General Education Assessment Report
Natural Sciences
University in the High School program
2018-19
The University at Albany, SUNY

Prepared by:
Steven Doellefeld, Ph.D., MBA
Director of Assessment

With assistance from Katherine McDermott
Graduate Assistant

September 2019

Office of Institutional Research, Planning & Effectiveness
General Education Assessment
2018-19

Categories Assessed: Foreign Languages, Natural Sciences, US History

Background

In Spring 2019, the University at Albany assessed the degree to which students were achieving student learning objectives in Natural Sciences, Foreign Languages, and US History. A total of 31 courses that meet the Natural Sciences General Education requirements were offered by the University in the High School program during the 2018-19 academic year. Since no instructor is ever sampled for more than one section, there were 8 courses eliminated from the sample pool, as the instructor was already being sampled in another course¹. An additional 5 courses were removed from the sample at the request of the Assistant Director of the University in the High School program. The Natural Sciences sample consisted of 18 classes from high schools across the state that participate in the University in the High School program. The maximum student N in the sample is 261². Enrollments in the sampled courses ranged from 3 to 60.

Sixteen of the 17 instructors sampled (94%) submitted at least some material for the assessment. 12 of the instructors submitted fully completed forms at the end of the semester. The response rate for this assessment is an improvement over the response rate for courses meeting this General Education requirement in the assessment conducted in the 2013-14 academic year, which was about 69%³.

As we have noted for the past few years, the instructor participation rate and quality of documentation received on this administration of the General Education assessment was better than it has historically been. We believe this is attributable to better communication from IRPE, including earlier notification of selection for the sample, and a pre-notification of all instructors in the two categories by the Assistant Director of the University in the High School program, who functioned as a liaison between the IRPE office and the high school teachers who were instructors of the UHS courses. Instructors mapped their courses to specific learning objectives, reflected on assessment results, and discussed how their findings would influence their course design and pedagogy for these courses in future semesters. This is exactly what we hoped the assessment process would produce. Appendix B illustrates these activities and reflections.

¹ Though not asked to do so, one instructor submitted data that reflected responses for two sections taught. We were unable to uncouple these numbers and tie them to each section individually, so they are included here together.
² Note that the numbers in this report vary slightly from learning objective to learning objective—this is reflective of students who may have added or dropped a particular section of a course, as well as those who may have been absent on a day when a particular assessment was conducted.
³ Eleven of those courses were selected for the sample, with respondents noting enrollments ranging from 5 to 48. Nine of the instructors sampled responded. The total enrollment in the 2011-12 academic year is 202 students.
Course Embedded Assessment

Natural Sciences assessment results indicate that the majority of students “Exceeded” or “Met” expectations, as shown in the composite graph below, as well as graphs for each of the individual learning objectives on the following pages. Large majorities of students were reported to have either met or exceeded each of the four learning objectives, with the combined “Exceeded” and “Met” values being 87 - 95% for all four objectives.

Summary of 2018-19 Natural Sciences Assessment Results

The Learning Objectives for the category are as follows:

Natural Sciences courses enable students to demonstrate:

1. an understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence;
2. an understanding of the application of scientific data, concepts, and models in the natural sciences;
3. an understanding of the major principles and concepts that form the basis of the knowledge covered in the course and a command of the relevant terminology appropriate for basic discourse in the particular discipline or disciplines of the course;
4. that they have become more knowledgeable consumers of scientific information and are prepared to make informed decisions on contemporary issues involving scientific information acquired in the course.
1) Students will demonstrate an understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence.

Due to rounding, values may not equal 100%

Figure 2: Natural Sciences Learning Objective 1

2) Students will demonstrate an understanding of the application of scientific data, concepts, and models in the natural sciences.

Due to rounding, values may not equal 100%

Figure 3: Natural Sciences Learning Objective 2
3) Students will demonstrate an understanding of the major principles and concepts that form the basis of the knowledge covered in the course and a command of the relevant terminology appropriate for the basic discourse in the particular discipline or disciplines of the course.

