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Abstract
There is a conspicuous gap in the literature about feedback and circular causality between 
intuitive statements about shifts in loop dominance and precise statements about how to 
define and detect such important nonlinear phenomena.  This paper provides a consistent, 
rigorous, and useful set of definitions of loop polarities, dominant polarity, and shift in 
loop dominance, and illustrates their application in a range of system dynamics models.

Consistent with the usual definitions, the polarity of a first-order feedback loop involving a 
level  x  and a single inflow  x  is defined to be the sign of  dx/dx.  Loop polarity is shown 
to depend upon the sign of parameters not usually considered to be part of the loop itself.  
The definition of loop polarity is then extended to multi-loop first order systems.  All 
positive loops with gain less than one, such as economic multipliers, are shown to be 
multi-loop systems with dominant negative polarity.  The shifts in loop dominance that 
occur in nonlinear system arise naturally as changes in the sign of dominant polarity. 

The concepts developed in the paper are then applied to simple higher-order nonlinear 
feedback systems.  The final application to a bifurcating system suggests that all 
bifurcations in continuous systems can be understood as consequences of shifts in loop 
dominance at equilibrium points.
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Introduction 
Underlying the formal, quantitative methods of system dynamics is the goal of 

understanding how the feedback structure of a system contributes to its dynamic behavior.  
Understandings are captured and communicated in terms of stocks and flows, the polarities 
of feedback loops interconnecting them, and shifts in the significance or dominance of 
various loops.  However, there is a conspicuous gap in our literature between intuitive 
statements about shifts in loop dominance and precise statements about how we define and 
detect such important nonlinear phenomena. 

This investigation is an attempt to bridge that gap.  In the effort to construct formal 
definitions of shifts in loop dominance, it became clear that our common definitions of loop 
polarities were not sufficiently precise.  There is an underlying unease in our own field and 
in the cybernetics literature that we do not really know what a positive loop is.  Ashby, for 
example, was bothered by the convergent behavior of the discrete positive loop  

xt+1 = (1/2) yt,  

yt+1 = (1/2) xt.  

He used its apparently contradictory goal-seeking behavior to support his claim of the 
"inadequacy" of feedback as a tool for understanding complex dynamic systems (Ashby 
1956, p. 81).  To avoid such anomalies, some define a loop to be positive if it gives 
"divergent behavior."  Graham (1977) finds problems with that characterization and 
suggests instead that a loop be called positive if its open-loop steady state gain is greater 
than one.  Richmond delightfully exposed our confusions by describing a well-meaning 
professor trying to explain to a concerned student:  "Positive loops are … er, well, they 
give rise to exponential growth … or collapse … but only under certain conditions … 
under other conditions they behave like negative feedback loops…"  He concluded that the 
nicest way out of the confusion is to define a positive loop to be a goal-seeking loop whose 
goal continually "runs off in the direction of the search" (Richmond 1980).     Some, of 
course, ignore all the subtleties and obtain loop polarities simply by counting negative links 
(Richardson and Pugh 1981). 

 We begin then with a tighter, more formal definition of the polarity of a feedback 
loop.  Our focus, however, is on the concept of loop dominance and the phenomenon of 



shifts in loop dominance in multi-loop nonlinear systems. 

Rigorous Definition of Loop Polarity 
We shall base our definition of loop polarity on the assumption that every 

dynamically significant feedback loop in a system contains at least one level (accumulation 

or integration).1  The development will be in terms of continuous systems.  A similar 

development holds for feedback processes couched in discrete terms, provided the principle 
of "an accumulation in every loop" is maintained.

Consider a single feedback loop involving a single level  x  and an inflow rate  x = 

dx/dt.2  Define the polarity of the feedback loop linking the inflow rate  x  and the level  x  

to be 

sign(
dx
dx

) = sign
dx/dt
dx

This formal definition is consistent with our more intuitive characterizations:  "dx" 
can be thought of as "a small change in  x" which is traced around the loop until it results in 

"a small change  dx" in the inflow rate  x = dx/dt.   If the change in the rate,  dx , is in the 

same direction as the change in the level, dx, then they have the same sign.   Since  x  here 

is an inflow rate and thus is added to the level,  the loop reinforces the initial change and is 

therefore a positive loop.   In such a case, sign(dx/dx) is also positive, so the formal 

definition is consistent with the intuitive one.   If the resulting change in the inflow rate is in 

the opposite direction to the change  dx, then sign(dx/dx) is negative and the polarity of the 

loop is negative by both our intuitive and formal definitions.   The formal definition is 
equivalent to defining the polarity of a first-order feedback loop to be the sign of the slope 

of its rate-versus-level curve.3

To extend the definition to feedback loops in which  x  is an outflow rate, we merely 

have to agree to attach a negative sign to the expression for  x if it represents an outflow.   

Then the definition above holds for all loops involving a single level  x  and a single 

inflow, outflow, or net rate  x. The first few examples that follow are very familiar;  they 

are intended to establish some confidence in this formal definition of loop polarity before 
we use it to derive some less familiar results. 

 
Example (1):  Exponential growth or decay. 

Let  x = bx, where  b  is a constant.   Then the polarity of the feedback loop is 



sign(
dx
dx

) = sign
d(bx)

dx
= sign(b)

which is positive if  b  is positive and negative if  b  is negative. 

