consumer species compete for a common resource that has its own dynamics with a periodic 

growth rate.  Trade-offs can promote persistence.  If the species with lower efficiency at high 

resource density has the greater efficiency at low resource density, coexistence can result.  

Abrams (2004) focuses on the rapidity of the consumers’ demographic responses to temporal 

variation in resource density, and concludes that interaction of endogenous population dynamics 

and periodic environmental variation impacts patterns in competitor abundances.  Recer et al. 

(1987) and Cross et al. (2005) make similar points for simpler systems. 
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Schoolmaster and Snyder (2007; see Snyder, 2007) combine temporal and spatial 

variation in a model for competing perennial plants occupying a 1-dimensional environment.  An 

adult’s seed dispersal and competitive suppression of seedling establishment both decline with 

distance from the adult.  Establishment further depends on an environmental quality that varies 

periodically both in time and along the linear environment.  Each periodicity has its own scale.  

The authors ask how these fluctuations, compared to environmental constancy, affect the growth 

rate of a rare species dispersed at uniformly along the environment.  The results suggest that the 

impact of environmental variation depends on its interaction with the competitors’ life history 

traits (Schoolmaster and Snyder, 2007), hence interaction with the population dynamic timescale.  

A series of different models addressing interspecific competition agree that quantitative and 

qualitative predictions can depend on the interaction of endogenous and exogenous timescales. 

Chan et al. (2009) model individual-based competition between species.  Each species’ 

birth rate varies seasonally, the species’ respective death rates are fixed, and introduction is not 

considered explicitly.  The authors seek analytical conditions for coexistence.  To do so, they 

relax spatial structuring of offspring dispersal, a key assumption of our study.  Given a 

sufficiently large dispersal neighborhood, Chan et al. (2009) prove that temporal variation may 

promote coexistence, which is not found absent the variation.  Sufficient conditions for 

coexistence match those of the homogeneous mean-field approximation to their model. 

Cross-disciplinary integration 

Our results demonstrate that the impact of a periodic environment on spatial competition can 

depend on the difference between exogenous and endogenous timescales, and that the resulting 

dynamics can be complex.  Similar analyses of interacting timescales have successfully advanced 

understanding of spatially structured physical systems (Chakrabarti and Acharyya, 1999).  

Particular examples include time-dependent properties of ferromagnetic thin films in an 

oscillating external magnetic field (Korniss et al., 2000; Robb et al., 2007, 2008; Buendia and 

Rikvold, 2008), and behavior of a catalytic reaction subject to periodic variation in CO pressure 
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(Machado et al., 2005).  These systems can exhibit the symmetry breaking we found when the 

endogenous and exogenous timescales matched in the MC-invasion regime.  Details of local 

interactions differ substantially among these physical and spatial models in ecology.  But they 

share important dynamical behaviors emerging from timescale interaction.  We hope that the 

convergent predictions suggest a more general understanding.  
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APPENDIX 1 

Summarizing model transitions at an arbitrary site  in a constant environment, we have: x

 
,02,01,20,10

)(2211 


 xx

   (A.1) 

where 0, 1, 2 indicates whether the site is empty, resident-occupied, or invader-occupied, 

respectively.  In a constant environment, simulations always reveal strongly clustered growth of 

the competitively superior invader.  Once an invader cluster reaches the critical radius, that 

cluster, on average, grows approximately deterministically with radial velocity v. 

 For small environments or for sufficiently small introduction rates, so that DL  , 

invasion almost always occurs through spread of a single invader cluster.  That is, a habitat size 

much smaller than the mean distance between clusters (the mean we would observe in an infinite 

environment) implies the SC regime.  In simulation we confirmed that nucleation of a successful 
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invading cluster is a Poisson process with nucleation rate per unit area I .  In the SC regime, the 

lifetime of the resident species   is dominated by the lengthy waiting time until the first 

successful invader cluster nucleates.  Differences between competitors’ propagation and mortality 

rates govern the time required for the cluster to grow and exclude the resident, but this time is 

short compared to the waiting time for nucleation (O’Malley et al., 2006a).  Therefore, if is the 

exponential waiting time until nucleation occurs (the first invader cluster reaching ), then 

nt

critR

  12  ILtn  in the SC regime.  The  -dependence of the nucleation rate per unit area  is 

~I .  Therefore,   12 
 Ltn ; waiting time for invasion varies inversely with habitat area 

and the introduction rate.   

