
NOTE ...

this manual was written a while ago, but most
of the information is (probably) still relevant

my current address, affiliation, and contact
information are as follows ...

Mike Zdeb
Assistant Professor
U@Albany School of Public Health
1 University Place
Rensselaer, NY 12144

518.402.6479

msz03@albany.edu

A GUIDE TO SyncSort
FOR DATA ANALYSTS AND RESEARCHERS

Mike Zdeb

New York State Department of Health
Information Systems and Health Statistics

Concourse - Room C-144
Albany, NY 12237-0044

(518)474-2377

May 1996

NOTE This guide assumes a few prerequisites. You must
know how to edit a file on VM. You must know
how to submit a job from VM to the MVS
operating system. You must understand certain
concepts about files, records, and fields within
records. If any or all of these terms are new to
you, the material contained in this guide may be
difficult to understand.

Even if you have the prerequisites, some or all of
the material concerning SyncSort may be new to
you. If you do not understand something in the
introductory sections of the guide, DO NOT
DESPAIR. There are a number of examples in
later sections that show you how to use SyncSort
to accomplish tasks that are common to the work
of most data analysts or researchers. Also, a
number of examples are available from current
SyncSort users that might help in your
understanding of how SyncSort can assist in your
work.

© 1996

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION . 1

1.1 SyncSort Statements . 1

1.2 Using SyncSort Statements . 2
1.2.1 Selecting Records . 2
1.2.2 Selecting Fields from Records . 3
1.2.3 Sorting / Copying Records . 4
1.2.4 Formatting Output from SORT . 5
1.2.5 Combining Records . 7

2.0 SyncSort ON MVS . 8

2.1 Copying Records . 8
2.1.1 Tape-to-Tape . 8
2.1.1a Entire contents of a tape containing only one file . 8
2.1.1b Entire contents of a tape containing multiple files . 9
2.1.1c Selected records from one tape . 10
2.1.1d Selected records from several tapes . 10
2.1.1e Selected records from two tapes with fixed length, but with different

record lengths . 11
2.1.2 Tape-to-VM via the Reader . 11
2.1.2a Selected portions of selected records . 11
2.1.2b Multiple output files . 12

2.2 Counting Records . 14
2.2.1 Counts Output to a Single File in the VM Reader . 14
2.2.2 Counts Output to a Temporary Disk File on MVS - Used as Input to a SAS Job 15
2.2.3 Multiple Output Files Used to Produce Two Sets of Counts - Sent to VM

Reader as One File . 15

3.0 SyncSort ON VM . 16

3.1 Starting SyncSort on VM . 16

3.2 SyncSort Commands Specific to VM . 16

3.3 Passing File Information to SyncSort on VM . 17
3.3.1 Single Input File and Single Output File . 17
3.3.1a Direct entry on the command line . 17
3.3.1b Using FILEDEFs . 17
3.3.1c Combination of direct entry and FILEDEFs . 18
3.3.2 Multiple Input and/or Output Files . 18
3.3.2a Direct entry on the command line - multiple input, single output 18
3.3.2b Using FILEDEFs - multiple input, single output . 18
3.3.2c Combination of direct entry and FILEDEFs - single input, multiple output 18

- i -

Appendices

A SyncSort References . 19

B The Flow of SyncSort . 20

C Allocating Temporary Disk Space on MVS . 21

BASICS . 21
EXAMPLE . 22

D Examples of Uses on SyncSort on MVS . 23

Example 1 Extract and Copy Records - Simple Record Selection 23
Example 2 Extract and Copy Records - Complex Record Selection 24
Example 3 Extract and Count Records . 24
Example 4 Extract and Count Records - Use Output from SyncSort as SAS Input 25
Example 5 Extract and Count Records when Multiple Fields on a Record

Contain Data that are to be Combined into One Count 26
Example 6 Extract and Count Records Using Two Fields to

Accumulate Counts - Use Counts as Input for SAS 28

E Examples of Uses of SyncSort on VM . 30

SORT RECORDS . 30
EXTRACT RECORDS . 30
COUNT RECORDS . 30
EXTRACT DATA . 31
COMBINE SPECIFIED RECORDS FROM SEVERAL FILES . 31
SORT A FILE ON SEVERAL FIELDS . 31
ELIMINATE RECORDS WITH DUPLICATE DATA IN SPECIFIED POSITIONS 32
PRODUCE SEVERAL OUTPUT FILES CONTAINING SPECIFIED RECORDS 32

F Using ETHERNET to Send SyncSort Output from MVS Directly to a PC 33

G Some Other Useful SyncSort Statement . 35

- ii -

A Guide To SyncSort

1.0 INTRODUCTION
SyncSort is a utility available on both MVS and VM that can be used to copy, sort, merge, or count
records. Many of the tasks performed by SyncSort can also be performed using other software.
However, SyncSort has a distinct advantage over other software in that it performs tasks very fast,
and requires very few statements to perform tasks.

SyncSort also has disadvantanges. When compared to other software packages, e.g. SAS, that
perform tasks similar to those performed by SyncSort, the SyncSort command set can appear
limited and cryptic. Also, the reference manuals for SyncSort on both the VM and MVS operating
systems are not written for the non-programmer. The terminology used can be intimidating, and
it is difficult to determine what you have to know and what you can ignore.

This guide is intended to explain SyncSort to data analysts and researchers, i.e., those whose main
task is not programming. It does not cover all the tasks performed by SyncSort. Rather, it
explains some of the features of SyncSort that have been found useful in processing departmental
data on both VM and MVS. Other information contained in this guide includes JCL necessary to
use SyncSort on MVS; examples of how to use SyncSort to extract and/or count records; examples
of using SyncSort to pre-process data prior to using SAS for further data analysis or reporting.

A complete description of SyncSort capabilities can be found in the Programmer’s Guides (see
appendix A). Portions of this guide are based upon material found in the SyncSort OS Applications
Workshop, a publication that also goes beyond the reference manuals in trying to explain SyncSort
to non-programmers.

1.1 SyncSort Statements
The control statements (sometimes referred to later in this guide as the command set) used to
process records with SyncSort are as follows:

INCLUDE/OMIT select records for processing

INREC select fields to include from records to be processed

SORT sort records by specified fields (also referred to as sort keys), or copy records

OUTREC position and format data on output records

OUTFIL an alternative to OUTREC (allows for multiple file output and for editing of
output records)

SUM combines records that contain equal sort keys, or delete records with equal
sort keys

These statements are used in conjunction with the following logical expressions and relative
conditions to select records for processing:

logical expressions AND OR

relative conditions EQ (equal) NE (not equal)
GT (greater than) GE (greater than or equal)
LT (less than) LE (less than or equal)

- 1 -

A Guide To SyncSort

When constructing SyncSort statements to select records for processing, the following rules apply:

- conditions within internal parentheses are evaluated first
- AND conditions are evaluated next
- OR conditions are evaluated last

1.2 Using SyncSort Statements
A SyncSort job consists of combinations of the control statements, logical expressions, and relative
conditions shown in section 1.1. The following sections describe how to use the SyncSort
command set. In using these commands, it is important to know the flow of a SyncSort job, i.e.
the order in which SyncSort processes commands. The illustration in appendix B can be used in
conjunction with this section to understand how SyncSort processes data.

1.2.1 Selecting Records
The INCLUDE/OMIT control statements allows the specification of conditions for the selection or
omission of records for processing with SyncSort. The following rules apply:

- a field may be compared to a constant or another field within a record
- multiple editing conditions may be formed by using ANDs, ORs, and parentheses as

needed
- only ONE INCLUDE/OMIT statement is allowed per sort

The form of the statement is

INCLUDE(or OMIT) COND=(logical expression)[,FORMAT=f]

where the logical expression uses the format

relative condition [(,AND(or OR),) relative condition ...]

and the relative condition(s) are expressed as

field ,EQ(or NE GT GE LT LE), constant(or field)

For example:
a. INCLUDE COND=(5,2,CH,EQ,C’70’)

accepts all records where positions 5-6 contain the literal string 70

b. INCLUDE COND=(5,2,GE,C’01’,AND,5,2,LE,C’61’),FORMAT=CH
accepts all records where positions 5-6 contain a literal string in the range 01 to 61

c. OMIT COND=(1,2,EQ,5,2),FORMAT=CH
deletes all records where the literal strings in positions 1-2 and 5-6 are equal

d. OMIT COND=(10,1,ZD,EQ,1,OR,(20,2,CH,GT,C’09’,AND,20,2,CH,LT,C’50’))
deletes all records where position 10 contains a numeric entry 1, or where positions 20-21
contain a literal string in the range 10-49

NOTE: The above statements illustrate that SyncSort uses ’positional notation’ to refer to location
of data within records, i.e. data are referred to by the starting position of the data followed
by the length of the field containing the data.

- 2 -

A Guide To SyncSort

NOTE: The INCLUDE/OMIT statement contributes to the EFFICIENCY of a SyncSort job by
reducing the number of records to be processed by subsequent SyncSort statements. More
efficient jobs use fewer system resources (disk space and computer time). As will be
shown later, records can also be included in an ouput section. However, record selection
on output does not contribute to efficiency.

Several different data formats are addressed in these examples. They are not exhaustive of the
formats that SyncSort can handle. However, they should suffice for most data dealt with by
Department data analysts and researchers. The CH data format in examples ’a’ through ’d’ is
used for CHARACTER data. This format is used when data are to be treated as literal strings.
The format ZD in example ’d’ is used for zoned-decimal data. Though this term may not be
familiar, it can be thought of as the format to use when data are to be treated as numeric.