The result makes intuitive sense, as may be seen by interpreting  x  as a net rate such 

as net population growth.   If births exceed deaths, the coefficient  b  is positive and the 
loop produces exponential population growth.   Similarly, if deaths exceed births,  b  is 
negative and the loop exhibits exponential decay behavior.   The usual case is  b > 0, and 
that prompts us to call all such first-order net-rate formulations positive loops.   However, 
the polarity of such a loop in fact depends on a parameter whose sign is set by 
environmental conditions outside the loop.   Without knowledge of the sign of  b,  the 

polarity of the loop represented by  x = bx  is undetermined.4 

 
Example (2):  Exponential adjustment to a goal. 

Let  
x =

(x* - x)
T ,  where   x*  and  T  are constants. 

Loop polarity = 
sign(

dx
dx

) = sign
(x* - x)/T

dx
= sign

-1
T

which is negative if the time constant  T  is positive, and positive if  T  is negative. 
In applications of this structure, as in exponential smoothing, the time constant  T  is 

always positive, so the loop is always negative.  When  x* = 0, this formulation reduces to 
example (1) with  b = -1/T < 0:  again, a negative loop by both formal and intuitive 
definitions.   

In each of these cases, the formal definition of loop polarity behaves appropriately but 
yields no new insights.   Cases involving more than one loop provide more interesting 
testing ground. 

Multi-Loop Structures:  Loop Dominance 
The formal definition of loop polarity leads to a precise concept of loop dominance in 

simple systems.   Consider a first-order system containing several feedback loops and the 
level variable  x. 

 Let  x  represent the net increase in  x.  Define the dominant polarity of the first-order 

system to be 
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sign(
dx
dx

)

This simple extension of the formal definition of loop polarity to multi-loop first-order 
systems leads to new understandings of some familiar structures and a precise statement of 
what is meant by a shift in loop dominance.   The examples below illustrate results for both 
linear and nonlinear systems. 

Example (3):  Logistic growth. 

Let  x = ax - bx2,  a >> b > 0,  xo > 0. 

This familiar structure can be thought of as a pair of feedback loops, one positive and one 
negative.   One could rewrite the equation, for example, as 

               x = (a - bx) x, 

considering the factor  (a - bx)  as a multiplier representing an endogenously changing 
fractional growth rate of  x.   If we take each factor as a separate first-order system, we 
have 

          x1 = x    and    x2 = a - bx. 

The definition of loop polarity produces the expected results: 

    Polarity of loop 1 = sign(dx1/dx) = sign(1) = positive 

    Polarity of loop 2 = sign(dx2/dx) = sign(-b) = negative 

Since  dx/dx = a - 2bx, the dominant polarity of this nonlinear system varies with the 

level  x: 

Dominant polarity = 

sign(a - 2bx) =
+, if x < a

2b

-, if x > a
2b

Thus the dominant polarity in this two-loop system shifts from positive to negative as 
the level variable  x  grows.   The shift in dominant polarity suggests the following formal 
definition: 

In a first-order system with level  x  and net rate of change  x, a shift 

in loop dominance is said to occur if and when  dx/dx  changes sign, 
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that is, when the dominant polarity of the system changes. 
In the logistic equation, a shift in loop dominance occurs when the level reaches half 

of its maximum value, the point of inflection in the logistic curve.   The shift in loop 

dominance is a consequence of the nonlinearity of x:  in any first-order system containing 

any number of loops, if  x  is a linear function of  x,  dx/dx  is constant and can not change 

sign.  We conclude that first-order linear systems cannot show shifts in loop dominance.5

It should be noted that this definition does not capture all possible shifts in loop 
dominance -- only those that involve a change in dominant polarity.   Presumably, it is 
entirely possible for a system to show a shift in dominance between two negative loops or 
two positive loops.   Such a shift in dominance between loops of the same polarity would 
not show up as a change in dominant polarity and would have to be defined and detected by 

other means.6

Example (4):  General nonlinear sigmoid growth structure. 

Let  x = x f(x),  f(x) > 0,  xo > 0. 

A suggestive example is the business construction formulation in several simple 
urban models (Alfeld & Graham 1976) in which 

R    BC. KL = BCN * BS. K * BLM. K, 
where  BC  = business construction (structures/year), 

BCN = business construction normal (fraction/year), 
BS  = business structures, 

and  BLM = business land multiplier (dimensionless), 
which is a function of  BS. 

Dominant polarity  =  
sign

d
dx

x f(x)

= 

sign x f'(x) + f(x) =
+, if f'(x) >

f(x)
x

-, if f'(x) <
f(x)
x

This result has a simple geometric interpretation.   f'(x)  represents the slope of the 
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tangent to the graph of  y = f(x)  at the point  (x,f(x)).  On the same graph the term  f(x)/x  
represents the slope of the line from the origin to the point  (x,f(x)).   

Taken together, these considerations show: 

A nonlinear first-order feedback system of the form  x = x f(x)  

shifts loop dominance at the point on the graph of  y = f(x)  where 
the slope of the tangent is the negative of the slope of the line from 
the origin. 

