1. The NAND operator is defined as

\[x \text{ NAND } y \equiv \neg(x \land y) \]

Prove, without using truth-tables, that

\[p \rightarrow (q \text{ NAND } r) \equiv (p \text{ NAND } q) \lor (p \text{ NAND } r) \]

No credit will be given if you use truth-tables. (Remark: Case analysis is no different from using a truth-table.)

\[p \rightarrow (q \text{ NAND } r) \equiv p \rightarrow (\neg q \lor \neg r) \equiv \neg p \lor \neg q \lor \neg r \equiv (\neg p \lor \neg q) \lor (\neg p \lor \neg r) \equiv (p \text{ NAND } q) \lor (p \text{ NAND } r) \]

2. Is the following quantified formula true over the set of integers \(\mathbb{Z} \)?

\[\forall x \exists y \ [(x < y) \rightarrow (x^2 < y^2)] \]

Justify your answer clearly.

True: Pick \(y = |x| + 1 \) whatever \(x \) is.

3. Let \(A = \{x, y, z\} \). Specify a binary relation \(R \) on \(A \) such that \(R \) is not reflexive, but \(R \circ R \) is reflexive. You should explain for your example why \(R \) is not reflexive but \(R \circ R \) is.

\[R = \{(x, y), (y, x), (z, z)\} \]

4. Let \(A = \{a, b, c, d\} \). How many binary relations over \(A \) are both symmetric and antisymmetric?

\[2^4 \]

5. Let \(\mathbb{N}^+ = \{1, 2, \ldots\} \) denote the set of positive integers. Consider the function \(f \) from \(\mathbb{N}^+ \) to \(\mathbb{N}^+ \) defined as follows:

\[f(x) = 1 + \text{ the number of 9's in the decimal representation of } x. \]

For example, \(f(1) = 1, f(293) = 2, f(1929) = 3. \)

(a) Is \(f \) one-to-one? Justify your answer.

(b) Is \(f \) onto? Justify your answer.
6. Suppose \(A = \{a, b, c, d\} \) and \(B = \{1, 2, 3\} \). How many functions from \(A \) to \(B \)
(a) map \(a \) to 1, and
(b) are not onto?

In other words, how many functions satisfy both conditions (a) and (b)?

There are 27 functions from \(A \) to \(B \) that also map \(a \) to 1. There are 6 onto functions from \(\{b, c, d\} \) to \(\{1, 2, 3\} \) and 6 onto functions from \(\{b, c, d\} \) to \(\{2, 3\} \). Thus the answer is \(27 - (6 + 6) = 15 \).

Alternatively, there are 8 functions from \(\{b, c, d\} \) to \(\{1, 2\} \) and 8 functions from \(\{b, c, d\} \) to \(\{1, 3\} \). The function that maps every element in \(A \) to 1 is common to both counts; thus the answer is \(8 + 8 - 1 = 15 \).

9. Alice hiked for 10 hours and covered a total distance of 35 miles. It is known that she covered 4 miles during the first hour and only 2 miles during the last hour. Prove that she must have hiked at least 8 miles within a certain period of two consecutive hours.

Let \(x_1, x_2, \ldots, x_{10} \) be the distances that Alice covered each hour. Suppose \(x_i + x_{i+1} \leq 7 \) for all \(i < 10 \). Then

\[
(x_1 + x_2) + (x_2 + x_3) + \ldots + (x_9 + x_{10}) \leq 63
\]

Adding \(x_1 \) and \(x_{10} \) to this, we get

\[
2x_1 + \ldots + 2x_{10} \leq 69
\]

and thus

\[
x_1 + \ldots + x_{10} < 35
\]