NOTE: When record positions are referred to in any of the examples, a RECORDTYPE of FIXED is
assumed. If the RECORDTYPE is VARIABLE, SyncSort considers the 4-byte header (the
place where information as to record length is stored) as the first 4 record positions. Thus,
with a variable length records, data that appears to be in position 1 would have to be
described to SyncSort as in position 5, with every subsequent data element moved over 4
positions. To AVOID CONFUSION, it is easier to work with FIXED LENGTH RECORDS.

As noted in the examples, there are two types of comparisons that can be made in the edit
statements: FIELD-to-FIELD, FIELD-to-CONSTANT. The following types of comparisons are
allowed.

FIELD-to-FIELD
between two fields with the same format

FIELD-to-CONSTANT
between ZD and a numeric constant
between CH and a character literal

In those cases where the length of the fields or constants being compared differ, the following
rules apply:

FIELD-to-FIELD
the shorter field is ZERO-padded in its own format

CH padded on the right ZD padded on the left

FIELD-to-CONSTANT
the constant length is adjusted

numeric constants are padded or truncated on the left - padding with ZERO if the field is
ZD, or with NULLS in all other cases character literals are padded or truncated on the
right - padding with SPACES

NOTE: The SAFEST way to make comparisons is to try to KEEP FIELDS and CONSTANTS the
SAME LENGTH, thus AVOIDING any PADDING or TRUNCATION.

1.2.2 Selecting Fields from Records
INREC allows selection of fields from records. The form of the statement is

INREC FIELDS=(field,<field,field,...>)

- 3 -

A Guide To SyncSort

The following general rules apply:

- input fields are defined by position,length (as in examples ’a’ through ’e’)
- data may be repositioned with column pointers, by inserting spaces or literals (as in

examples ’b’ through ’e’)

For example:
a. INREC FIELDS=(1,2,100,50)

inputs data from positions 1 and 2, and 100 through 149
all data from the input file in positions 1-2 remain in those positions, while data from
positions 100-149 now reside in positions 3-52

b. INREC FIELDS=(10,5,8:20,3)
inputs data from positions 10 through 14, and 20 through 22
data from positions 10-14 now reside in positions 1-4, while data from positions 20-22 have
been placed in positions 8-10 by using the column pointer 8:

c. INREC FIELDS=(40,9,C’NYS’)
inputs data from positions 40 through 48
these data now reside in positions 1-9, and the literal NYS resides in positions 10-12

d. INREC FIELDS=(5,2,3X,7,2)
inputs data from positions 5 and 6, and 7 and 8
data from positions 5-6 now reside in positions 1-2, while data from positions 7-8 have
been placed in positions 6-7 by using the 3X to insert three SPACES

e. INREC FIELDS=(135,2,8,4,C’000001’)
inputs data from positions 135 and 136, and 8 through 11
data from positions 135 and 136 now reside in positions 1-2, while data from positions 8
through 11 have been placed in positions 3 through 6, while the literal string 000001 has
been added to each record

NOTE: The INREC statement REPOSITIONS data from the input record. Since the INREC
statement REFORMATS the input records, any SyncSort control statements (e.g. SORT)
subsequent to INREC must take into account the new positions of the input data.

NOTE: The INREC statement contributes to the EFFICIENCY of a SyncSort job. INREC allows a
user to reduce the size of the records that will be processed by subsequent steps in a
SyncSort job. Reducing the size of records will cut down on the system resources used by
the job. Therefore, if only certain fields from the input records are of interest, an INREC
statement should be used.

1.2.3 Sorting / Copying Records
The SORT command can by used to sort, copy, or merge records (merge not covered in this
guide). Records are sorted after INREC and INCLUDE/OMIT steps are executed. Thus, if an
INREC statement is used, the SORT statement must take into account any reformatting of records
that may have resulted from INREC processing.

The form of the SORT command is

SORT FIELDS=(field[,field,...]) [,FORMAT=f]

- 4 -

A Guide To SyncSort

The fields used in the sort are expressed as:

Position,Length,Format,Collating Sequence (as in examples ’a’ and ’b’)
-or-

Position,Length,Collating Sequence (as in example ’c’ --- where the format of all data in the
edit is the same and the format is placed after the closing parenthesis)

NOTE: Collating sequences are either ’A’ for ascending order, or ’D’ for descending order.

For example:
a. SORT FIELDS=(5,2,CH,A)

sorts the input file on positions 5 and 6, containing character data, in ascending order

b. SORT FIELDS=(1,5,CH,A,10,2,ZD,D)
sorts the input file on positions 1 through 5, containing character data, in ascending order,
and positions 10 and 11, containing zoned-decimal data, in descending order within

c. SORT FIELDS=(10,2,A,30,2,A),FORMAT=CH
sorts the input file on positions 10 and 11, in ascending order, and positions 30 and 31, in
ascending order, where both fields contain character data

NOTE: Up to sixty-four fields can be specified.

NOTE: When data are sorted on more than one field, the first sort is referred to as the PRIMARY
sort, and the remaining sorts are referred to as SECONDARY sorts. SECONDARY sorts
will sort data within like data of the PRIMARY sort

There are several options that can be used with the SORT statement. Consult the SyncSort
references referred to previously for information on these options.

The SORT command can also be used to copy records, as in:

SORT FIELDS=COPY

No sort fields are used when the SORT command is used to copy records. No rearranging of
records takes place, i.e. records are copied in the order they appear in the input file.

1.2.4 Formatting Output from SORT
Output from SORT is formatted using either an OUTREC statement (one output file) or a series of
OUTFIL statements (multiple output files). Either OUTREC or OUTFIL can be used to:

- select output fields
- reposition data
- insert literal fields or spaces

As with the SORT, OUTREC and OUTFIL process records after INREC and INCLUDE/OMIT.
Therefore, any reformatting of data performed with INREC must be taken into account when
using OUTREC and OUTFIL.

The form of OUTREC is similar to that of the INREC statement

OUTREC FIELDS=(field,<field,field,...>)

- 5 -

A Guide To SyncSort

The following general rules apply:

- output fields are defined by position,length (as in examples ’a’ through ’d’)
- data may be repositioned with column pointers, by inserting spaces or literals (as in

examples ’b’ through ’d’)

For example:
a. OUTREC FIELDS=(1,30)

outputs data from the first 30 positions of the records that result from processing prior to
the SORT command

b. OUTREC FIELDS=(11,2,21,2,31,10)
outputs data from positions 11 and 12, 21 and 22, and 31 through 40 of the records that
result from processing prior to the SORT command

c. OUTREC FIELDS=(1,5,7:C’00001’)
outputs data from positions 1 through 5 of the records that result from processing prior to
the SORT command, and adds the literal string 00001 to each record starting in column
seven, using the column pointer 7:

d. OUTREC FIELDS=(1,5,2X,6,5)
outputs data from positions 1 through 5, and 6 through 10 of the records that result from
processing prior to the SORT command, inserting two spaces between the two ranges of
data using 2X

If multiple output files are desired, OUTFIL statements are used instead of OUTREC. The form of
the OUTFIL statement is

OUTFIL FILES=xx [,INCLUDE(or OMIT)=logical expression]
[,OUTREC=(field,<field,field,...>)

where ’xx’ refers to a portion of a DDname cited in the JCL accompanying the SyncSort job.

NOTE: When using multiple output files, it is necessary to ’connect’ the SyncSort control
statements (OUTFIL) with the actual output files defined in the JCL. This is shown in
examples in later sections.

The rules for INCLUDE/OMIT from section 1.2.1 apply in the OUTFIL statement. The only
exception is that the FORMAT= statement (when all data formats are the same in the logical
expressions) cannot be used. The rules for OUTREC are the same as when only one output file is
produced.

For example:
a. OUTFIL FILES=1,INCLUDE=(1,2,CH,GE,C’01’,AND,1,2,CH,LE,C’61’)

OUTFIL FILES=2,INCLUDE=(1,2,CH,EQ,C’70’)
two output files are produced, each edited on data in positions 1 and 2 of records
resulting from processing prior to the SORT command, where the first file contains
character data in the range 01 through 61, and the second contains character data equal to
70 - the entire record resulting from processing prior to the SORT command is output

b. OUTFIL FILES=1,INCLUDE=(1,2,CH,GE,C’01’,AND,1,2,CH,LE,C’61’),
OUTREC=(1,100)

- 6 -

A Guide To SyncSort

OUTFIL FILES=2,INCLUDE=(1,2,CH,EQ,C’70’),OUTREC=(101,100)
the INCLUDE conditions are the same as example ’a’, however the first output file will
contain data from positions 1 through 100 and the second file from positions 101 through
200 from records resulting from processing prior to the SORT command

c. OUTFIL FILES=1,INCLUDE=(1,2,CH,GE,C’01’,AND,1,2,CH,LE,C’61’),
OUTREC=(1,5,C’UPS’)

OUTFIL FILES=2,INCLUDE=(1,2,CH,EQ,C’70’),OUTREC=(1,5,C’NYC’)
the INCLUDE conditions are the same as example ’a’, however the first output file will
contain the literal string UPS in positions 6 through 8, while the second file will contain
the literal string NYC in positions 6 through 8

NOTE: There are many other options available on the OUTREC and OUTFIL statements.
Discussion of these options can be found in the SyncSort references cited previously.

1.2.5 Combining Records
The SUM statement can be used to combine records that have equal sort keys. The SUM
statement results in a single record for all records with equal sort keys, where the single record
contains the sum of specified numeric (e.g. zoned-decimal) data. Records are summed after
INREC and INCLUDE/OMIT steps are executed. Thus, if an INREC statement is used, the SUM
statement must take into account any reformatting of records that may have resulted from INREC
processing.