If such a point exists (that is, if loop dominance does indeed shift in the system), these two 
lines would form the diagonals of a rectangle with sides parallel to the  x- and y-axes.   
Consequently, in a simple two-loop system the point of shifting loop dominance is 
relatively easy to pick out visually from a table function for  f(x).   Figure 1 shows the 
determination of the point of shifting loop dominance for the business construction example 
cited above. 

f(xo)
xo

  =  – f'(xo)

y = f(x)

xo Level (x)

Figure 1:  Locating on the graph of  y = f(x)  the point  xo  of 

shifting loop dominance in the first-order sigmoid growth system  x 

= xf(x). 
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The criterion just derived applies neatly to the logistic equation as a special case.   For  

x = ax - bx2 = (a-bx) x, the function  f(x)  is  a - bx, which is a straight line from  (0,a)  to  

(a/b,0).   Therefore, the curve  y = f(x) itself becomes one of the diagonals of the rectangle 
that determine the point of shifting loop dominance, and the other diagonal is the line that 
runs from (0,0)  to  (a/b,a).   Because the diagonals of a rectangle bisect each other, the 
point of shifting loop dominance is thus again found to be  x = a/2b.

An analogous result, with an even simpler geometric interpretation, holds for 

nonlinear systems of the form  x = (x* - x)/f(x),  f(x) > 0, so-called nonlinear delays.  In 

such systems,  x*  represents some goal state for the level variable  x, and  f(x)  represents 
a variable adjustment time dependent on the level.  Examples of such formulations include 

pollution absorption in World Dynamics (Forrester 1971) and food regeneration in the 

KAIBAB model (Goodman 1974, Roberts et al. 1982).   (In the former  x*  would be zero 
since the absorption rate is simply the outflow from the pollution level.) In these cases, a 

computation7 analogous to example (4) shows that loop dominance shifts when  

f'(x) =
f(x)

x - x*

The geometric interpretation follows by noting that f(x)/(x–x*) can be viewed as the slope 
of the line joining  (x,f(x))  and (x*,0).   Loop dominance in such a system thus shifts 
when the slope of the tangent to the graph of  y = f(x) equals the slope of the line from the 
point of tangency to the point  (x*,0).   

As an example, Figure 2 shows the table function for pollution absorption time from 
Forrester (1971).   The tangent line shown in the figure appeared in the original without 
explanation.   Now we know its significance:  since  x* = 0 here the line from  (0,0)  
tangent to the graph determines the location of the shift in loop dominance of this system.   

Because Forrester's table function formulation happens to lie along this line for  10 < 

POLR < 20, the shift in loop dominance occurs not at a point but over an interval.   For 
POLR < 10, the negative loop dominates and the system is capable of absorbing increases 
in pollution;  for POLR > 20, the positive loop dominates and the system has the capability 
of exhibiting runaway pollution increases for constant or even declining rates of pollution 
generation.   In the interval  [10,20]  neither loop dominates:  when the pollution ratio falls 
in this range the system is essentially open-loop. 

 
Figure 2:  Table function for pollution absorption time from 
Forrester (1971), showing the line indicating the interval over which 
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loop dominance shifts from negative to positive as the pollution level 
grows. 

Example (5):  "Positive loops with gain less than one." 
A classic example of this structure is the consumption multiplier (Samuelson 1939, 

Low 1980), shown in Figure 3.  In the formulation of the loop used here, average income  
x  is represented as an exponential smooth of  GNP (Y), so 

x =
Y - x

T

where  T  is a positive smoothing time constant.
 Since  Y = G + C = G + cx, 

x =
(G+cx) - x

T

so 
dx
dx

=
c - 1

T

Therefore, 

Dominant polarity = sign(dx/dx) = 

sign
c - 1

T
=

+, if c > 1

-, if c < 1

Since the propensity to consume (c) must necessarily be a fraction between zero and one, 
we conclude that dominant polarity of the multiplier loop is always negative. 
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Average 
income (x)

Consumption 
(C)

Propensity to 
consume (c)

Government 
expenditures 

(G)

GNP 
(Y)

Averaging 
time (T)

Rate of change of 
average income

(x)•

+

–

Figure 3:  The consumption multiplier:  for 0 < c < 1, a first-order system with 
negative dominant polarity. 

The coefficient  c  in this system is commonly referred to as the open-loop steady-state gain 
or open-loop step gain of the positive loop connecting GNP (Y), consumption (C), and 
average income (x).   The multiplier structure is thus usually characterized as a positive 
loop with gain less than one. From the point of view of loop dominance and dominant 

polarity, however, it is clearly seen to be a structure consisting of two loops, one positive 

and one negative, in which, for all sensible parameter values (0 < c < 1),  the negative 
polarity always dominates.   A similar but higher-order structure figures prominently in the 
market growth model in Forrester (1968a). 

The goal-seeking behavior that such systems display is thus no surprise.  It is 
intuitively reasonable that a system with dominant negative polarity should be goal-seeking.   
Furthermore, it is evident that one need not invoke an additional concept, such as "gain," to 
explain the apparent anomaly of "goal-seeking positive loops. "   The nonlinear notion of 
loop dominance, which is part of the system dynamicist's everyday stock-in-trade, suffices 
admirably in these special linear cases. 

