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Can System Dynamics Models
Learn and Adapt?

+ Of coursenot! Modelsdon't learn; people do.
+ Learning and adaptation require internal changes,

+ And system dynamics models have fixed structure
(equations),

+ S0 system dynamics models can’t learn.
+ But how close can they come?

G.P.Richardson, Rockefeller College, University at Albany




Can System Dynamics Models
Learn and Adapt?

& System dynamics models can change dominant
structure:
+ Nonlinearities are our source of endogenous system change

+ S0 the question becomes

¢ How close can endogenous shifts in loop dominance, generated by
nonlinearities, come to resemble learning?

& And the answer is. Pretty close!
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What is Required?
& Model structure for the self-perception of model
behavior

& Model structure for adaptation and ‘learning’

+ And perhaps, model structure for endogenously
generated experimentation leading to ‘learning’
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An example:
Inventory / Workforce Instabilities

# Classic structure of Inventory / Workforce oscillationsin
response to randomness in customer orders

+ Oscillations stem from delays in adjusting the workforce
to changes in the desired production schedule

+ Two policies dampen the oscillations:
undertime/overtime and re-engineering hiring
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Hiring Delays
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Persistent oscillations in Inventories
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...and the Laborforce

Labor and Orders
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Learning and forgetting
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Inventory, with and without learning

Inventory comparison
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L abor, with and without learning
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How doesthe model ‘learn’?

o It ‘perceives that it, itself, is oscillating,
+ In particular, that the Laborforce is oscillating.
+ It ‘perceives the period and amplitude of its own
oscillations, much as a person would.
# It comesto perceive that the amplitude of its oscillations
Is above its tolerance,

+ S0 ‘pressures mount to phase in undertime & overtime
and decentralize hiring
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How does the model ‘forget’ ?

¢ Themodel ‘perceives that its Laborforce variations are
within its acceptabl e tolerance,

+ S0 the pressures for undertime & overtime and removing
hiring delays subside,

& And the damping policies are phased out -- the model
‘forgets that it ever had a problem.
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The dynamics of pressures to adjust

Pressures rise (and fall) to implement damping policies
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Modeling pressures to adjust

+ Perceive peaks and valleys of the oscillations
+ Estimate period and amplitude
# Pressure to adjust = f(Amplitude/Tolerance)

+ Pressuresto adjust are then applied to hiring delays and
the undertime/overtime policy
+ Relative workweek =

Pressure to use overtime/undertime* Table for Workweek(Schedule Pressure) +
(1-Pressure to use overtime/undertime)* 1

¢ Labor authorization time =

Pressure to decentralize hiring process* Decentralizaed |abor authorization time +
(1-Pressure to decentralize hiring process)* Traditional 1abor authorization time
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Modeling pressures to adjust
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Perceiving peaks, valleys, period, and amplitude
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The hard part is modeling the perception of peaks

and valleys...
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Learning to adjust the workweek policy

Workweek
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Long run dynamics
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What have we learned?

+ If the model didn’t forget, the problem would be solved.

+ Nonlinearities enable continuous models to adapt and
change over time.

& Modeling the model’ s perception of its own dynamicsis
tricky.

¢ We arethinking of ‘learning’ as purposeful adaptation
In response to system behavior to come closer to goals.

+ So far, the model can ‘learn’ and ‘forget’ only what we
tell it to.
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Can amodel explore multiple policies and select
on its own the most advantageous?

+ Why not?
+ In addition to what we' ve seen, the model would
require:
+ an Exploration sector that sets out the structure for

explorations,
¢ A Sdection sector that contains criteriafor evaluation of the

model’ s own dynamic behavior.
+ None of that seemsimpossible, but it could be

daunting...
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Why build models that learn?

+ To achieve real-time adaptive control at the policy level

+ To compress human learning time
¢ Ask models to show us what we can't learn without them

& To provethat wecandoit

¢ Because we' ve solved all the easier dynamic problems
+ Not bloody likely!

+ Becauseit’'sNew Year's Eve and we're looking for
something to do...
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Further reading

+ Self-learning policiesin Urban Dynamics, Readingsin
Urban Dynamics |1 (1975).

+ Delong, Learning to plan in continuous domains.
Artificial Intelligence 65 (1994).

¢ Ram & Santamaria, Continous case-based reasoning.
Artifical Intelligence 90 (1997)

¢ Richardson, Andersen, Maxwell & Stewart, Foundations
of Mental Model Research (1994)

& Powers, Behavior, the Control of Perception (1973)
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