- **Exceeded:** 40%
- **Met:** 49%
- **Approached:** 5%
- **Did not meet:** 2%

Due to rounding, values may not equal 100%

Figure 4: Natural Sciences Learning Objective 3

4) Students will demonstrate that they have become more knowledgable consumers of scientific information and are prepared to make informed decisions on contemporary issues involving scientific information acquired in the course.

- **Exceeded:** 51%
- **Met:** 44%
- **Approached:** 7%
- **Did not meet:** 1%

Due to rounding, values may not equal 100%

Figure 5: Natural Sciences Learning Objective 4
Comparison between UHS and On-campus Student Populations

In the Natural Sciences category, comparisons of performance between the UHS and on-campus populations appear dramatically skewed. While this is not uncommon when looking at the “Exceeded” and “Met” numbers separately, in this particular case the numbers remain skewed even when the “Exceeded” and “Met” numbers are combined. In all cases, the UAlbany students trail UHS students by 23 to 29 percentage points.

Amongst UHS students, between 1% and 3% of students “Did not meet” the respective learning objectives. In comparison, the number of on-campus students who “Did not meet” is between 20%- 22% for each of the learning objectives.
Figure 7: Comparison of Results for UHS and On-campus Populations on Natural Sciences Learning Objective 1

Figure 8: Comparison of Results for UHS and On-campus Populations on Natural Sciences Learning Objective 2
It is important to note that the majority of students who enroll in University in the High School courses tend to be highly motivated and high performing. In fact, only juniors and seniors with an overall average of B or better are allowed to enroll in UHS classes. One could reasonably expect students who have a high overall average to perform well in these classes. Additionally, on-campus students taking courses meeting this General Education requirement may be doing so
only to fulfill the General Education requirement, and that is a potential explanation of differences in performance that appear to exist across these populations.

We also recognize that the UHS courses cover the same material as the on-campus offerings, but typically do so in a year-long format rather than the standard semester format. Additionally, the typical UHS course meets every day, not a few times a week. Both of these could be contributing factors to explain the high performance of UHS students relative to their on-campus counterparts.

Comparison to 2009 & 2014 Results:

In comparison to the 2014 assessment of this General Education category, we see a drop of between 2 and 10 percentage points in the students who exceeded or met each of the four learning objectives. In comparison to the 2009 assessment of this General Education category, we see drops of between one and six percentage points in three of the four learning objectives. It is possible that this drop does not reflect a change in performance, but rather clearer directions and advice regarding the grading expectations being communicated from the UHS office to UHS instructors.

Figure 11: Comparison of Combined “Exceeded” and “Met” Results for UHS Population, 2019, 2014, 2009

4 Note that while this is the fourth round of assessment of the Natural Sciences category for the on campus population, it is the third iteration for the University in the High School program, as General Education assessment of UHS courses didn’t begin until the 2006-2007 academic year.
Time Required to Complete Assessment

The general education assessment forms that instructors complete as part of this assessment process asks them to record the length of time it took them to compile the data and complete the beginning and end of semester assessment forms (Please refer to Appendix C for the further detail). The average for the required preparation time of the data and the completion of the forms was 118 minutes at the beginning of the semester, and about 92 minutes5 at the end of the semester. As is often the case, some respondents did not provide responses to this question on the end of semester form, and thus we are missing data for those individuals (respondents 3 & 17 at the beginning of the semester, and respondents 2, 4, 6, 8, 10, 13, 15 & 17 at the end of the semester). The amount of time taken by UHS instructors to complete the assessment forms is very similar to the amount of time taken by on campus instructors.