More Complex Systems 
The goal of developing rigorous definitions of loop polarity, dominant polarity, and 

shift in loop dominance is to be able to say something significant about multi-loop 
nonlinear systems containing a number of different rates, levels, and auxiliaries.  Taking 
auxiliaries first as the easiest to handle, let us make the obvious formal definition of the 
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polarity of a link: 

Let variable  A  directly influence variable  B.   Define the polarity of 

the link from  A  to  B  to be  
sign 

∂B
∂A  .

This definition is merely a formal statement patterned after our previous definitions, which 
expresses the intuitive notion of a change in  A  (∂A) resulting in a change in  B  (∂B)  in 
the same or the opposite direction.  (We’ve moved to partial derivatives because in higher-

order systems a rate  x  can vary as a function of levels other than  x).

Now suppose the rate  x  is linked to the level  x  through a sequence of auxiliaries,  x 

---> a1 ---> a2 --->  .  .  .  ---> an ---> x ---> x.  Repeated application of the chain rule for 

differentiation of composite functions yields 

∂x
∂x

  =  
∂a1
∂x

  
∂a2
∂a1

  
∂a3
∂a2

  . . .  
∂an

∂an-1
  

∂x
∂an

It follows that  sign(∂x/∂x), the polarity of the feedback loop formed by  this sequence of 

auxiliaries and  x  and  x,  is the product of the signs of the links in the loop, as we have in 

the past defined it.   
To get a sense of the applicability of these ideas to higher-order systems, let us 

consider a familiar nonlinear system containing two system states: 

Example (6):  The Lotka-Volterra predator-prey equations. 

          x =  ax - bxy 

          y = -cy + dxy, 

where  x  represents the prey population and  y  the predators. 
Applying the definition of dominant polarity to each of these equations independently, 

we find8

sign 
∂x
∂x

  =  sign (a - by)  =  
+,  if  y < a/b

 
-,  if  y > a/b
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and

sign 
∂y
∂y

  =  sign (-c + dx)  =  
+,  if  x < c/d

 
-,  if  x > c/d

 

In this situation, these expressions tell us the conditions under which each 
population's behavior is dominated by its own positive loop or negative loop processes, 
that is, births or deaths.  For the prey, the positive loop dominates and the prey flourish as 
long as the predator population is small (< a/b).   For the predators, the positive loop 
comes to dominate only when the prey population exceeds a certain critical size (> c/d). 

+----------------------------------------------------------------------+ 
| Population |         Dominant polarity                               | 
|----------------------------------------------------------------------| 
|  x (prey)  |    +    |    +    |    -    |    -    |    +    |  ...  | 
|            |         |         |         |         |         |       | 
|  y (pred)  |    -    |    +    |    +    |    -    |    -    |  ...  | 
|----------------------------------------------------------------------| 
| Conditions | x < c/d | x > c/d | x > c/d | x < c/d | x < c/d |  ...  | 
|            | y < a/b | y < a/b | y > a/b | y > a/b | y < a/b |  ...  | 
+----------------------------------------------------------------------+ 

Figure 4:  Patterns of loop dominance about the individual levels in 
the Lotka-Volterra equations. 

While these expressions for dominant polarity about each of the levels independently 
do not tell the whole story of the behavior of the system, they do strongly suggest that the 
system ought to oscillate.  One could reason as follows.   Say the system starts with both 
populations small:  x < c/d, y < a/b.  Then according to the above calculations, the  x  
population is dominated by its positive (births) loop, and the  y  population is dominated by 
its negative (deaths) loop.  Thus  x  should grow and  y should decline.  If  x  grows to 
exceed  c/d, the system experiences a change in loop dominance:  the  y  population comes 
to be dominated by its positive (births) loop, so  y  ought to cease declining and start to 
rise. Eventually, if  y  grows to exceed  a/b, another shift in loop dominance takes place:  
the  x  population comes to be dominated by its negative (deaths) loop, so it ought to peak 
and begin declining.   If  x  falls far enough (< c/d), loop dominance for the  y  population 
again shifts to the negative and the  y  population must start to decline.    Eventually,  y 
ought to fall far enough to shift the dominant loop of the  x  population, causing the prey to 
start to rise, and bringing us back to the start of this analysis to repeat the cycle.   Figure 4 
shows the recurring pattern of dominant polarities in the behavior of this predator-prey 
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system. 
It should be emphasized that these computations of loop dominance tell only part of 

the story about the behavior of the system.  The major negative loop in the system is only 
implicitly being taken into account.   It is the mechanism that brings about the shifts 
described above, and as a negative loop with more than one accumulation it is the actual 
source of the oscillatory tendencies of the system, but we did not explicitly make use of its 
structure or polarity.   To see what we might be missing it is instructive to consider what an 
eigenvalue analysis of a linearized version of this system would look like: 

x

y
=

f(x,y)

g(x,y)
≈

f(x o,yo)

g(xo,yo)
+

f x(xo,yo) f y(xo,yo)

gx(xo,yo) gy(xo,yo)

x - xo

y - yo

In the Lotka-Volterra system, the essential matrix is 

f x(xo,yo) f y(xo,yo)

gx(xo,yo) gy(xo,yo)
=

a - byo - bxo

dyo dxo- c

Thus in such a linearization our partial derivatives  ∂x/∂x  and  ∂y/∂y would appear (as  fx  

and  gy), but so would  ∂x/∂y  and  ∂y/∂x  (as  fy and  gx, respectively).   By investigating  