The form of the SUM statement is

SUM FIELDS=(field<,field,field,...>) [,FORMAT=f]

The following general rules apply:

- SUM fields are defined by position,length (as in example ’a’)

- the format of SUM fields may be expressed with a FORMAT= if the format of all fields
being summed are the same

- the sum resulting from the combination of records with equal SORT keys must fit within
the width of the field(s) specified in the SUM command; if the total becomes too large to
be accommodated by the field width, more than one record will result from the SUM

For example:
a. SORT FIELDS=(1,4,CH,A)

SUM FIELDS=(6,5,ZD)
totals zoned-decimal data in positions 6 through 10 for records containing like data in
positions 1 through 4

b. SORT FIELDS=(10,3,CH,D)
SUM FIELDS=(6,5,101,3),FORMAT=ZD
totals zoned-decimal data in positions 6 through 10, and 101 through 103 for records that
contain like data in positions 10 through 12

- 7 -

A Guide To SyncSort

2.0 SyncSort ON MVS
Using SyncSort on MVS requires not only a knowledge of the SyncSort command set, but also a
knowledge of JCL and the rules for moving data from MVS to VM. The following sections
contain complete examples of SyncSort jobs that run on the MVS operating system, showing JCL
and addressing system rules for moving data from MVS to VM. In addition to the followin
’generic’ examples, a number of examples based on a given data set are shown in Appendix E.

2.1 Copying Records
SyncSort can be used to copy records from one or more cartridge to another cartridge or cartridges
(remaining in the MVS environment for both input and output), or to copy records from one or
more cartridges to your reader (input data on MVS, output data to VM). Entire files, selected
records, and selected portions of records can be copied. The SyncSort statement SORT
FIELDS=COPY is used when copying records. The numeric NOTES included on the right of JCL
and SyncSort lines are NOT part of the code needed to run a job. They merely reference
explanations of statements following each job. Not every job has a note on each statement. Refer
to previous examples if a later example does not seem to contain enough of an explanation of
either a JCL or SyncSort statement.
NOTE: though the term ’cartridge’ is used in examples, any storage device (e.g., disk or tape) can

be substituted

2.1.1 Cartridge-to-Cartridge
There are several JCL and SyncSort rules to follow when copying records from cartridge-to-
cartridge. The following examples illustrate how to follow these rules.

2.1.1a Entire contents of a cartridge containing only one file
NOTES

//XXXXXSYN JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1 1
/*ROUTE PRINT DOHVM1.XXXXX 2
//STEP1 EXEC PGM=SORT,REGION=2400K 3
//SYSOUT DD SYSOUT=A 4
//SORTIN DD UNIT=CART,DISP=SHR, 5
// DSN=U9999.TESTSTPE.XXXXX.CARTIN,
// DCB=(RECFM=FB,LRECL=200),
// LABEL=(,NL,EXPDT=98000),
// VOL=SER=A12345
//SORTOUT DD UNIT=CART,DISP=(NEW,KEEP,DELETE), 6
// DSN=U9999.TESTSTPE.XXXXX.CARTOUT,
// LABEL=EXPDT=98030,
// DCB=(RECFM=FB,LRECL=200)
//SYSIN DD * 7

SORT FIELDS=COPY 8
/*

1 Run this job in the 1-queue on MVS (one of the MVS queues for jobs that require cartridges).
Replace the XXXXX with your user ID - replace the 99999999 with your charge code

2 Send all printouts associated with this job back to your reader on VM. Again, replace the
XXXXX with your user ID.

3 Execute the SyncSort program.

4 All information provided by SyncSort as to errors, number of records processed, etc. will be
returned to your reader on VM in a file with class A (i.e. in a file together with the log of your

- 8 -

A Guide To SyncSort

JCL, files allocated, etc.). If this output is to be separated from the log, etc., use another letter,
e.g. SYSOUT=B.

5 Define the input file --- in this case, a ’foreign’, unlabeled cartridge with a record length of 200
(rules for defining cartridges for MVS jobs can be found in ISHS Technical Booklet #1, Tape
Management System).

6 Define the output file.

7 SyncSort statements follow (you MUST HAVE a //SYSIN DD * statement)

8 Tell SyncSort to copy the entire cartridge.

2.1.1b Entire contents of a cartridge containing multiple files
NOTES

//XXXXXSYN JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=OLD, 1
// DSN=U9999.TESTSTPE.XXXXX.CARTIN,
// DCB=(RECFM=FB,LRECL=200),
// LABEL=(1,NL,EXPDT=98000),
// VOL=(,RETAIN,SER=012345)
//SORTOUT DD UNIT=CART,DISP=(NEW,PASS,DELETE), 1
// DSN=U9999.TESTSTPE.XXXXX.CARTOUT,
// DCB=(RECFM=FB,LRECL=200),
// LABEL=(1,SL,EXPDT=98030),VOL=RETAIN
//SYSIN DD *

SORT FIELDS=COPY
/*
//STEP2 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=OLD, 2
// DSN=*.STEP1.SORTIN,
// DCB=(RECFM=FB,LRECL=200),
// LABEL=(2,NL,EXPDT=98000),
// VOL=(,RETAIN,REF=*.STEP1.SORTIN)
//SORTOUT DD UNIT=CART,DISP=(NEW,KEEP,DELETE), 2
// DSN=*.STEP1.SORTOUT,
// LABEL=(2,SL,EXPDT=98030),
// VOL=(,RETAIN,REF=*.STEP1.SORTOUT)
//SYSIN DD *

SORT FIELDS=COPY
/*

1 A RETAIN parameter is used on the VOL statement to avoid having to remount the input and
output cartridges in each successive job step.

2 The DSN, DCB, and VOL statements reference (REF) the parameters used in the first job step.

Add another job step for each file to be copied, repeating the JCL used in STEP2, and changing the
file number used in the LABEL statement. You need not use the retain in the final job step and
can change the VOL parameters as follows:

- 9 -

A Guide To SyncSort

in SORTIN VOL=REF=*.STEP1.SORTIN
in SORTOUT VOL=REF=*.STEP1.SORTOUT

2.1.1c Selected records from one cartridge
NOTES

//XXXXXSYN JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=SHR,
// VOL=SER=123456,DSN=POPULT.A12345
//SORTOUT DD UNIT=CART,DISP=(NEW,KEEP,DELETE), 1
// DSN=U9999.TESTSTPE.XXXXX.CARTOUT,LABEL=EXPDT=98030
//SYSIN DD *

INCLUDE COND=(5,2,CH,EQ,C’70’) 2
SORT FIELDS=COPY

/*

1 No DCB parameters are required if the SORTIN cartridge has a standard label and you want
to copy the entire record. The SORTOUT cartridge will have the same record type, record
length and blocksize as the SORTIN cartridge.

2 There is only one condition set for selecting records from the input cartridge --- each record
must contain a 70 in positions 5 and 6. You could have used an OMIT statement instead of
the INCLUDE: OMIT COND=(5,2,CH,NE,C’70’).

You can add as many editing conditions as you like, following the rules for editing shown in
section 1. It is possible to have so many edits that you run out of space for SyncSort to hold the
edits in memory. However, this is a rare event and may be circumvented by using multiple job
steps.

2.1.1d Selected records from several cartridges
NOTES

//XXXXXTAP JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A38274(0) 1
// DD UNIT=AFF=SORTIN,DISP=SHR,DSN=POPULT.A38275(0)
// DD UNIT=AFF=SORTIN,DISP=SHR,DSN=POPULT.A38276(0)
// DD UNIT=AFF=SORTIN,DISP=SHR,DSN=POPULT.A38277(0)
// DD UNIT=AFF=SORTIN,DISP=SHR,DSN=POPULT.A38278(0)
//SORTOUT DD UNIT=CART,DISP=(NEW,KEEP,DELETE),
// DSN=U9999.TESTSTPE.XXXXX.MAT,LABEL=EXPDT=98030
//SYSIN DD *

INCLUDE COND=(37,2,GE,C’10’,AND,37,2,LE,C’49’,AND 2
39,1,EQ,C’2’,AND,22,1,EQ,C’8’),FORMAT=CH

SORT FIELDS=COPY
/*

1 If the input cartridges contain fixed length records, they all must have the same record length.
If the cartridges do not have the same blocksize, the with the largest blocksize must appear
first in the list. Fixed length record cartridges with varying record sizes can be
accommodated, as in the next example. Note, the affinity parameter (AFF) is used to use the
same cartridge drive for all input cartridges.

- 10 -

A Guide To SyncSort

2 Since there is only one statement to process all of the input cartridges, all data to be processed
must lie in the same record position on each input cartridge.

2.1.1e Selected records from two cartridges with fixed length, but with different record lengths
NOTES

//XXXXXSYN JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//********THIS CARTRIDGE HAS A RECORD LENGTH OF 90
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A31472(0)
//SORTOUT DD UNIT=CART,DISP=(NEW,KEEP,DELETE), 1
// DSN=U9999.TESTSTPE.XXXXX.CARTOUT,
// DCB=(RECFM=FB,LRECL=90),
// LABEL=EXPDT=98030,
// VOL=RETAIN
//SYSIN DD *

INCLUDE COND=((5,2,GE,C’01’,AND,5,2,LE,C’70’),AND,
(23,1,GE,C’2’,AND,23,1,LE,C’5’)),FORMAT=CH

SORT FIELDS=COPY
/*
//STEP2 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//********THIS CARTRIDGE HAS A RECORD LENGTH OF 100
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A31489(0)
//SORTOUT DD UNIT=CART,DISP=MOD, 2
// DSN=*.STEP1.SORTOUT,
// VOL=REF=*.STEP1.SORTOUT
//SYSIN DD *

INCLUDE COND=((5,2,GE,C’01’,AND,5,2,LE,C’70’),AND,
(23,1,GE,C’2’,AND,23,1,LE,C’5’)),FORMAT=CH

SORT FIELDS=COPY
/*

1 The first cartridge read in this job has a record length of 90. The DCB statement contains
parameters to give the output cartridge a record length of 90 and blocksize of 9000.