![Time to complete General Education Assessment forms (in minutes)](chart.png)

Figure 11: Time Required to Complete Assessment Forms

Recommendations:

1) As we have noted in this report, and many General Education reports in the past, there is a clear disparity between the performance of the UHS and UAlbany student cohorts. While we are able to explain some of the differences, this is an area where further study is needed, as time and human capital permits. It is possible that UHS instructors are

5 Note that if we remove one significant outlier who suggested the form took 10 hours to complete, the time-to-completion at the end of the semester drops to 36 minutes.
transposing the high school grades into the General Education Assessment forms rather than keeping 2 grade books—one with the “high school” grade, and one with the “college” grade.

2) In recent years IRPE and UHS administrative leadership have worked diligently to improve the response rate from the instructors chosen to participate in the sample. The UHS offices, in particular the Assistant Director, have been instrumental in fostering and facilitating this improvement by reaching out to instructional staff and reminding them that participating in assessment is part of their obligation when they teach a course on behalf of the University at Albany. We recommend that these practices continue.

3) We request that GEAC/CAA provide some guidance with regards to how to address portions of the population who don’t respond after being sampled, or those who provide the initial response at the start of the assessment process, but don’t complete the forms at the end of the assessment process. With the UHS population, these are often folks who claim to be “too busy” with end of the school year activities and promise to submit the materials after the end of the semester, but fail to follow through, and leave us with no recourse.
Appendix A: Student Learning Objectives – Natural Sciences

Natural Sciences courses enable students to demonstrate:

1. an understanding of the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence;
2. an understanding of the application of scientific data, concepts, and models in the natural sciences;
3. an understanding of the major principles and concepts that form the basis of the knowledge covered in the course and a command of the relevant terminology appropriate for basic discourse in the particular discipline or disciplines of the course;
4. that they have become more knowledgeable consumers of scientific information and are prepared to make informed decisions on contemporary issues involving scientific information acquired in the course.
Appendix B: End of Semester Reflections

<table>
<thead>
<tr>
<th>Respondent #</th>
<th>Learning Objective #</th>
<th>Comments</th>
</tr>
</thead>
</table>
| 1 | 1 | 1) Open-ended inquiry and peer-reviewed experimental design were most useful
2) Students had the most difficulty with developing robust data collection procedures and evaluating evidence. I would create strong scaffolding and provide more opportunities to develop mastery in these areas. |
| 1 | 2 | 1) Development of models and data visualizations as well as the use of models and data visualizations to create experiments (with rubric-aligned peer review) were most successful
2) Students had the most growth in modeling but also the most difficulty. In the second semester I explicitly taught causal models as an example of a kind of model students can create, and this was more successful with a more inquiry, student-centered approach to modeling (provide more models of models!) |
| 1 | 3 | 1) Frequent short answer explanations, debate requiring the use of scientific vocabulary, and high-stakes oral presentations about environmental science topics helped students develop mastery in this area
2) Some students, especially ENL students, struggled with vocabulary in context. In the future I would want to dedicate more time to core content area vocabulary AND “content adjacent” words that help unlocking the meaning of terminology. |
| 1 | 4 | 1) Similar to the previous section, frequent short answer explanations, debate requiring the use of scientific vocabulary, and high-stakes oral presentations about environmental science topics helped students develop mastery in this area. Especially important here was the use of real-world case studies.
2) I would continue the (successful) case study approach, but also include case studies from the local community. |
| 3 | 1 | Reading assignments, writing, simulations, discussions all helped students achieve these learning objectives. I have found these methods to be very effective. |
| 5 | 1 | Going forward, I would like to include an actual experiment designed by the students, rather than the pre-prepared ones that I have used in the past. I just don’t have the equipment or time to do this with such a large group. |
| 5 | 2 | We do a lot of current events and have class discussions that make the science we learn applicable to the real world the students experience in their daily lives. We debate topics on global warming, stem cell use etc. |
| 5 | 3 | I teach students how to break up the “roots” of a word to decipher meaning using prefixes and suffixes they already know. |
| 5 | 4 | I like to ask the students their opinions on science topics presented in the news. We do a lot of current events and have class discussions that make the science we learn applicable to the real world the students experience in their daily lives. We debate topics on global warming, stem cell use, animal testing, sharing research etc. |
| 7 | 1 | The most challenging part of this objective for students was developing a logical and effective investigation into whatever phenomena was being explored. In order to try to help facilitate these activities, modeling was often helpful but the most helpful seemed to be peer review. Having students use a critical lens to examine each others’ methodology provided important feedback and acted as a form of self-reflection. I would want to increase the opportunities for students to engage in this type of activity for next year. |
| 7 | 2 | More so than previous years, students were able to understand the basic structure and function of many of the models we looked at in class by visualizing the model and breaking it down into smaller chunks. The challenge came when disruptions to the |
standard model were introduced. Predicting future outcomes based on prior knowledge and understanding of the subtleties of the model is a difficult task to do and I would like to spend more time exploring the connections between parts in complex systems so that any introduced changes can be more easily understood.