∂x/∂x and  ∂y/∂y  alone we are ignoring terms off the main diagonal in the linearized state-

space matrix. It looks as if the potential for this development of the notion of dominant 
polarity is limited to systems in which the off-diagonal terms are few and far between, or 

are for some other reason not particularly significant.9 

In spite of that apparent limitation, we can apply these ideas to higher-order feedback 
systems and learn something.   To do so we first need a rigorous definition of the polarity 
of a major loop.   Consider a loop composed of levels  x1, x2,  …  , xn  connected in 

order:  x1 ---> x1 ---> x2 ---> x2 --->  …  ---> xn ---> x1.   Following the pattern of our 

previous definitions, define the polarity of the major loop to be 

sign 
∂x1

∂xn
  
∂x2

∂x1
  
∂x3

∂x2
  …  

∂xn

∂xn-1
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Applied to the major loop in the Lotka-Volterra system, for example, this definition 
states that its polarity is 

sign 
∂x
∂y

  
∂y
∂x

  =  sign ((-bx)(dy))

which is indeed negative, as it should be, since  b, d, x, and  y  are all greater than zero. 
This definition of the polarity of a major loop is consistent with, and in fact depends 

upon, the principle of feedback systems that asserts that rates and levels alternate around a 
loop (Forrester 1968b).   It is also consistent with our intuitive characterizations, for it 
amounts to tracing around the major loop the implications of a small change in one of the 
levels.   Note that, when integrated with the definition of the polarity of a string of 
auxiliaries, this definition asserts that the polarity of a feedback loop containing any number 
of rates, levels, and auxiliaries is the product of the signs of the links in the loop.

In the development that follows, we shall need one other fact, a theorem about the 
steady-state behavior of the smooth of an exponentially growing or declining variable.   

Say  y(t) = yoegt, and let  z(t)  be an exponential smooth of  y(t).   That is,  z = (y - z)/T, 

for some time constant  T.   Then in the steady-state,10

z(t) =
1

1+Tg
y(t)

That is to say, the smooth of  y(t)  is also growing (or declining) at the same 
exponential rate  g,  but it "lags behind" by a factor of  1/(1+Tg). The result holds for first-
order exponential material delays as well as for information smoothing.  This property can 
be used to simplify the computation of dominant polarity in some higher-order systems, as 
the following extended example demonstrates. 

Example (7):  Corporate growth from product development. 
The structure shown in Figure 5 is the essence of the self-regenerating process behind 

the growth of a product-driven company. The major loop (the revenue loop) is positive, 
and the minor loops are all negative. 

To find the dominant polarity of the system, we compute: 

∂PD
∂PD

  =  
∂

∂PD
 (IR - CR)  =  

∂
∂PD

 (CR + CPD - CR)  =  
∂

∂PD
 (CPD)
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=  
∂

∂PD
 PS - PD

PAT
  =  1

PAT
 

∂PS
∂PD

 - 1  

Tracing the chain of variables around with the chain rule, 

∂PS
∂PD

  =  
∂PS

∂RDB
  
∂RDB
∂AR

  
∂AR

∂REV
  
∂REV
∂PP

  
∂PP
∂PD

 

which will be much more convenient for us in the form

∂PS
∂PD

  =  
∂PS

∂RDB
  
∂RDB
∂AR

  
∂AR

∂REV
  
∂REV
∂PP

  
∂PP
∂OR

  
∂OR
∂CR

  
∂CR
∂PD

  

(Note that the last three terms equal  ∂PP/∂PD. )  

–

Products in 
development 

PD

Completion rate, 
CR

Initiation rate, 
IR

Obsolescence 
rate, ORProducts in 

production 
PP

Average 
revenue 

AR

R&D budget, 
RDB

Annual cost per product 
in development, CPP

Fraction to 
R&D, RDF Time to average 

revenue, TAR

Annual revenue 
per product, RPP

Products 
supportable, PS Revenue, 

REV

Product 
adjustment 
time, PAT

Obsolescence 
time, OT

– –

+

Completion 
time, CT

Figure 5:  Corporate product-development structure. 

At this point we see that we can compute each of these terms from their defining 
equations except  ∂AR/∂REV  and  ∂OR/∂CR.   These are fractional rates of change of an 
exponential smooth and a delay.   As noted above, their magnitudes depend upon the 

exponential rate of growth of the system, which is in fact what we are looking for in  ∂PD
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/∂PD.   As feedback thinkers we are accustomed to circularities, but this is too much;  we 
have to make an additional assumption to proceed. 