 Foe SC invasion, the cumulative distribution of invasion times   tPr , i.e., the 

probability that the resident’s global density has not decayed to 2

*
1  by time t is a modification 

of the 0-term of a Poisson probability function : 









gng

g
not tttt

tt
tP

for]/)exp[

for1
)(    (A.2) 

t(

In the SC-regime,  is the approximately deterministic growth time until the invading 

species drives the resident to half its initial density.  For very small nucleation rates per unit area, 

.  Therefore, the lifetime of the resident 

vLtg /~

gtnt   is governed by the large average waiting time 

until the first successful invader cluster nucleates, so that  in the SC 

regime. 

2 )( ILttt ngn 1

 In large environments (or for large introduction rates),  tPr  approaches a step-

function centered on the system size-independent lifetime  .  In the limit of a large 

environment, we can approximate global densities closely by Avrami’s Law, or KJMA theory 

(Kolmogorov, 1937; Johnson and Mehle, 1939; Avrami, 1940): 
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where . An important result in nucleation theory, Avrami's law provides the 

generic functional form of the time-dependent global densities during MC invasion. Further, the 

parameters of a specific model for spatially structured ecological interactions (i.e., the local 

transition rates 

3/12 )(  Iv

1 , 2 ,  , and  ) govern the characteristic time scale (the lifetime  ) 

through their impact on the nucleation rate per unit area ),,,( 21 I  and the invader-cluster 

radial velocity ),,( 1 2 v



. Thus, Eq. (A.3) also identifies an important connection between 

model-specific processes at the level of individual propagation/mortality rates and pattern at the 

population-dynamic level.  We previously linked these two organizational levels through the 

nucleation rate  ,,, 21I  and the invader-cluster radial velocity   ,, 21v ; see O’Malley 

et al. (2006a, 2009). 

 Our paper examines a specific model, but the framework of nucleation theory has broad 

ecological significance.  Any time-homogenous invasion processes combining rare introduction, 

preemptive competition, and localized propagule dispersal (i.e., strong dispersal limitation) in a 

large environment will likely generate spatially clustered growth and global dynamics consistent 

with nucleation theory’s predictions (O’Malley et al., 2006a, 2009; Allstadt et al., 2007).  That is, 

in a constant environment nucleation theory should predict not only equilibrium states, but also 

time-dependent global densities, when locally dispersing species compete for space.  
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FIGURE LEGENDS 

Fig. 1. Time-dependent densities )(ti  ( 2,1i ), density difference )()()( 21 tttm   , and 

total density  )(t)()( 21 tt  tot

) 410

 in a periodically changing environment; the square wave 

illustrates .   and habitat size (t 128L  in each plot. Here, and throughout this study, 

the mortality rate is 1.0 .  The invasion time for these parameter values is 1240 , and is 

essentially independent of the habitat size for sufficiently large ( ) habitats.  (A) Time-

dependent densities for 

64L



 8002/1t ; (B) for  40002/1t  (solid curve is )(1 t  and 

dashed curve is )(2 t ).  (C) Time-dependent density difference (solid curve) and total density 

(dashed curve) for 

 8002/1t ; (D)  for 2/1t 4000 .  

 

Fig. 2. Metrics for multi-cluster invasion.  (A) Average of absolute value of  as function of 

environmental half-period 

Q

21t .  ; habitat size L = 90, 128, 180, 256.  410 1240   for each 

of these habitat sizes.  (B) The scaled variance of Q .  Peaks indicate values of 21t  where 

transitions in competitive dynamics occur. 

 

Fig. 3. Multi-cluster regime: segments of the density difference  tm  as a function of time, and 

period-averaged density difference Q  plotted for a large number of consecutive periods.  

  and habitat size L = 128.  (A) 410  1002/1t .  Note scale of ordinate.  Inset:  Long-

term plot, indicating non-equilibrium coexistence with roughly equal averaged densities.  (B) 



 8002/1t .  Invasion-exclusion cycles.  Inset:  Long-term plot.  (C)  40002/1t .  

System reaches single-species equilibrium during each, lengthy half-period.  (D) 

1002/1t ; each period lasts 200 time units.  (E) 

 8002/1t ; each period lasts 1600 
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time units.  Note large transitions in Q  (m changes sign).  (F)  40002/1t ; note limited 

scale of ordinate. 