In my opinion, this cohort of students is one of the most environmentally conscious of students I have taught. Their basic understanding of the environment and the issues that face it made the deeper learning that happened in class more comprehensible. That, combined with a stronger science foundation from previous years showed in the assessments that were given. A challenge faced by students was the application of some of the content into areas in which they had not explored yet or in ways that they did not anticipate. I would like to provide more opportunities for students to apply their knowledge across content and units throughout the year, making more subtle connections among the elements of the course.

As I believe every science teacher is now emphasizing, the peer review process that is vital to the scientific community is something I try to mimic within the classroom. Having students analyze and interpret data sources to draw their own conclusions and determine the validity of conclusions drawn by others is a skill I think is necessary of any adult in today’s world. Growing up completely in the 21st century, bias and misinformation is not a new concept to students but they are still developing those critical skills. If there is one silver lining out of the current state of affairs, it’s that there are plenty of real world examples to pull from in order to continue to hone this practice.

I had students do a lot of investigation and collecting data, including 2 field research opportunities. Case studies were very helpful in these concepts. In the future, I would like to have students write more formally and/or give presentations about their findings earlier in the year so that they can practice this skill.

We used a data analysis protocol to help students understand data. I would like to use one for models as well and give better feedback about student progress. My team is planning on using mastery-based grading so I think this will help.

Online quizzes were really helpful for checkpoints and I would do this more often. I was able to have the last 3 assessments set up where students would get similar questions of the same skills, instead of just correcting the same quiz, and I think this helped to hold students accountable. I’d like to build this out for the rest of my units.

I think students really enjoyed units that related directly to them and their choices. I would have the food unit include more about personal choices, and I will continue to have students reflect on water usage. I want to have my climate change unit happen in the beginning of the year instead of the last unit, so that students have more time to reflect on their role in the climate crisis.

1. Simply ensuring hands on activities are performed allows students to gain the requisite skills for this LO. Forcing them to not simply follow a prescribed set of directions to an expected outcome allows them to develop the skills a scientist needs to solve problems. It also forces them to actually need to think and consider implications of their decisions.
2. This year saw many ordering difficulties and equipment failures so upgrading those areas will allow for more students to exceed the LO since experiences will be more complete and meaningful.

1. For the whole class, the use of the reading allowed us later in the year to take what we were learning in class and discuss the actual individual impacts of that information along with the societal impacts so that it was not just words on a paper but that they have real meaning. Using AP style questions forces students to have a deeper understanding of the facts and the ability to apply it to scenarios rather than just being able to simply have passive memory recall. For half the class, the Stream Project gives them actual field experience that they can use to impart what they learned in class to the factors in the field that can change regularly. This makes them learn to be able to just on the fly and without sufficient knowledge they would be left without any way to solve the problems that arise.
2. The reading assignment will be changing this summer to something that is more topical to today and that may be more relevant to what students today are experiencing. The Stream Project is also likely ending due to loss of corporate sponsor so I will be forced to try and find another way to provide these valuable experiences to the students.