Let us ask what this expression for dominant polarity becomes if and when the 

system has reached some steady state of exponential growth or decline.   Let the system 

be growing or declining exponentially at the fractional rate  g.   Then from the equations in 
the system and the property of exponential smooths and delays cited above, 

∂PS
∂PD

  =  1
CPP

  RDF  1
1 + TARg

  RPP  OT 1
1 + OTg

  1
CT

  

Substituting into the equation for  ∂PD/∂PD  and rearranging slightly, we find

∂PD
∂PD

  =  1
PAT

  RDF  RPP  OT
CPP  CT

  1
1 + TARg

  1
1 + OTg

   -  1  

Under the simplifying assumption of steady-state exponential growth, this expression 
equals the fractional growth rate  g.   Setting it equal to  g, multiplying through by various 
denominators, and rearranging, we obtain the following pleasing polynomial in g: 

RDF RPP OT
CPP CT

= (1 + OTg) (1 + TARg) (1 +PATg)

Because of the steady state assumption, the dominant polarity we seek is  sign(∂PD/∂PD) = 

sign(g), where  g  is a solution of this polynomial.  If  g  is small relative to the time 
constants  OT, TAR, and PAT, as presumably it always would be, then this equation may 
be written
RDF RPP OT

CPP CT
= 1 + (OT + TAR + PAT) g + O(g2)≈  1  +  (OT + TAR + PAT) g

where the higher order terms in  g  are dropped because they are insignificant.11  Thus

 
∂PD
∂PD

  =  g  ≈  RDF  RPP  OT
CPP  CT

 - 1  1
OT + TAR + PAT

 

so dominant polarity 
=  sign 

∂PD
∂PD

  =  sign(g)

Loop Dominance Page 16 



= sign
RDF RPP OT

CPP CT
- 1

=
+ if

RDF RPP OT
CPP CT

> 1

- if
RDF RPP OT

CPP CT
< 1

Thus the dominant polarity of this product development system is determined by the 
quantity
RDF RPP OT

CPP CT

If it is greater than one the dominant polarity of the structure is positive and corporate 
growth ensues;  if it is less than one the dominant polarity is negative and the company 
declines.   If as the system evolves over time the product completion time CT were to rise 
sufficiently to pull this ratio below one, then the dominance in this system would shift from 
the positive growth loop to the negative loops and constrain corporate growth.

The expression that determines the dominant polarity of this system involves some 
time constants as well as proportionality factors.  The significance of each of these 
parameters for a healthy company is clear.  The greater the ratio of revenue-to-development 
cost per product (RPP/CPP), and the greater fraction of revenues the company sends to 
R&D (RDF), the greater the development effort the company can afford, leading to the 
prospect of a high continuing flow of new products into production.  The expression 
shows that long product-lifetimes in the marketplace (OT) also contribute to the growth 
potential of the company, while long product development completion times (CT) threaten 
that potential.   It is worthwhile observing that the importance of these two time constants 
in the growth potential of the company is derived here without reference to corporate 
reputation or feedback effects of delivery delays.   In addition to these well-known 
reputation effects, completion times and obsolescence times figure directly in the potential 
of the positive, revenue-generating loop to dominate in this structure. 

It is interesting to observe that in this example the time constants  TAR  and  PAT do 

not influence the dominant polarity of the system.  Products in development PD and 

Average Revenue AR are SMOOTHs (first order exponential averages) of Products 
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Supportable  PS  and  Revenue  REV, respectively.  The time constants for these 

SMOOTHs, PAT  and  TAR,  appear in the expression for  ∂PD/∂PD  in a way that affects 

not whether the system grows or declines, but rather how rapidly it moves in the direction 

that other parameters in the system dictate.  The result is generalizable:  exponential 
averaging of a variable affects the rate of growth or goal-seeking adjustment in a system but 

does not have any role in determining loop dominance.12   

Stepping back from the details of this example, we have found that the dominant 
polarity of the product development loop is positive if a particular combination of 
parameters affecting the loop is greater than  1, and negative if the combination of 
parameters is less than  1.  The particular mix of parameters,  

RDF RPP OT
CPP CT  ,

is the open-loop steady state gain, or the open-loop step gain, of the system.  We have 

thus concluded in this example that:
The dominant polarity of the product development system is positive 
if its open-loop step gain is greater than one, and is negative if its 
open-loop step gain is less than one.

This is Graham's suggestion for the definition of a positive loop (Graham 1977).  It should 

be noted that it is a statement not about a single loop but about loop dominance in a multi-

loop system comprising a major positive loop and a number of negative loops.  

Bifurcations and Loop Dominance 

A bifurcation is a sudden shift in the goal state of a continuous, nonlinear system.13  

It is natural to ask how shifts in loop dominance relate to bifurcations.   The following 
analysis of a well-known simple example suggests that bifurcations occur at equilibrium 
points that are also points of shifting loop dominance. 

Example (9):  Bifurcation and shifts in dominant polarity in a first-order system. 

Let  x = xf(x) - bx. 

For specifics, interpret  x  as a population (such as right whales or passenger pigeons) and  
f(x)  as its net birth rate factor.   Let  b represent the fraction of the population harvested per 
year. 

The dominant polarity of the system is 
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sign
dx
dx

= sign f(x) + x f'(x) - b

=
+, if f(x) + x f'(x) > b

-, if f(x) + x f'(x) < b

This system bifurcates if the net birth factor  f(x)  rises to a peak before it declines to 
zero.   Figure 6A shows such a graph for  y = f(x); Figure 6B shows the corresponding 
rate-versus-level graph for the net birth rate  xf(x). 

If the harvesting rate equals the value labeled  b1 in Figure 6B, the system seeks and 

maintains a stable equilibrium population  x1:  if  x rises above  x1, the net rate  xf(x) - bx  

is negative and x falls back to x1;  and if  x  falls below  x1, the net rate  xf(x) - bx  is 

positive and x  rises back to  x1.   Note that the slope of the net birth rate curve  y = xf(x)  

is negative at  x = x1.   Since that slope equals  f(x) + xf'(x), that guarantees that the 

dominant polarity of the system in a neighborhood of  x = x1  is always negative.   The 

system should be nicely stable and goal-seeking around  x1. 