2 On the output tape, the disposition (DISP) is set to MOD. This will add new records from this
job step to those already put onto the cartridge in step 1. The DSN, DCB, and VOL statements
all refer to the SORTOUT statement in step 1 and get their settings from step 1. Note, even
though the input tape has a record length of 100, only the first 90 characters will be copied to
the output cartridge since the DCB parameter LRECL was set to 90 in step 1.

2.1.2 Cartridge-to-VM via the Reader
SyncSort can be used to bring back data from MVS to VM via your reader on VM. The following
examples illustrate this process. Note that the SORTIN statements for input follow all the rules
illustrated in section 2.1. However, there are new considerations for output to your reader. Since
it is rare that you would want to copy an entire cartridge back to your reader, all the following
examples involve selecting records with SyncSort edits.

2.1.2a Selected portions of selected records written to an output file
NOTES

//XXXXXSYN JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A

- 11 -

A Guide To SyncSort

//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A12345(0)
//SORTOUT DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP1, 1
// DCB=(RECFM=FB,LRECL=30),
// SPACE=(TRK,(10,1),RLSE)
//SYSIN DD *

INCLUDE COND=(5,2,CH,NE,C’00’) 2
INREC FIELDS=(1,20,50,5,100,10) 3
SORT FIELDS=COPY
OUTREC FIELDS=(1,35) 4

/*
//STEP9 EXEC PGM=IJKEFT01,DYNAMNBR=20 5
//SYSTSPRT DD SYSOUT=*
//INFILE DD DISP=OLD,DSN=&&TEMP1 6
//SYSTSIN DD *
TRANSMIT DOHVM1.XXXXX DDNAME(INFILE) NOLOG 7
/*

1 Portions of selected records are to be brought back to your reader on VM. The records are
first written to disk on MVS (UNIT=SYSDA) where they are held temporarily in a file given
the name &&TEMP1. The SORTOUT card shows one method of allocating temporary disk
space on MVS to hold the SyncSort output file from STEP 1. (see appendix C for a discussion
on allocating temporary disk space on MVS)

2 Records are selected that do not have a 00 in positions 5 and 6.

3 Data from postions 1 through 20, 50 through 54, and 100 through 109 are to be copied to the
temporary file on MVS.

4 This statement is OPTIONAL since you have already specified that 35-characters are to be
copied when the INREC statement was used earlier.

5 NETDATA transfer is used to move the file from temporary disk on MVS to your reader on
VM (via the program IJKEFT01). The INFILE statement refers to the temporary disk file
created in the SyncSort step (&&TEMP1). This method of moving a file from MVS-to-VM
works with any record length - RECEIVE is used to move the file from your reader to your A-
disk or some other disk on VM.

6 This statement identifies the file to be transferred from MVS disk space to your reader. The
file will show up in your reader with a CLASS of K.

7 The XXXXX is replaced with your user ID on VM.

If the records to be sent to your reader have a length of 205characters or less, you can use a
different SORTOUT statement:

//SORTOUT DD SYSOUT=K

If this method is used, you should NOT use all the statements starting with //STEP9 through the
end of the job since the records are written directly to your reader without using temporary disk.
The records appear in your reader with a class of K.

2.1.2b Multiple output files returned to your reader
NOTES

//XXXXXB86 JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX

- 12 -

A Guide To SyncSort

//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A27113.CY1986(0)
//SORTOF1 DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP1, 1
// DCB=(RECFM=FB,LRECL=4),
// SPACE=(TRK,(13,1),RLSE)
//SORTOF2 DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP2, 1
// DCB=(RECFM=FB,LRECL=4),
// SPACE=(TRK,(13,1),RLSE)
//SYSIN DD *

INCLUDE COND=(21,1,CH,EQ,C’2’)
INREC FIELDS=(1,2,48,2,253,4)
SORT FIELDS=COPY
OUTFIL FILES=1,OUTREC=(5,4), 2

INCLUDE=(1,2,CH,EQ,C’70’)
OUTFIL FILES=2,OUTREC=(1,4),

INCLUDE=(1,2,CH,GE,C’01’,AND,1,2,CH,LE,C’61’)
/*

//STEP2 EXEC PGM=IJKEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//INFILE DD DISP=OLD,DSN=&&TEMP1
//SYSTSIN DD *
TRANSMIT DOHVM1.XXXXX DDNAME(INFILE) NOLOG
/*
//STEP3 EXEC PGM=IJKEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//INFILE DD DISP=OLD,DSN=&&TEMP2
//SYSTSIN DD *
TRANSMIT DOHVM1.XXXXX DDNAME(INFILE) NOLOG
/*

1 Two output files are defined on MVS disk. The first, &&TEMP1, is assigned the DD name
SORTOF1 - the second, &&TEMP2, is assigned the DD name SORTOF2.

2 The first output file (&&TEMP1) will contain data that had a 70 in positions 1 and 2, and will
contain data from positions 253 through 256 on the original file. The second output file will
contain data from positions 1 through 2, and 48 through 49 for records that a 01 through 61 in
positions 1 and 2.

If there were more output files to be specified, the convention to follow is OUTFIL FILES=x
referencing a JCL DDname of SORTOFx.

As stated previously, it is possible to direct files back to a DD name of SYSOUT, but only of they
have a record length of 205 or less. Since there are two files to be sent to VM in this example, the
SORTOF DD statements could read as follows:

//SORTOF1 DD SYSOUT=1
//SORTOF2 DD SYSOUT=2

Again, you would not use the statements that perform the NETDATA transfer of a file from MVS
disk to your reader since the files are written directly to your reader without any use of temporary
disk space. The files appear in your reader with a CLASS equal to whatever you assigned in the
statement that specified the output SORTOF files, with class 1 and class 2 used in the above
example.

- 13 -

A Guide To SyncSort

2.2 Counting Records
As stated in section 1.2.5, SyncSort can combine records with equal sort keys, summing over
specified numeric fields. If the numeric field contains the number 1, summing fields with
SyncSort results in counts of records with equal sort keys.

2.2.1 Counts Output to a Single File in the VM Reader
NOTES

//XXXXXD86 JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A38362(0)
//SORTOUT DD SYSOUT=M 1
//SYSIN DD *

INCLUDE COND=(22,1,CH,EQ,C’8’) 2
INREC FIELDS=(8,4,C’00001’) 3
SORT FIELDS=(1,4,CH,A) 4
SUM FIELDS=(5,5,ZD) 5
OUTREC FIELDS=(1,4,X,5,5,ZD) 6

/*

1 Counts will be returned to the VM reader in a file with class M.

2 Only records containing an 8 in position 22 of the input record are included

3 Data from positions 8 through 11 are retained; in addition to these data, the literal 00001 is
added to each record in positions 5 through 9. The numeric field is defined as being 5-digits
wide to make sure it will accommodate the largest sum of records across records with equal
sort keys. The record that SyncSort will process from now on is:
ABCD00001 where ABCD represents data from positions 8 through 11 in records from the

input file

4 The data are sorted on positions 1 through 4.

NOTE: Positions 1 through 4 contain the data from the input records originally contained
in positions 8 through 11.

5 The data in positions 5 through 9 are summed for records containing like data in positions 1
through 4.

NOTE: The data to be counted must be referred to as numeric, ZD (zoned-decimal) in this
example, even though they were placed on each record as CH (character literal
00001) in the INREC statement.

6 Record counts are output to a reader file with class M, each record containing a count of
records containing like data in positions 8 through 11 of the original records; a space is placed
between the sort key and the sum by using an X. The ZD placed after the 5,5 removes leading
zeroes from the counts. The ZD could have been left off the end of the OUTREC statement,
resulting in leading zeroes on all counts. If no space were desired, as placed with the ’X’, and
leading zeroes were permissible, no OUTREC statement would be necessary, or the OUTREC
statement could have been written as follows:

OUTREC FIELDS=(1,9)

- 14 -

A Guide To SyncSort

2.2.2 Counts Output to a Temporary Disk File on MVS - Used as Input to a SAS Job
NOTES

//XXXXXD86 JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A38362(0)
//SORTOUT DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP, 1
// DCB=(RECFM=FB,LRECL=9),
// SPACE=(TRK,(33,1),RLSE)
//SYSIN DD *

INCLUDE COND=(22,1,CH,EQ,C’8’)
INREC FIELDS=(8,4,C’00001’)
SORT FIELDS=(1,4,CH,A)
SUM FIELDS=(5,5,ZD)
OUTREC FIELDS=(1,9)

/*
//STEP2 EXEC SAS,REGION=2400K
//FILE1 DD UNIT=SYSDA,DISP=SHR,DSN=&&TEMP 2
//SYSIN DD *
DATA NEW;
INFILE FILE1;
INPUT
@001 FIELD1 $CHAR4.
@005 FREQ1 5. 3
;
(more SAS statements)

1 SORTOUT is a file on MVS temporary disk (SYSDA) - the disk file is given the name
&&TEMP (using the ’&&’ is a way to give the file a unique name since it adds as a prefix to
TEMP the name assigned to the job as it runs on MVS)

2 The temporary disk file (&&TEMP) is referenced in the JCL as FILE1.

3 The numeric data in positions 5-9 are input by SAS - these data are counts of records that had
the same data in postions 8 through 11 on the original file.