11 3

1. This year I tried to employ a whole variety of different learning strategies to move away from a more lecture based teacher driven format I have always used. There was success with some things I tried and less with others and that can be reflected in those who achieved mastery. The number was not as high as I would like and could be attributable to the new methods. Each of them takes significantly more time and payoff was not equivalent to the time trade off.
2. Due to time constraints, I would likely revert to more lecture based instruction. Though not popular in public schools today, this type of student tends to do best with this method as long as it is supplemented with questioning and analysis that forces them to show they can do more than spit back facts. Otherwise, I will likely be sticking with the methods I have used successfully for the last 20 years.

11 4

1. Since this course is paired with taking the AP exam, my strategy has been to use the time after the exam for them to perform a final experiment that should bring together the knowledge and lab skills they have gained all year and allow them to choose an area they enjoy and apply that through experimentation. While this is a huge struggle for both me and the Ss each year, I continue to do so as it really brings the entire course together into basically a capstone project. While they profess to suffer every year, they usually persevere and learn how to begin to be scientists as they head off to real college. Sometimes this actually turns them away from science as they find it is not really a passion or strength for them, which is totally OK.
2. I expect to continue this strategy but will need to spend more time helping them understand use and writing of abstracts and how to better design experiments to truly test for their hypothesis.

12 1

One of the strategies that helped my students fully grasp this objective was walking them through a sample experiment and to note the observations that must be made. They were to write well developed lab reports utilizing what they have learned in the course and throughout the experiment.

One of the changes I would make is to use more application based questions to make sure that the students who were on the lower end of the scale could benefit more.

12 2

One of the teaching strategies that helped my students master this objective was to look at real data and practice with them how to interpret them. Also, teach my students that value of gathering experimental data compared to actual data. I was able to practice over and over again with my students the different concepts and develop methods to approach the questions.

A change that I would like to implement is to create more opportunity for students to work together and share their knowledge of what they have learned. Peer tutoring is a very important skill for students to have because they can also learn from each other.

12 3

The majority of my students were able to understand the concepts due to the lessons that were given. I was able to create several different activities that helped the students grasp the understanding of the material. I was able to offer many different opportunities to have extra help, and using peer tutoring was one of the other strategies.