However, if the harvesting rate equals the value labeled  b2  in Figure 6B, the 

equilibrium population  x2  is stable only if approached from above. If the harvesting rate  

b  were to rise at all above  b2, or if the population  x  were to fall a bit below  x2, the goal 

state of the system switches suddenly to zero.   Thus  x2  and  b2 determine a bifurcation 

point of the system. 
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y = f(x)

y = x f(x)

y = b1 x

y = b2 x

x1 x2 Level (x)

Figure 6:  Graphs associated with the bifurcating system  x = xf(x) - bx. 

A:  Graph of  y = f(x) 
B:  Graphs of the rates  xf(x)  and  bx  versus the level  x. 

But  x2  and  b2  also determine a point of shifting loop dominance in the system.   At 

that critical point, the slope of the net birth rate curve momentarily equals the slope of the 
harvesting curve.  More precisely, in a neighborhood of  x2, 

f(x) + x f'(x)

< b2 if x > x 2

= b2 if x = x 2

> b2 if x < x 2

We see immediately that if  b = b2  the dominant polarity of the system shifts  from  
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negative to positive as  x  drops  through the value  x2.  The positive polarity for  x < x2  

means a self-reinforcing decline in  x:  since  f(x2)  is the maximum value of f(x),  x = 

xf(x) - bx < 0  for  x < x2.  Thus the system shows a sudden shift in goal state because it 

experiences a shift in dominant polarity from goal-seeking negative to goal-divergent 
positive. 

It is common to assert that as  b  increases through the bifurcation point in this 
system, the goal state of the system suddenly shifts to zero.  However, that is not quite 
what  happens.   For  b  slightly bigger than b2, or for  b = b2  and  x  slightly less than  

x2, the system has positive dominant polarity, and its net rate  x  is negative.   The 

system's goal is, for a time at least, negative infinity.   As  x  drops more and more 

precipitously, the system experiences another shift in dominant polarity, from positive back 
to to negative.   But here the goal of the negative polarity system is no longer  x = x1 or x2, 

but rather  x = 0.   It is at this second shift in dominant polarity as  x  declines that it 
becomes appropriate to say that the goal of the system shifts to zero. 

To see that there are two points of shifting dominant polarity in the system given by  

x = xf(x) - bx, consider Figure 7.   Dominant polarity shifts when  f(x) + xf'(x) - b  

changes sign, which in a continuous system implies  f(x) + xf'(x) = b.   Geometrically, that 
means that in this system dominant polarity changes when the slope of the tangent to the net 
birth rate curve equals the slope of the line representing the harvesting rate. A visual check 
of the slopes in Figure 7 shows that 

-∞ < x < x1 ===>  slope of  x f(x) < b  ===> polarity negative; 

 x1 < x < x3 ===>  slope of  x f(x) > b  ===> polarity positive; 

 x3 < x < ∞ ===>  slope of  x f(x) < b  ===> polarity negative. 

Loop Dominance Page 21 



x1 x2 x3 x4

Negative 
polarity

Positive 
polarity

Negative 
polarity

Level (x)

Stable 
equilibrium

Unstable 
equilibrium

y = b x

y = x f(x)

Figure 7:  Illustration of the two points of shifting loop dominance in the 

bifurcating system  x  =  x f(x) - bx. 

          x1 & x3:  points of changing dominant polarity; 

          x2 & x4:  equilibrium points. 

The points indicated by  x2  and  x4  in Figure 7 are, along with  x = 0, the possible 

equilibrium points of the system.   At  x = x2  the equilibrium is unstable, since it is in the 

interval of positive dominant polarity.  Any deviation in either direction from  x = x2  is 

reinforced, moving  x  away from  x2  at an increasing rate.   At  x = 0  and  x = x4  the 

equilibria are stable, since both occur in intervals of dominant negative polarity in which 
deviations from equilibrium are counteracted. 

Thus in Figure 6, when the system experiences a bifurcation at  b = b2 and x = x2,  

the goal state of the system actually shifts to negative infinity.  Then as  x  drops more and 
more rapidly the system eventually reaches the point where  the slope of the tangent to  y = 
x f(x)  again equals the slope of the line  y = b2x.   At that point the dominant polarity shifts 

back to negative, and, since  x  equals a negative number times  x  in this range, the goal 

for  x  becomes  zero.   Without its second shift in dominant polarity, this bifurcating 
system would not end up at a finite goal. 

Mindful of the dangers of generalizing from one example, I conjecture that all 
instances of bifurcation in continuous systems result from shifts in loop dominance.   More 
precisely, it seems reasonable that all such bifurcations occur at equilibrium points which 
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are also points at which the dominant polarity can shift from negative to positive.   The 
apparent sudden shift in goal state is a consequence of a shift in dominant polarity. 

Summary and Conclusions 
Shifts in loop dominance lie at the heart of significant feedback system dynamics.  