2.2.3 Multiple Output Files Used to Produce Two Sets of Counts - Sent to VM Reader as One
File

NOTES

//XXXXXD86 JOB 99999999,’YOUR NAME’,CLASS=B,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=CART,DISP=SHR,DSN=POPULT.A38362(0)
//SORTOF1 DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP1, 1
// DCB=(RECFM=FB,LRECL=9),
// SPACE=(TRK,(26,1),RLSE)
//SORTOF2 DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP2, 1
// DCB=(RECFM=FB,LRECL=9),
// SPACE=(TRK,(26,1),RLSE)
//SYSIN DD *

INCLUDE COND=(22,1,CH,EQ,C’8’)
SORT FIELDS=COPY
OUTFIL FILES=1,INCLUDE=(1,2,CH,EQ,C’70’), 1

OUTREC=(1,2,48,2,C’00001’)
OUTFIL FILES=2,OMIT=(1,2,CH,EQ,C’70’), 1

OUTREC=(50,4,C’00001’)

- 15 -

A Guide To SyncSort

/*
//STEP2 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD UNIT=SYSDA,DISP=SHR,DSN=&&TEMP1 2
// DD UNIT=SYSDA,DISP=SHR,DSN=&&TEMP2 2
//SORTOUT DD SYSOUT=M
//SYSIN DD *

SORT FIELDS=(1,4,CH,A) 3
SUM FIELDS=(5,5,ZD) 3
OUTREC FIELDS=(1,4,X,5,5,ZD) 4

/*

1 Two output files are defined in the JCL (allocating temporary disk space to hold data that are
to be counted later in the job). The SyncSort statements reference the two output files. The
first file created contains records that have a 70 in positions 1 and 2, while the second file
contains all other records. The output files contain data from different data from the input
files in positions 1 through 4, but they both contain the literal 00001 in positions 5 through 9.

2 The input files for the second execution of SyncSort within the job are the two output files
defined and created in the first execution of SyncSort.

3 The data are sorted on positions 1 through 4 and totaled on positions 5 through 9, creating
counts of records with equal sort keys in positions 1 through 4.

4 The output file will appear in the VM reader with class M, containing the sort key in positions
1 through 5, and record counts in positions 7 through 11 (a space added in position 6 with the
X), with no leading zeroes (the result of using the ZD format).

3.0 SyncSort ON VM
SyncSort may be used to accomplish the same tasks on VM as on MVS. Since most data analysts
and researchers in the Department cannot use tapes on VM, SyncSort can be used to work with
files maintained in personal storage on the A-disk or on temporary disk space allocated within a
VM session. The majority of the SyncSort commands used on VM are the same as those used on
MVS. The main difference between using SyncSort on the two operating systems are how a
SyncSort job is started, how information concerning files to be used is conveyed to SyncSort, and
how SyncSort is provided with information as to what commands are to be used.

Examples of uses of SyncSort on VM are shown in Appendix E.

3.1 Starting SyncSort on VM
A SyncSort job on VM is started using the command SSORT on the VM command line. For
example:

SSORT <input> <output> <SyncSort instructions>

where <input> and <output> refer to files that are to be processed and produced, and <SyncSort
instructions> usually refers to a file on VM that contains the SyncSort commands.

3.2 SyncSort Commands Specific to VM
There are several SyncSort commands that are used only on VM. Among them are FILESOUT and
OPTION FILNM. They are used when multiple output files are to be produced.

- 16 -

A Guide To SyncSort

The FILESOUT command is used with the SORT statement, for example:

SORT FIELDS=COPY,FILESOUT=3

would be used when 3 output files are to be produced.

The OPTION FILNM statement is used to pass SyncSort information as to the names of the output
files, for example:

OPTION FILNM=(,OUT2,OUT3)

would be used when 3 output files are to be produced. The names OUT2 and OUT3 are
DDnames that have previously been associated with VM file names through the use of FILEDEF
statements (FILEDEF statements are discussed in subsequent sections). The name of the first
output file would have appeared on the command line where the SSORT command was issued.

NOTE: Up to 9 output files can be produced with one SyncSort job.

3.3 Passing File Information to SyncSort on VM
There are several ways to tell SyncSort what files are to be used, direct entry on the command
line, FILEDEFs, or combinations of direct entry and FILEDEFs. SyncSort must receive information
about the name of the input file, output file, and file containing the SyncSort commands. If not
provided with this information, SyncSort will look for files with default names, overwrite the
input file with the output file, etc. This guide does not cover all the possibilities of passing file
information to SyncSort. The guide does address the situation where all necessary information is
passed to SyncSort, the safest method of using SyncSort on VM for the non-programmer.

3.3.1 Single Input File and Single Output File
The following sections illustrate two methods of using SyncSort on VM to process one input file,
producing one output file.

3.3.1a Direct entry on the command line
SSORT MYINPUT DATA A MYOUTPUT DATA A MYSORT SORT A

MYINPUT DATA A is a VM file used by SyncSort as input
MYOUTPUT DATA A is a VM file produced by SyncSort
MYSORT SORT A is a VM file that contains SyncSort commands

NOTE: If an entry for the file that contains the SyncSort commands is left off the
command line, SyncSort prompts the user for SyncSort commands. Unless the
SyncSort job is simple, this is not a very efficient way in which to convey sort
information to SyncSort.

3.3.1b Using FILEDEFs
SSORT DDN DDIN DDN DDOUT MYSORT SORT A

DDIN and DDOUT are DDnames produced by FILEDEF statements, e.g.

FILEDEF DDIN DISK MYINPUT DATA A
FILEDEF DDOUT DISK MYOUTPUT DATA A

NOTE: The names DDIN and DDOUT are arbitrary - any names can be used.

- 17 -

A Guide To SyncSort

3.3.1c Combination of direct entry and FILEDEFs
SSORT DDN DDIN MYOUTPUT DATA A MYSORT SORT A
-or-
SSORT MYINPUT DATA A DDN DDOUT MYSORT SORT A

3.3.2 Multiple Input and/or Output Files
Up to 9 input files may be processed and up to 9 output produced with a single SSORT statement.
Multiple input files may be referenced either directly on the command line or with FILEDEFs.
Multiple output files must be referenced by a combination of direct command line entry,
FILEDEFs, and entries in a VM file of SyncSort commands.

3.3.2a Direct entry on the command line - multiple input, single output
SSORT (MYIN1 DATA A MYIN2 DATA A) MYOUT DATA A MYSORT SORT A

MYIN1 DATA A and MYIN2 DATA A are input files (up to 9 may be used)
MYOUT DATA A is an output file

3.3.2b Using FILEDEFs - multiple input, single output
SSORT (DDN MY1 DDN MY2) DDN MY3 MYSORT SORT A

MY1 and MY2 and MY3 are DDnames produced by FILEDEF statements, e.g.
FILEDEF MY1 DISK MYIN1 DATA A
FILEDEF MY2 DISK MYIN2 DATA A
FILEDEF MY3 DISK MYOUT DATA A

3.3.2c Combination of direct entry and FILEDEFs - single input, multiple output
SSORT MYINPUT DATA A DDN OUT1 MYSORT SORT A

OUT1 is a DDname for the first output file produced by a FILEDEF statement, e.g.
FILEDEF OUT1 DISK MYOUT1 DATA A

NOTE: The other output files must also be assigned DDnames with FILEDEF statements, e.g.
FILEDEF OUT2 DISK MYOUT2 DATA A
FILEDEF OUT3 DISK MYOUT3 DATA A

and the file of SyncSort commands must contain the following statements:

SORT FIELDS=COPY,FILESOUT=3
and

OPTION FILNM=(,OUT2,OUT3)

- 18 -

A Guide To SyncSort

APPENDIX A

SyncSort References

for VM SyncSort CMS Programmer’s Guide

for MVS SyncSort OS Programmer’s Guide

both available from

SyncSort Incorporated
50 Tice Boulevard
Woodcliff Lake, NJ 07675

(201)930-8230

- 19 -

A Guide To SyncSort

APPENDIX B

The Flow of SyncSort
(Adapted from SyncSort OS Applications Workshop)

(ELIMINATE DUPLICATE RECORDS)

INPUT FILE

SELECT RECORDS

INCLUDE / OMIT

SELECT FIELDS

INREC

ARRANGE RECORDS

SORT

COMBINE RECORDS

(PRODUCE RECORD COUNTS)

SUM

OUTPUT RECORDS
(FORMAT OUTPUT)

OUTREC

SINGLE OUTPUT FILE MULTIPLE OUTPUT FILES

OUTPUT FILE

SELECT RECORDS FOR
OUTPUT FILE N

INCLUDE / OMIT

OUTPUT RECORDS
(FORMAT OUTPUT)

OUTREC

OUTPUT FILE N

REPEAT
FOR

EACH
OUTPUT

FILE

- 20 -

A Guide To SyncSort

APPENDIX C

Allocating Temporary Disk Space on MVS

NOTE: This topic is covered in more detail in Technical Booklet 5, Using Disk on the MVS IBM,
available from ISHS on the concourse. Parts of this appendix are abstracted from
Technical Book 5.

Temporary disk space may be allocated for use on MVS. Temporary means that the disk space is
allocated for the duration of the job in which it is allocated. When the job is completed, the disk
space is no longer allocated and any files written to the temporary space are erased. The main
thing to remember in allocating temporary disk space is to allocate enough to hold all records
written to files in the temporary space, but not to allocate so much as to be wasteful of system
resources. This rule should be followed even though the space is only being allocated for the
duration of a given job.

The JCL command SPACE is used to allocate temporary disk space on MVS. A full discussion of
the SPACE statement and its various parameters can be found in the OS/VS2 MVS JCL manual.

Basics
Temporary disk space on MVS is referred to as SYSDA. A certain portion of the total disk space
available on MVS has been designated as SYSDA, or scratch space.