12 4

Through the use of writing lab reports, I was able to have my students become knowledgeable about the scientific information and are prepared to make informed decisions on issues involving scientific information. They were able to research background knowledge required to write the lab reports and I often checked and helped revise them.
14	1	In the early parts of the course, we explored how Newton developed his laws of motion and how those laws apply to motion of objects in space. I would like to add some labs if time and enrollment permit in future years.
14	2	I would like to increase my use of materials related to John Houbolt’s advocacy of lunar orbit rendezvous
14	3	I used clear, concise notes for the conveyance of course material. I would like to increase the extent of class discussion in future years.
14	4	We discussed extensively the proposals of SpaceX and other private concerns to facilitate human exploration of the solar system. In future years, I might expand upon this work.
15	1	(1) I believe the Mystery Box experiment helped the students meet or exceed mastery in this area. They had to figure out and then apply the scientific method to figure out what was in the box.
(2) The experiment is simple and if I could, I would include a more complicated experiment that has them design it, collect and then analyze their data.		
15	2	1) Providing students opportunities to work in groups to brainstorm ideas on the topic and then to formulate answers to problems or to construct the infographic for the Food Label lab. This would probably increased their understanding and confidence to share their findings and present their work to their peers.
2) Restructure lessons so students have more opportunities to plan healthy diets using food models and time to work on the infographic for the Food Label Lab. It would also give me the opportunity to monitor their progress more closely. |
| 15 | 3 | 1) Having students perform problems using the Caloric values of the energy nutrients increased their awareness of the meaning of energy, and how it affects their health and body weight and the Sugar Substitute debate will show them the pros and cons of the substitutes so they determine if they will use them or recommend them to others.
2) A change I would make to the course would be to continue to increase the number of student-centered and student lead activities to increase understanding of the course content and to engage the students |
| 15 | 4 | 1) Including projects and labs helped the students achieve the course’s learning objectives since they were engaging and focused on having them figure out a problem and solve it with guidance from the instructor
2) Changes I would make would be to continue to add projects and labs that are relevant to the changing state of nutritional science so they are more realistic, and thus engaging for the students. |
| 16 | 1 | Lab explorations required written follow-up and were also addressed in exam and quiz questions. Written essay assignments given in class or as take-home work allowed for me to determine the level of student understanding. In the future I plan to introduce audio/visual presentations as a method for students to demonstrate their understanding of lab techniques. |
| 16 | 2 | I think students got a good idea of make predictions using experimental data and how to explain results in a clear, easy to read manner. I plan to spend more time on mathematical applications such as the Hardy-Weinberg equation and work on graphing. |
| 16 | 3 | Poster projects and various pre-test review games helped with terminology retention. I plan to focus more on addressing new vocabulary as the terms are introduced by having the students create running vocabulary lists during the course of each unit. |
| 16 | 4 | I tried to incorporate current developments in science on a regular basis. I offered extra credit to students who did independent work to find answers to questions regarding current science developments outside the scope of the textbook. I tried, whenever possible to relate class topics to issues that students may face in real life including reproductive disease related issues. |
| 18 | 1 | Overall I was very happy with the students’ progress this year. I only had 3 students sign up for UHS. I wish that I had more. 2 of the students were high achieving honors type students and they did great. The other student also performed quite well. This is the 2nd year that my class met every day for a whole year, and this extra time really allowed me to monitor the students’ progress and ensure their success. I also
constantly evaluate and modify my tests and quizzes. The changes that I made this year seemed to be beneficial.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>2</td>
<td>The students did the best hurricane projects and presentations that I have ever seen.</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>I might add a vocabulary list next year to cover the huge amount of new terminology for the students</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>I would like to have them read more articles next year. We did build a snow machine in class this year after writing a grant proposal and securing about $1000! We made 34” of snow outside of my classroom. It was a great real world experience for the students!</td>
</tr>
</tbody>
</table>
Appendix C: Time to Completion and Comments

<table>
<thead>
<tr>
<th>Respondent #</th>
<th>Beginning of Semester (in minutes)</th>
<th>End of Semester (in minutes)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>45</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>No response</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No response</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>No response</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>45</td>
<td>No response</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>No response</td>
<td>This assessment tool is a great way for me to be strategic with lesson planning. It is helpful to gather relevant course materials to assess students based on the standards. Also, it allows me to look back to this at the end of the year to reflect what works and what doesn’t work.</td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>600</td>
<td>No issues with the form itself or the requirements. I would have liked to have had advance notice of the assessment, prior to the start of the year. I could have prepared for the data analysis throughout the year. Perhaps then my assessment would have been returned in a timely manner. It was a lot to attend to as classes were starting and wrapping up.</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>No response</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td>30</td>
<td>I was a little confused on the standards because they were a little vague. It took me some time to reflect on the assessments that used each of these standards.</td>
</tr>
<tr>
<td>13</td>
<td>240</td>
<td>No response</td>
<td>I had some difficulty separating/delineating the differences between Learning Objective #2 and Learning Objective #3. And feedback regarding the document format. The cells in the data table did not expand as I was filling them in. I found that I had to re-size the cells manually. I think the form would be easier to complete if it was a Google Form. And it would be easy to “share” any Google Docs that we have, rather than submit as email attachments.</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>300</td>
<td>No response</td>
<td>It was hard to pinpoint assessments to particular objectives. For example, in objective three I included an assessment we give early in the year and one that is saved for the end because both help use see if they could be an informed consumer and share their knowledge to help others improve their nutritional status and dietary goals.</td>
</tr>
<tr>
<td>16</td>
<td>240</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>No response</td>
<td>No response</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>210</td>
<td>30</td>
<td>My final exam is being given next week. Filling this out after the final exam was graded would have made the results more valid and more useful to me.</td>
</tr>
</tbody>
</table>