The concepts and definitions made more rigorous in this paper move in the direction of 
clarifying what we mean by such shifts.  The necessary first step in that direction is to 
develop rigorous and reliable definitions of link and loop polarities and shifts in loop 
polarities. This paper has suggested such a set of definitions.  They have the desirable 
property that they are formal definitions with clear and immediate connections to the 
intuitive characterizations in common use. Furthermore, they result in several simple 
algebraic and geometric tests for determining dominant polarities and shifts in dominance in 
simple systems. 

The concept of dominant polarity developed here suggests the possibility of linking 
three areas in the study of dynamic feedback systems.  First, dominant polarity bears a 
clear connection to the notion of open-loop steady-state gain.  That connection takes all 
mystery away from "goal-seeking positive loops."  From the point of view of dominant 
polarity, "positive loops with gain less than one" are no more mysterious than the structure 
and behavior of the logistic equation.  Both are multi-loop systems in which the negative 
polarity can dominate.  In positive loops with gain less than one, the negative polarity 
always dominates.  Second, the notion of dominant polarity aims in the direction of 
identifying dominant loops and shifts in loop dominance in nonlinear systems.  In that 
sense it is in the spirit, if not yet the significance, of efforts to use eigenvalue elasticities 
and participation factors to identify dominant loops (N. Forrester 1982).  Third, there is the 
distinct possibility of a rigorous understanding the phenomena of bifurcation and perhaps 
even mathematical chaos in terms of shifts in loop dominance. 

These connections to other ideas about dynamic systems suggest there is reason to 
develop these nascent notions further.  Yet there is one more reason for a serious pursuit of 
the ideas of dominant polarity and shifts in loop dominance:  in applied system dynamics 
work the concept of shifting loop dominance is an easily communicated, intuitive idea.  
Shifts in loop dominance and their implications for policy can be described and explained in 
terms of nonquantitative causal-loop diagrams. The concept of loop dominance becomes an 
important bridge between complex interactions in a simulation model and the intuitions and 
understandings of people the modeler hopes to influence.  It may help us to move our more 
significant quantitative advances, such as eigenvalue analyses, bifurcation theory and 
chaotic systems, from the forefront of research to the arena of applicable policy analysis. 
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Notes 
1.   The statement is a principle of feedback system dynamics.  It is also something of a 
tautology, however, because it can be viewed as an implicit definition of what is meant by 
the phrase "dynamically significant." 

2.   Define the rate of change  x  to be an inflow to  x  if  x, whatever its sign, is added  x.   

That is, x  is an inflow if 

x(T) = xo + x
o

T
dt

whether or not  x  itself is positive or negative.  Similarly,  x  is an outflow from  x  if  x, 

whatever its sign, is subtracted from  x. 

3.   Nonetheless, in nonquantitative causal-loop diagrams, we often know unambiguously 
the polarity of feedback loops.   The signs of the parameters are usually given by the words 
used to name or describe the variables. 

4.   See Goodman (1974) or Alfeld & Graham (1976) for discussion and examples of rate-
versus-level curves. 

5.   Higher-order linear systems also can not change loop dominance, but this simple 
development of dominant polarity is not sufficient to prove that fact.   One way to justify it 
is to appeal to eigenvalue analysis and participation matrices;  see N.  Forrester (1982) for 
developments in the use of these ideas. 

6.   One simple technique that ought to work with first-order systems containing two loops 
of the same polarity is to change one of the loops arbitrarily to the opposite polarity in the 

expression for  x and compute the shift in dominant polarity as before.   Then interpret the 

result as the point of shifting loop dominance between the two loops of the same polarity.   
Presumably, a shift in loop dominance between two negative loops means a change in the 
goal state of the system. 

7.   The computation is: 
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    dominant polarity = sign(dx/dx) 

= sign
f(x)(-1) - (x*- x) f'(x)

f(x)
2

= sign - f(x) + (x - x*) f'(x)

=

+ if f'(x) <
f(x)

x - x*

- if f'(x) >
f(x)

x - x*

8.  Since   x =  ax - bxy   and we are only interested in  ∂x/∂x, this example illustrates the 

need for partial derivatives when applying these ideas in higher-order systems.   

9.  The notion of dominant polarity reveals shifts in loop dominance, however, which are 
not observable in analyses of linearized versions of a nonlinear system.  Efforts to blend 
the strengths of eigenvalue analyses and dominant polarity concepts may bear more fruit 
than either approach by itself. 

10.  If  y(t) = yoegt, then the solution of the differential equation for  z(t)  is of the form 

z(t) =
1

1 + Tg
y(t) + ke

gt

where  k  is a constant dependent on initial conditions. 

11.  Root-locus analysis shows that the polynomial 
          k = (1 + T1g)(1 + T2g) . . . (1 + Tng) 

with positive coefficients  Ti  always has a real root  g  that passes from negative to positive 

as  k  increases through one. 

12.  For a further example the reader is invited to apply the technique to the frequently 
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analyzed salesman loop in Forrester (1968a) and show that loop dominance shifts when the 
ratio  (RS*SE)/SS  moves through  1.  See Rahn (1982) for further discussion of the 
salesman loop and loop gain.

13.  For recent system dynamics references to bifurcations, see Andersen (1982) and From 
the Physical Sciences to the Social Sciences: Proceedings of the 7th International 
Conference on System Dynamics (1982). 
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