The 3380 and 3390 disk drives used on MVS are divided into subunits called cylinders. Cylinders
are composed of tracks. The number of cylinders and tracks on a disk are as follows:

3380 1 Disk -> 885 Cylinders
1 Cylinder -> 15 Tracks

1 Track -> 47,476 Bytes (characters)

3390 1 Disk -> 2,226 Cylinders
1 Cylinder -> 15 Tracks

1 Track -> 56,664 Bytes (characters)

Temporary disk space may be allocated in three ways: cylinders (CYL), tracks (TRK), or blocks
(blocksize). In order to determine the amount of space required, it is recommended that you use
the CALCDISK utility available on VM. To access it, type CALCDISK at ay command prompt.

Temporary space is allocated in terms of primary and secondary extents. The amount of space
requested in the primary extent is allocated as soon as a job step starts, while space requested in
the secondary extents is allocated as needed, up to 15 times the amount requested.

Temporary disk space should be assigned a name (JCL parameter DSN) that begins with the
characters &&, e.g. DSN=&&TEMP. This naming convention will uniquely identify the file to the
operating system, and allow for easy deletion once the job is completed.

NOTE: It is no longer necessary to specify a blocksize since the system will automatically
determine the most efficient blocksize for a given record length and disk type.

- 21 -

A Guide To SyncSort

There are a number of dispositions (JCL parameter DISP) that can be assigned to the file being
written to temporary disk space. When using SyncSort, the dispositions that will be used are:

DISP=(NEW,PASS) when creating a file with SyncSort

DISP=OLD when reading a file created in a previous job step

DISP=MOD when adding records to a file created in a previous job step

Example
A file with a record length of 100 is to be produced by a SyncSort job step and used in a
subsequent job step (e.g. another SyncSort job, SAS, etc.). Approximately 25,000 records are
expected as output. The examples shown are for a 3390 disk.

1. Allocation by blocksize
//SORTOUT DD UNIT=SYSDA,DISP=(NEW,PASS),DSN=&&TEMP1,
// DCB=(RECFM=FB,LRECL=100,BLKSIZE=27900),
// SPACE=(27900,(86,4),RLSE)

The file is assigned the name &&TEMP1. The DCB statement shows that there will be 279
records in each block (27,900/100). Blocksize is calculated as (27,998/100), where 27,998 is the
maximum recommended blocksize for a 3390 disk (or 23,476 for a 3380 disk). Space is
allocated in terms of blocksize, with 24,000 records to be accommodated in the primary extent
(279*86), and 1,116 records (279*4) each time a secondary extent is allocated. The RLSE
parameter results in any unused space being released when the file &&TEMP1 is closed.

2. Allocation by tracks

(same first two lines as allocation by blocksize)
// SPACE=(TRK,(43,2),RLSE)

There is room for approximately 56,664 characters in a track. In this example, 2 blocks (558
records) would fit within a track (56,664/27,900). The primary extent will accommodate
approximately 25,000 records (279*2*43), with 1,116 records (279*2*2) allowed in each
secondary extent.

3. Allocation by cylinders

(same first two lines as allocation by blocksize)
// SPACE=(CYL,(3,1),RLSE)

Each cylinder is composed of 15 tracks. Since the track allocation for the primary extent was
43 in the previous example, 3 cylinders are allocated for the primary extent, and 1 for each
secondary extent.

- 22 -

A Guide To SyncSort

APPENDIX D

Examples of Uses of SyncSort on MVS

The following examples are based on a file that contains information on patients discharged from
hospitals in New York State - CPU times shown following each example are actual times needed
to complete the task on an IBM 3081 mainframe running release 3.3 of SyncSort under the
MVS/XA operating system. There are approximately 2.5 million fixed length records (174
characters per record, blocksize of 23316) in the data base. The data are located on a 3380 disk
having the following record layout (NOTE: not all data present in the data base are shown in the
record layout):

position
(from-to) contents

8-11 hospital number
36-38 patient age
39-39 patient sex
46-47 county number - residence of patient
57-59 principal diagnosis
62-64 other diagnosis #1
67-69 other diagnosis #2
72-74 other diagnosis #3
77-79 other diagnosis #4
135-136 county number - location of hospital
171-174 length of stay in hospital (days)

NOTE: note the numbers on the right of each line in the examples are NOT part of the job -
they merely refer to the explanations that follow each example

Example 1 Extract and Copy Records - Simple Record Selection

extract all the records from the file where the hospitals are located in Albany county (a county
number equal to 01) and copy the selected records to another cartridge

//XXXXXEX1 JOB 99999999,’YOUR NAME’,CLASS=A,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,DSN=HOSPITAL.DISCHARG.CY1990 1
//SORTOUT DD DISP=(NEW,KEEP),UNIT=CART, 2
// DSN=U9999.TESTSTPE.XXXXX,HOSPALB,
// DCB=(RECFM=FB,LRECL=174),
// LABEL=EXPDT=98030
//SYSIN DD *

INCLUDE COND=(135,2,CH,EQ,C’01’) 3
SORT FIELDS=COPY 4

/*

1 the file defined in the SORTIN DD statement is the 1990 hospital discharge file

2 the file defined in the SORTOUT DD statement is a cartridge, where records have a fixed
length of 174 characters

- 23 -

A Guide To SyncSort

3 select those records where the hospital is located in Albany county - the county number is
treated as character data - if you were sure that all county numbers were numeric, and had
leading zeroes, you could also have written the INCLUDE statement as follows:

INCLUDE COND=(135,2,ZD,EQ,1)

4 copy the selected records to the output cartridge

records read 2543621 records copied 50451 CPU time 5.83 seconds

Example 2 Extract and Copy Records - Complex Record Selection

once again, extract all records for hospitals located in Albany county, but also restrict the selection
to records where the primary diagnosis is in the the range of 630 through 676

use the same JCL and SyncSort statements that are used in example 1 - change the include
statement to the following

INCLUDE COND=(135,2,EQ,C’01’,AND,
57,3,GE,C’630’,AND,57,3,LE,C’676’),FORMAT=CH

notice that the FORMAT=CH placed at the end of the INCLUDE statement, and
after the final parenthesis replaces the use of multiple CH’s within the parentheses

records read 2543621 records copied 6828 CPU time 5.55 seconds

Example 3 Extract and Count Records

count the number of discharges from each hospital and send the counts back to your reader on
VM

//XXXXXEX3 JOB 99999999,’YOUR NAME’,CLASS=A,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,DSN=HOSPITAL.DISCHARG.CY1990
//SORTOUT DD SYSOUT=M 1
//SYSIN DD *

INREC FIELDS=(8,4,C’000001’) 2
SORT FIELDS=(1,4,CH,A) 3
SUM FILEDS=(5,6,ZD) 4
OUTREC FIELDS=(1,4,X,5,6,ZD) 5

/*

1 the output from this job will be sent to your reader on VM (if the /*ROUTE PRINT line is
present in the job and contains your VM user ID replacing the XXXXX)

2 only the positions containing the hospital number are read from the file, and a ’000001’ is
added to each record (this field must be wide enough to accomodate the maximum number of
discharges expected at any particular hospital in the data base) - since only data from
positions 8 through 11 were read from the file, the data are ’moved’ to the left , and the
records seen by SyncSort in subsequent statements are 9 characters long, with the hospital
number in positions 1 through 4, and a ’000001’ in positions 5 though 10 - e.g., if the hospital
number was 1200, adding the 000001 would result in the a record that looked like this -
1200000001

- 24 -

A Guide To SyncSort

3 sort the records by hospital number

4 sum the records over postions 5 through 10 (since these postions only contain a numeric 1, a
count of records will be produced for records with the same hospital number in positions 1
through 4)

5 format the output sent to VM, with the hospital number in positions 1 through 4, a space
(produced with the ’X’), and counts with leading zeroes suppressed (suppression caused by
placing the ZD in the OUTREC statement - without the ZD, counts will have leading zeroes)

records read 2543621 records copied (counts) 266 CPU time 23.32 seconds

Example 4 Extract and Count Records - Use Output from SyncSort as SAS Input

extract all records from five hospitals, count the number of records by age and sex in the selected
hospitals, hold the counts in a file and read that file with a SAS job that puts the discharges into
age groups by hospital

//XXXXXEX4 JOB 99999999,’YOUR NAME’,CLASS=A,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,DSN=HOSPITAL.DISCHARG.CY1990
//SORTOUT DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP, 1
// (DCB=FB,LRECL=14),
// SPACE=(TRK,(17,1),RLSE)
//SYSIN DD *

INCLUDE COND=(8,4,EQ,C’0001’,OR, 2
8,4,EQ,C’0004’,OR,
8,4,EQ,C’0005’,OR,
8,4,EQ,C’0128’,OR,
8,4,EQ,C’0267’),FORMAT=CH

INREC FIELDS=(8,4,39,1,36,3,C’000001’) 3
SORT FIELDS=(1,8,CH,A) 4
SUM FIELDS=(9,6,ZD) 5

/*
//STEP2 EXEC SAS,REGION=2400K 6
//FILEIN DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP 7
//SYSIN DD *

proc format; 8
value $sex ’1’=’MALES’

’2’=’FEMALES’;
value $age low-’009’=’less than 10’

’010’-’019’=’10-19’
’020’-’064’=’20-64’
’065’-’084’=’65-84’
’085’-high=’85 plus’;

run;

data hosp; 9
infile filein;
input hosp $ 1-4 sex $ 5-5 age $ 6-8 freq 9-14;
run;

proc freq data=hosp; 10
tables age*sex/norow nocol nocum nopercent;
by hosp;
weight freq;

- 25 -

A Guide To SyncSort

format sex $sex. age $age,;
run;

