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Can System Dynamics Models
Learn and Adapt?

u Of course not!  Models don’t learn;  people do.

u Learning and adaptation require internal changes,

u And system dynamics models have fixed structure
(equations),

u So system dynamics models can’t learn.

u But how close can they come?
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Can System Dynamics Models
Learn and Adapt?

u System dynamics models can change dominant
structure:

u Nonlinearities are our source of endogenous system change

u So the question becomes
u How close can endogenous shifts in loop dominance, generated by

nonlinearities, come to resemble learning?

u And the answer is:  Pretty close!
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What is Required?

u Model structure for the self-perception of model
behavior

u Model structure for adaptation and ‘learning’

u And perhaps, model structure for endogenously
generated experimentation leading to ‘learning’
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An example:
Inventory / Workforce Instabilities

u Classic structure of Inventory / Workforce oscillations in
response to randomness in customer orders

u Oscillations stem from delays in adjusting the workforce
to changes in the desired production schedule

u Two policies dampen the oscillations:
undertime/overtime and re-engineering hiring
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Hiring Delays
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Persistent oscillations in Inventories
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…and the Laborforce

Labor and Orders
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Learning and forgetting
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Inventory, with and without learning

Inventory comparison
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Labor, with and without learning
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How does the model ‘learn’?

u It ‘perceives’ that it, itself, is oscillating,
u In particular, that the Laborforce is oscillating.

u It ‘perceives’ the period and amplitude of its own
oscillations, much as a person would.

u It comes to perceive that the amplitude of its oscillations
is above its tolerance,

u So ‘pressures’ mount to phase in undertime & overtime
and decentralize hiring
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How does the model ‘forget’?

u The model ‘perceives’ that its Laborforce variations are
within its acceptable tolerance,

u So the pressures for undertime & overtime and removing
hiring delays subside,

u And the damping policies are phased out -- the model
‘forgets’ that it ever had a problem.
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The dynamics of pressures to adjust

Pressure to adjust
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Modeling pressures to adjust
u Perceive peaks and valleys of the oscillations

u Estimate period and amplitude

u Pressure to adjust = f(Amplitude/Tolerance)

u Pressures to adjust are then applied to hiring delays and
the undertime/overtime policy

u Relative workweek =
Pressure to use overtime/undertime*Table for Workweek(Schedule Pressure) +

(1-Pressure to use overtime/undertime)*1

u Labor authorization time =
Pressure to decentralize hiring process*Decentralizaed labor authorization time +
(1-Pressure to decentralize hiring process)*Traditional labor authorization time
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Modeling pressures to adjust
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Perceiving peaks, valleys, period, and amplitude
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The hard part is modeling the perception of peaks
and valleys...
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Perception of period and amplitude
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Learning to adjust the workweek policy

Workweek
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Learning to re-engineer the hiring policy
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Long run dynamics
Pressure to adjust
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What have we learned?

u If the model didn’t forget, the problem would be solved.

u Nonlinearities enable continuous models to adapt and
change over time.

u Modeling the model’s perception of its own dynamics is
tricky.

u We are thinking of ‘learning’ as purposeful adaptation
in response to system behavior to come closer to goals.

u So far, the model can ‘learn’ and ‘forget’ only what we
tell it to.
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Can a model explore multiple policies and select
on its own the most advantageous?

u Why not?

u In addition to what we’ve seen, the model would
require:
u an Exploration sector that sets out the structure for

explorations;

u A Selection sector that contains criteria for evaluation of the
model’s own dynamic behavior.

u None of that seems impossible, but it could be
daunting...
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Why build models that learn?

u To achieve real-time adaptive control at the policy level

u To compress human learning time
u Ask models to show us what we can’t learn without them

u To prove that we can do it

u Because we’ve solved all the easier dynamic problems
u Not bloody likely!

u Because it’s New Year’s Eve and we’re looking for
something to do...
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Further reading

u Self-learning policies in Urban Dynamics, Readings in
Urban Dynamics II (1975).

u DeJong, Learning to plan in continuous domains.
Artificial Intelligence 65 (1994).

u Ram & Santamaria, Continous case-based reasoning.
Artifical Intelligence 90 (1997)

u Richardson, Andersen, Maxwell & Stewart, Foundations
of Mental Model Research (1994)

u Powers, Behavior, the Control of Perception (1973)