 

Fig. 4.  MC-regime, 1002/1 t .  Open: white, Species 1: gray, Species 2: black.   (A)  

Lattice at end of half-period during which species 2 had propagation advantage.  (B) Lattice at 

end of next half-period; species 1 had propagation advantage.  Neither species establishes large-

scale spatial order; competitors coexist with densities fluctuating. 

 

Fig. 5.  MC-regime, 

 8002/1t .  Open: white, Species 1: gray, Species 2: black.   (A)  

Lattice at end of half-period during which species 2 had propagation advantage; .  (B) 

Lattice at end of next half-period; species 1 had propagation advantage;  

  0tm

  9.0tm  at completion 

of invasion-exclusion cycle. 

 

Fig. 6. Spontaneous dynamic symmetry breaking in the MC regime for 

 8002/1t . 

Period-averaged density difference Q for  consecutive periods for four habitat sizes L = 64, 

90, 128, 180 (from top to bottom) for the same parameter values as in Fig. 3E. 

410

 

Fig. 7.  Logarithmic growth rates, as functions of density, MC-regime.  Species 1 (plots A, C) is 

resident, with initial density  0.86.  Species 2 (plots B, D) is the invader, with initial density 0.  

A, B: 1002/1t ; C, D: 

 8002/1t .  Each plot includes 1000 estimates, sampled 

regularly at intervals of 500 time units.  When the environment oscillates relatively rapidly (plots 

A, B) non-equilibrium coexistence allows each species to traverse the same range of global 

densities over 105 time units.  The growth-rate plots are nearly identical.  When timescales match 
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(plots C, D) we observed the invader more often at low density, a consequence of initial 

conditions.  Furthermore, matching timescales ( 8002/1 t ) indicate invasion-exclusion cycling in 

invader growth; growth-rate variability is relatively large for 2.0)(2 t . 

 

Fig. 8. Metrics for single-cluster invasion.  (A) Average of absolute value of Q as function of 

environmental half-period 21t .  ; habitat size L = 64, 128; 610   14000, 6000, 

respectively.  (B)  The scaled variance of Q.  Single peak indicates value of 21t  where transition 

in competitive dynamics occurs.  Inset: Rescaling shows singular phenomenon. 

 

 tmFig. 9. Single-cluster regime: segments of the density difference  as a function of time, and 

period-averaged density difference Q plotted for  consecutive periods.  ; habitat 

size ; 

310 610

128L 6000 .  (A)  4002/1t .  Note limited scale of ordinate.  Inset:  Long-

term plot, showing that species 2 never advanced significantly during simulation.  (B) 

 80002/1t .  Stochastic resonance.  (C) 2/1 20000t .  System reaches single-

species equilibrium during each, lengthy half-period.  (D) 4002/1t ; each period lasts 800 

time units.  Note limited scale of ordinate.  (E)  80001t 2/ ; each period lasts 16000 time 

units.  (F)   200002/1t ; cf. Fig. 3F. 

 

Fig. 10. Waiting-time distribution under stochastic resonance.  Abscissa is waiting time between 

consecutive zero-crossings of ; , L = 128, .  Solid curves: theoretical 

density; small circles: observed waiting times, which peak at odd multiples of half-period - a 

signature of stochastic resonance. 

 tm 610 4
2/1 102.1 t
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Fig. 11.  Time-dependent densities.  128L . Initial densities:       0,, *
121  tt .  (A) MC-

regime; 1002/1t , non-equilibrium coexistence.  (B) MC-regime; 

2/1t 800 , 

invasion-exclusion cycles.  (C) SC-regime;  4002/1t .  No invasion observed.  (D) SC-

regime;  80002/1t .  Stochastic resonance. 

 

Fig. 12.  Time-dependent densities. 128L . Initial densities:       48.0,5.0, 21 tt  .  

(A) MC-regime 

 8002/1t ;.  Invasion-exclusion cycles, as in Fig. 11B.  (B) SC-

regime;  4002/1t .  System attracted to single-species equilibrium as in Fig. 11C.
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Figure 2. 
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Figure 4. 
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Figure 6. 
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Figure 7.  
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Figure 8. 
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Figure 10. 
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Figure 11. 
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