1 the SyncSort output is written to a TEMPORARY disk file with the name &&TEMP - each
record written to the file will be 14 characters long (LRECL=14), which is equal to the 4
character hospital number + the 1 charcter patient sex + the 3 character patient age + a 6 digit
numeric field that will be used to accumulate the totals

space must be allocated to hold the file - it is allocated in blocks - there are 5 hospitals, with 2
sexes and a maximum of 121 different ages in each hospital (allowable ages on the file are 0 to
120) - thus, the maximum number of records that will have to be stored temporarilty is 1210
(or 5 x 2 x 121) - with a record length of 14 (LRECL=14) - Appendix 3 contains more
information on allocating temporary disk space

2 records from 5 hospitals are extracted from the large file

3 select only those data elements that you need (hospital number, sex, age), and add a 000001 to
each record to use for counting

4 sort the extracted records by a field composed of hospital number, sex, and age

5 use the 000001 filed to count records having the same hospital number, sex, and age

6 run a SAS job that will use the data extracted via SyncSort

7 use as input the counts produced by SyncSort

8 write some formats to label and group the data

9 the SAS DATA STEP now has to read a maximum of 1210 records (actually 978), NOT the 2.5
million records on the original file

10 PROC FREQ now has to count a maximum of 1210 observations, not the total number of
discharges from the 5 hospitals - the data have been ’pre-counted’ with SyncSort, and the
WEIGHT option is used with PROC FREQ to tell SAS that each observation represents not
one, but many discharges

SyncSort STEP
records read 2543621 records copied (counts) 978 CPU time 8.16 seconds
SAS STEP
records read 978 CPU time 0.71 seconds

Example 5 Extract and Count Records when Multiple Fields on a Record Contain Data that are
to be Combined into One Count

count the number of the various diagnoses made at hospital number 0001 - since there are five
locations on each record that might contain a diagnosis (principal, plus four possible secondary),
the counting must be done in two steps

//XXXXXEX5 JOB 99999999,’YOUR NAME’,CLASS=A,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,DSN=HOSPITAL.DISCHARG.CY1990

- 26 -

A Guide To SyncSort

//SORTOF1 DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP1, 1
// DCB=(RECFM=FB,LRECL=3),
// SPACE=(TRK,(10,1),RLSE)
//SORTOF2 DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP2, 1
// DCB=(RECFM=FB,LRECL=3),
// SPACE=(TRK,(10,1),RLSE)
//SORTOF3 DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP3, 1
// DCB=(RECFM=FB,LRECL=3),
// SPACE=(TRK,(10,1),RLSE)
//SORTOF4 DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP4, 1
// DCB=(RECFM=FB,LRECL=3),
// SPACE=(TRK,(10,1),RLSE)
//SORTOF5 DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP5, 1
// DCB=(RECFM=FB,LRECL=3),
// SPACE=(TRK,(10,1),RLSE)
//SYSIN DD *
INCLUDE COND=(8,4,CH,EQ,C’0001’) 2
SORT FIELDS=COPY
OUTFIL FILES=1,OUTREC=(57,3),INCLUDE=(57,3,CH,NE,C’ ’) 3
OUTFIL FILES=2,OUTREC=(62,3),INCLUDE=(62,3,CH,NE,C’ ’) 3
OUTFIL FILES=3,OUTREC=(67,3),INCLUDE=(67,3,CH,NE,C’ ’) 3
OUTFIL FILES=4,OUTREC=(72,3),INCLUDE=(72,3,CH,NE,C’ ’) 3
OUTFIL FILES=5,OUTREC=(77,3),INCLUDE=(77,3,CH,NE,C’ ’) 3

/*
//STEP2 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP1 4
// DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP2
// DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP3
// DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP4
// DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP5
//SORTOUT DD SYSOUT=M
//SYSIN DD *
INREC FIELDS=(1,3,C’000001’) 5
SORT FIELDS=(1,3,CH,A) 6
SUM FIELDS=(4,6,ZD) 7

/*

1 five different output files are defined, each of which is to be used to hold a diagnosis from a
discharge record

2 records from hospital number 0001 are selected

3 five OUTFIL statements are used to direct the diagnoses on each record to the files defined in
the JCL as SORTOF1, SORTOF2, etc. - the contents of each diagnosis field is checked and only
non-blank diagnosis are written to the output files

4 the five files created in STEP1 are used as input to SyncSort in STEP2

5 a ’000001’ is added to each record on input - it will be used in producing counts of diagnoses

6 the records are sorted by diagnosis

7 counts are produced with the SyncSort SUM command (using the 000001 that was added to
each record with the INREC statement) - since no OUTREC command was used, the counts
will be returned to the reader on VM with leading zeroes, e.g., V30001256, where the first
three characters are a diagnosis and the last six characters are a count

SyncSort STEP1

- 27 -

A Guide To SyncSort

records read 2543621 records copied (counts) CPU time 6.69 seconds
SORTOF1 22727
SORTOF2 18527
SORTOF3 14352
SORTOF4 10850
SORTOF5 8199

SyncSort STEP2
records read 74655 CPU time 1.55 seconds

Example 6 Extract and Count Records Using Two Fields to Accumulate Counts - Use Counts as
Input for SAS

compute the average length of stay by hospital for patients discharged from hospitals in
Manhattan (a county number equal to 60)

//XXXXXXEX6 JOB 99999999,’YOUR NAME’,CLASS=A,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,DSN=HOSPITAL.DISCHARG.CY1990
//SORTOUT DD DISP=(NEW,PASS),UNIT=SYSDA,DSN=&&TEMP,
// DCB=(RECFM=FB,LRECL=18),
// SPACE=(TRK,(6,1),RLSE)
//SYSIN DD *

INCLUDE COND=(135,2,CH,EQ,C’60’) 1
INREC FIELDS=(8,4,C’000001’,C’0000’,171,4) 2
SORT FIELDS=(1,4,CH,A) 3
SUM FIELDS=(5,6,ZD,11,8,ZD) 4

/*
//STEP2 EXEC SAS,REGION=2400K
//FILEIN DD DISP=SHR,UNIT=SYSDA,DSN=&&TEMP 5
//SYSIN DD *
options nocenter;
title1 ’HOSPITALS IN COUNTY = 60’;
title2 ’DISCHARGES, DAYS, AVERAGE LENGTH OF STAY’;
data _null_; 6
file print; infile filein;
input hosp $ 1-4 dis 5-10 days 11-18;
alos=days/dis;
put (hosp dis days alos) ($char4. 8. 10. 8.1);
run;

1 records are selected for hospitals in county 60

2 only the hospital number (postions 8-11) and the length of stay (positions 171-174) are read
from the input records - a ’000001’ is added to be used in counting discharges - a ’0000’ is
placed in front of the number of days (171,4) since the days are to be accumulated by hospital
and the total number of patient days must fit in the positions being used for the count -
adding four leading zeroes gives enough room to hold the total days per hospital

3 the records are sorted by hospital

4 the SUM statement is used to produce two counts - the number of discharges in postions 5
through 10, and the total patient days in positions 11 through 18

5 the counts produced by SyncSort are used as input to a SAS step

- 28 -

A Guide To SyncSort

6 no SAS dataset is to be produced, so DATA _NULL_ is used - the data step is used to read the
number of discharges and days in each hospital, to calculate the average length of stay
(ALOS), then to print the results - SAS reads 28 records (one per hospital in Manhattan)
instead of the 2.5 million records in the original file

SyncSort STEP
records read 2543621 records copied (counts) 28 CPU time 9.42 seconds
SAS STEP
records read 28 CPU time 0.28 seconds

- 29 -

A Guide To SyncSort

APPENDIX E

Examples of Uses of SyncSort on VM

NOTE: When record positions are referred to in any of the examples, a RECORDTYPE of FIXED is
assumed. If the RECORDTYPE is VARIABLE, SyncSort considers the 4-byte header (the
place where information as to record length is stored) as the first 4 record positions. Thus,
with variable length records, data that appears to be in position 1 would have to be
described to SyncSort as in position 5, with every subsequent data element moved over 4
positions.

SORT A FILE ON ONE FIELD IN ASCENDING ORDER

Sort all records in file MYFILE DATA A based upon data contained in positions 10-15 in
ascending order.

First create a file MYSORT SORT A that contains the following SyncSort command:

SORT FIELDS=(10,6,CH,A)

then run SyncSort as follows:

SSORT MYFILE DATA A MYFILE DATA A MYSORT DATA A

EXTRACT RECORDS

Extract all records from file MYFILE DATA A that have a 2 in position 4, and write the
records to file MYTWOS DATA T.

First create a file MYSORT SORT A that contains the following SyncSort commands:

INCLUDE COND=(4,1,CH,EQ,C’2’)
SORT FIELDS=COPY

then run SyncSort as follows:

SSORT MYFILE DATA A MYTWOS DATA T MYSORT SORT A

COUNT RECORDS

Produce a file of counts for all possible combinations of characters in positions 5 and 6 of file
MYFILE DATA A. Place the counts in MYCOUNTS DATA T.

First create a file MYSORT SORT A that contains the following SyncSort commands:

INREC FIELDS=(5,2,C’0001’)
SORT FIELDS=(1,2,CH,A)
SUM FIELDS=(3,4,ZD)
OUTREC FIELDS=(1,2,X,3,4,ZD)

- 30 -

A Guide To SyncSort

then run SyncSort as follows:

SSORT MYFILE DATA A MYCOUNTS DATA T MYSORT SORT A

EXTRACT DATA

Extract data from positions 1 through 10 and 20 through 25 from MYFILE DATA A and place
these data in file MYREDUCE DATA T.

First create a file MYSORT SORT A that contains the following SyncSort commands:

INREC FIELDS=(1,10,20,6)
SORT FIELDS=COPY

then run SyncSort as follows:

SSORT MYFILE DATA A MYREDUCE DATA T MYSORT SORT A

COMBINE SPECIFIED RECORDS FROM SEVERAL FILES

Combine records having a 70 in positions 1 and 2 from the three files MYIN1 DATA A,
MYIN2 DATA A, MYIN3 DATA A. Place the output in MYTHREE SONS T.

