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Models for spatial invasion often adopt a reaction-diffusion formalism, treating population

densities as continuous variables. A deterministic reaction-diffusion system may yield an

analytic approximation for invasion speed, given by the asymptotic velocity of a traveling

wave [Andow et al. 1990, Caraco et al. 2002, Murray 2003]. But traveling waves invoke

infinitesimal population densities [Durrett and Levin 1994, Pachepsky and Levine 2011],

and the linearized front can be “pulled” by reproduction and dispersal of the invader at

locations where its population density is near 0 [Lewis and Kareiva 1993, Snyder 2003].

Deterministic reaction-diffusion theory neglects the discreteness of individuals, the

fundamental source of endogenous, random fluctuations, and consequently overestimates

the velocity of an individual-based, dispersal-limited dynamics [Escudero et al. 2004].

Therefore, deterministic reaction-diffusion equations, and their generalizations, oversimplify

the dynamics of rarity [Clark et al. 2003]; they cannot capture consequences of strong

dispersal limitation, in particular, the spatially correlated variability along the interface we

studied experimentally.

Discrete (individual-based) models reveal effects of nonlinear, stochastic growth

processes driving an ecological interface [Wilson 1998, Moro 2001]. Discrete models predict

front-propagation behaviors that differ from results of deterministic diffusion models
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[van Saarloos 2003]. When dispersal is limited to a local neighborhood, the interface is

“pushed” at a velocity less than that of the corresponding deterministic diffusion model

[Moro 2003]. As a stochastic model’s interface roughens, the distance over which density

fluctuations are correlated grows [Rácz and Gálfi 1988, Majumdar and Comtet 2004];

consequently, the front-runner’s lead is an extreme value among dependent random

variables.

Given the assumption that a spatially clustered invader displaces a resident competitor,

the front is pushed into a meta-stable medium

[Korniss and Caraco 2005, O’Malley et al. 2006a]. If the same invader were to propagate

into empty space (i.e., a region where the invader does not encounter biotic resistance), the

front would be pushed into an unstable medium. Invasion velocity is, of course, slower in

the former case [Allstadt et al. 2009]. Interestingly, the two fronts will roughen similarly;

the same interface-length dependent scaling will emerge.

Assuming an ecological interface advances as a pushed front, consider the scaling

relationships of a self-affine interface [Barabási and Stanley 1995]. During development,

roughness increases with time according to 〈w2(L, t)〉 ∼ t2β . The time of crossover to

statistical equilibrium increases with interface length according to t× ∼ Lz. After

saturation, roughness increases with interface length according to 〈w2(L,∞) ∼ L2α. Figure

1 summarizes these relationships graphically.

Our scaling model is based on combined analytical and computational study of

stochastic partial differential equations for surface growth. A lattice-based model should,

for proper choice of length scale, induce a continuum equation which approximates an

interface defined by discrete heights hy(t) with a smooth curve [Barabási and Stanley 1995].

The resulting equation for ∂hy(t)/∂t can include both growth terms depending on the
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Figure 1: Roughening over time, both scaled logarithmically. 〈w2〉 increases as a power law during

interface development. Time of crossover and degree of roughening at saturation both scale with

interface length.

∂hy(t)/∂y, the local gradient in height, and a noise term. Scaling relationships suggested

by analysis of the continuum equation can be verified in simulation [Kardar et al. 1986].

Different models for individual-level demographic processes driving invasion may exhibit

the same dependence of roughening on time, and the equilibrium width may exhibit the

same dependence on interface length. Such roughened interfaces belong to the same

“universality class;” universality offers powerful generalization. O’Malley et al. (2006b)

analyzed a model for an advancing front in a habitat where dispersal-limited species

compete for growth sites. They found that the model’s roughening behavior belongs to the

KPZ universality class, for Kardar-Parisi-Zhang [Kardar et al. 1986]. For the broad class

of models exhibiting KPZ universality, roughening of a one-dimensional interface (hence

the habitat has two dimensions) implies that the dynamic exponent z = 3/2, the growth

exponent β = 1/3, and the roughening exponent α = 1/2. The growth exponent of our
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experimental fronts was close to 1/3, but the roughening exponent was < 1/2. Hence, the

clover growth we observed was more “space-filling” than an interface belonging to the KPZ

universality class.

Despite successful application of KPZ scaling relationships to a series of real-world

questions, the model’s assumptions are fragile. The nonlinear stochastic differential

equation underlying the derivation of the scaling exponents includes additive Gaussian

noise, uncorrelated in space and time. If the noise, instead, has spatial or temporal

power-law correlation, or if the noise remains an uncorrelated, but non-Gaussian process,

then the exponents change [Sneppen 1992].
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