First use FILEDEFs to assign DDnames to the input files:

FILEDEF IN1 DISK MYIN1 DATA A
FILEDEF IN2 DISK MYIN2 DATA A
FILEDEF IN3 DISK MYIN3 DATA A

then create a file MYSORT SORT A that contains the following SyncSort commands:

INFILE COND=(1,2,CH,EQ,C’70’)
SORT FIELDS=COPY

then run SyncSort as follows:

SSORT (DDN IN1 DDN IN2 DDN IN3) MYTHREE SONS T MYSORT SORT A

SORT A FILE IN ON SEVERAL FIELDS DESCENDING ORDER

Sort file MYDATA DATA A in ascending order of positions 1 through 5, descending order of
positions 6 through 10, and ascending order of positions 21 through 25 Only retain the sorted
portion of the file in an output file MYSRT DATA T.

First create a file MYSORT SORT A that contains the following SyncSort commands:

INREC FIELDS=(1,10,21,5)
SORT FIELDS=(1,5,CH,A,6,5,CH,D,11,5,CH,A)

then run SyncSort as follows:

SSORT MYDATA DATA A MYSRT DATA T MYSORT SORT A

- 31 -

A Guide To SyncSort

ELIMINATE RECORDS WITH DUPLICATE DATA IN SPECIFIED POSITIONS

Eliminate duplicate records from a file MYDUPS DATA A, using the data in positions 1
through 8 to check for duplicates, and creating a file MYNODUPS DATA T that has no
duplicate records.

First create a file MYSORT SORT A that contains the following SyncSort commands:

SORT FIELDS=(1,8,CH,A)
SUM FIELDS=NONE

then run SyncSort as follows:

SSORT MYDUPS DATA A MYNODUPS DATA T MYSORT SORT A

PRODUCE SEVERAL OUTPUT FILES CONTAINING SPECIFIED RECORDS

Extract records from MYINPUT DATA A, creating three files based on the contents on
positions 20 and 21: if 10 through 19, place records in MY1019 DATA T; if 20 through 29,
place records in MY2029 DATA T; place all others in MOUTH DATA T.

First use FILEDEFs to assign DDnames to the output files:

FILEDEF OUT2 DISK MY1019 DATA T
FILEDEF OUT3 DISK MY2029 DATA T

then create a file MYSORT SORT A that contains the following SyncSort commands:

SORT FIELDS=COPY,FILESOUT=3
OUTFIL FILES=1,OMIT=(20,2,CH,GE,C’10’,AND,20,2,CH,LE,C’29’)
OUTFIL FILES=2,INCLUDE=(20,2,CH,GE,C’10’,AND,20,2,CH,LE,C’19’)
OUTFIL FILES=3,INCLUDE=(20,2,CH,GE,C’20’,AND,20,2,CH,LE,C’29’)
OPTION FILNM=(,OUT2,OUT3)

then run SyncSort as follows:

SSORT MYINPUT DATA A MOUTH DATA T MYSORT SORT A

- 32 -

A Guide To SyncSort

Appendix F

Using ETHERNET to Send SyncSort Output from MVS Directly to a PC

It is now possible to run a job on MVS and have your output directed to a PC that is connected to
the mainframe via ethernet. This allows you to bypass sending a file to VM, moving it from your
reader, then to a T-disk, then downloading it to a PC. Any PC on the ethernet network can be
used as a destination for the file(s). The PC must be placed in ’server mode’ to receive the file.

Here are the steps you should follow:

1. Set up a job on to run on MVS that will write your data to a disk file.
NOTE: You can’t write to a temporary file, e.g., &&TEMP. Your file must have a real name,
e.g., XXXXX.TESTSDSK.XXXXX.MYDATA - you can write the file to SYSDA.

2. Add the file transfer commands as another job step. The content of these commands will vary
according to: the ’ethernet address’ of the PC that is to receive the data; whether or not the
receiving PC is ’password protected’ on the network; the name of the fileson MVS and the
destination directory and filename on the PC

3. Add a final job step that will delete your file from MVS disk after the file transfer.

4. Place the appropriate lab PC in ’server mode’ by entering TN3270 at the DOS prompt.

4. Send the job from VM to MVS to create and download the data file.

5. After the job runs, take the PC out of ’server mode’ by pressing ESC.

NOTE: This topic is covered in more detail in Technical Booklet 22, Batch Submission of MVS FTP,
available from ISHS on the concourse.

The following is a complete example that uses the file descrbed in Appendix D.

//XXXXXFTP JOB 99999999,’YOUR NAME’,CLASS=A,TIME=1
/*ROUTE PRINT DOHVM1.XXXXX
//STEP1 EXEC PGM=SORT,REGION=2400K
//SYSOUT DD SYSOUT=A
//SORTIN DD DISP=SHR,DSN=HOSPITAL.DISCHARG.CY1990
//SORTOUT DD DISP=(NEW,CATLG),UNIT=SYSDA, 1
// DSN=XXXXX.TESTSDSK.XXXXX.TESTFTP,
// SPACE=(TRK,(68,1),RLSE,
// DCB=(RECFM=FB,LRECL=150)
//SYSIN DD *
INCLUDE COND=(8,4,EQ,C’0001’,AND,36,3,GE,C’085’),FORMAT=CH 2
INREC FIELDS=(1,150) 3
SORT FIELDS=COPY

/*
//STEPFTP EXEC PGM=FTP,COND=(0,NE,STEP1) 4
//OUTPUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//INPUT DD *
<ethernet address of receiving PC> 5
<username password of receiving PC> 6
cd c:\ 7
put ’XXXXX.TESTSDSK.XXXXX.TESTFTP’ MYPCFILE.DAT 8
quit 9

- 33 -

A Guide To SyncSort

/*
//STEPDEL EXEC PGM=IEFBR14,COND=(0,NE,STEPFTP) 10
//SYSPRINT DD SYSOUT=*
//DELFILE DD DISP=(OLD,DELETE,DELETE), 11
// DSN=XXXXX.TESTSDSK.XXXXX.TESTFTP

1 an file is defined to receive the output from SyncSort - the file is CATALOGED

2 records are selected from the input file with a hospital number of 0001 and an age equal to or
greater than 85

3 only 150 characters of each record read and copied

4 the FTP program on MVS is used to copy the output from SyncSort (now on disk) to a PC

5 you must provide the ethernet address for the receiving PC

6 if the receiving PC is password protected, you must supply both the appropriate username
and password - if there is no password protection, any username will work

7 this line is OPTIONAL - it changes the directory on the receiving PC to C:\

8 the PUT command is used to tranfer the MVS file (in quotes) to the PC (no quotes on the PC
filename)

9 QUIT ends the batch FTP session on MVS

10 another job step is added to delete the SyncSort output that us still on disk on MVS

11 the file to be deleted is specified

- 34 -

A Guide To SyncSort

Appendix G

Some Other Useful SyncSort Statements

As stated in the introduction, this guide does not cover all the tasks that can be accomplished
using SyncSort and all the statements and options available to a SyncSort user. The object of this
guide is to point out some useful features of SyncSort in a ’non-intimidating’ fashion. In addition
to the information already covered, there are a few more SyncSort features that you may find
useful.

SKIPREC=n this option can be used with the SORT statement to bypass ’n’ records of the input
file - the records are skipped prior to any decisions on record selection caused by
an INCLUDE or OMIT statement, e.g.:
SORT FIELDS=COPY,SKIPREC=1000
SORT FIELDS=(1,5,CH,A),SKIPREC=250

STOPAFT=n this option can bu used with the SORT statement to stop the input of records after
’n’ - the decision to stop is made after considering record selection caused by an
INCLUDE or OMIT statement, e.g.:
SORT FIELDS=COPY,STOPAFT=1000
SORT FIELDS=(1,5,CH,A),STOPAFT=250

Comments can be added to SyncSort jobs in several ways. The first is to place an asterisk in
column one. This is a good way to either add some documentation to your job, or to tell SyncSort
to ignore one or more lines of SyncSort statements.

Example 1 add some documentation
* this job extracts records for Albany County residemts

INCLUDE COND=(46,2,CH,EQ,C’01’)

Example 2 tell SyncSort to ignore a statement
* INCLUDE COND=(46,2,CH,EQ,C’01’)

INCLUDE COND=(36,3,GE,C’065’,AND,36,3,LE,C’084’),FORMAT=CH
SORT FIELDS=COPY

Another way to add comments is to leave some spaces at the end of a SyncSort statement before
adding a comment.

Example 3 add another type of comment
INCLUDE COND=(46,2,EQ,C’01’,AND, Albany County residents

(36,3,GE,C’065’,AND,
36,3,LE,C’084’)),FORMAT=CH age 65 through 84

SORT FIELDS=COPY

Example 4 use comments to show the layout of extracted data (refer to the description in
Appendix D to see the record layout and positions of the data being read) -
numbers and description on the right are the record layout and contents of the
record copied with the SORT FIELDS=COPY statement

* new record layout pos contents
INREC FIELDS=(8,4, 1,4 hospital number

46,2, 5,6 county of residence
171,4) 7,10 length of stay

SORT FIELDS=COPY

- 35 -

A Guide To SyncSort

Please contact me with any comments, suggestions,
etc. in any of the following ways:

PHONE (518)474-2079

FAX (518)473-2015

E-MAIL msz03@health.state.ny.us

MAIL Mike Zdeb
NYS Department of Health
Division of Family Health
ESP - Tower - Room 890
Albany, NY 12237-0657

- 36 -

