Job creators, job creation and the tax code

Adrian Masters

SUNY Albany

MOTIVATION

Lowering marginal tax rates on high income individuals is associated with:
(1) Increasing (before-tax) income dispersion (Occupy Wall Street)
(2) Job creation (Tea Party)

Objective: To understand when either or both can be true? Requires:
(1) Income dispersion (Lucas [1978] span-of-control)
(2) Matching frictions (DMP)

EMPIRICAL WORK

- Piketty et al [2011]: Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.

EMPIRICAL WORK

- Piketty et al [2011]: Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a

EMPIRICAL WORK

- Piketty et al [2011]: Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
- Supply-side effect

EMPIRICAL WORK

- Piketty et al [2011]: Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
- Supply-side effect
- Tax evasion effect

EMPIRICAL WORK

- Piketty et al [2011]: Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
- Supply-side effect
- Tax evasion effect
- In favor of a "bargaining effect"

EMPIRICAL WORK

- Piketty et al [2011]: Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
- Supply-side effect
- Tax evasion effect
- In favor of a "bargaining effect"
- Bivens and Mishel [2013]: High incomes largely come from corporate profits or capital gains

ENVIRONMENT: Time and Demography

- Time:
- Continuous, Infinite horizon
- Demography:
- Mass 1 of individuals indexed by $p \in[\underline{p}, \bar{p}]$
- $p \sim H($.$) is their (ex ante) ability as firm owner$
- The density, $h($.$) , is the population of each type$
- Infinite lives
- Everyone has the same ability as a worker
- Individuals decide (at no cost) to be a worker or to set up a firm

ENVIRONMENT: Preferences

- Individuals are risk neutral
- They discount the future at rate r
- Workers experience disutility of work, z

ENVIRONMENT: Production

- Employers establish a firm and can hire any number of workers
- When a worker is hired, capital is acquired from competitive market
- The i th worker hired by a firm type p associated with k_{i} units of capital produces $p f\left(k_{i}\right)$ units of the consumption good.
- $f($.$) is increasing, concave, Inada conditions$
- Depreciation rate of capital is δ
- Separation occurs at rate λ (irreconcilable tiff)
- Undepreciated capital returned to market

ENVIRONMENT: Matching

- Firms are always in the market
- Workers direct their search based on the ability of the employers
- Employers, firms and markets are indexed by $p \in P_{A} \subset[\underline{p}, \bar{p}]$
- $\theta(p)=h(p) / u(p)$ is ratio of firms to job seekers in market p

ENVIRONMENT: Matching (cont.)

- Workers meet firms at rate $m(\theta)$
- $m($.$) is$
- increasing,
- concave,
- passes through origin,
- $m^{\prime}(0)=\infty$,
- $\eta(\theta) \equiv \theta m^{\prime}(\theta) / m(\theta)<1$
- Firms meet workers at rate $q(\theta)=m(\theta) u / h=m(\theta) / \theta$
- So $q^{\prime}(\theta)<0$

ENVIRONMENT: Bargaining

- Wage formation is by generalized Nash bargaining - β is the bargaining power of the firm

ENVIRONMENT: Tax code

- Tax code is exogenous for analytical part
- Tax on capital, τ_{k}
- User cost, ρ, solves $\rho\left(1-\tau_{k}\right)=r+\delta$
- Tax on wages, τ_{w}
- Tax on profits, τ_{f}
- Revenues thrown away

ANALYSIS: Firm size

- γ_{n} is the probability that the firm has $n=0,1,2 \ldots$ workers.

ANALYSIS: Firm size

- γ_{n} is the probability that the firm has $n=0,1,2 \ldots$ workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$
q(\theta) \gamma_{0}=\lambda \gamma_{1}, q(\theta) \gamma_{1}=2 \lambda \gamma_{2} \text { and } q(\theta) \gamma_{n}=(n+1) \lambda \gamma_{n+1}
$$

ANALYSIS: Firm size

- γ_{n} is the probability that the firm has $n=0,1,2 \ldots$ workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$
q(\theta) \gamma_{0}=\lambda \gamma_{1}, q(\theta) \gamma_{1}=2 \lambda \gamma_{2} \text { and } q(\theta) \gamma_{n}=(n+1) \lambda \gamma_{n+1}
$$

- Solving,

$$
\gamma_{n}=\left(\frac{q(\theta)}{\lambda}\right)^{n} \frac{\gamma_{0}}{n!}
$$

ANALYSIS: Firm size

- γ_{n} is the probability that the firm has $n=0,1,2 \ldots$ workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$
q(\theta) \gamma_{0}=\lambda \gamma_{1}, q(\theta) \gamma_{1}=2 \lambda \gamma_{2} \text { and } q(\theta) \gamma_{n}=(n+1) \lambda \gamma_{n+1}
$$

- Solving,

$$
\gamma_{n}=\left(\frac{q(\theta)}{\lambda}\right)^{n} \frac{\gamma_{0}}{n!}
$$

- Given $\sum_{n} \gamma_{n}=1$ firm's number of workers is distributed Poisson with parameter $q(\theta) / \lambda$.

ANALYSIS: Firm size

- γ_{n} is the probability that the firm has $n=0,1,2 \ldots$ workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$
q(\theta) \gamma_{0}=\lambda \gamma_{1}, q(\theta) \gamma_{1}=2 \lambda \gamma_{2} \text { and } q(\theta) \gamma_{n}=(n+1) \lambda \gamma_{n+1}
$$

- Solving,

$$
\gamma_{n}=\left(\frac{q(\theta)}{\lambda}\right)^{n} \frac{\gamma_{0}}{n!}
$$

- Given $\sum_{n} \gamma_{n}=1$ firm's number of workers is distributed Poisson with parameter $q(\theta) / \lambda$.
- The matching rate of the firm, $q(\theta)$, is proportional to its expected size (balanced matching).

ANALYSIS: Worker Value functions

- For the unemployed

$$
r V_{u}=m(\theta) \mathbb{E}_{n}\left(V_{e}^{n}-V_{u}\right)
$$

ANALYSIS: Worker Value functions

- For the unemployed

$$
r V_{u}=m(\theta) \mathbb{E}_{n}\left(V_{e}^{n}-V_{u}\right)
$$

- For the employed

$$
r V_{e}^{n}=w_{n}\left(1-\tau_{w}\right)-z+\lambda\left(V_{u}-V_{e}^{n}\right) .
$$

ANALYSIS: Firm Value functions

- With n employees

$$
\begin{gathered}
r V_{f}^{n}=\sum_{i=1}^{n} y_{i}+q(\theta)\left(V_{f}^{n+1}-V_{f}^{n}\right)+n \lambda\left(V_{f}^{n-1}-V_{f}^{n}\right) \quad \text { for } n=0,1,2 . . \\
y_{i}=\left(1-\tau_{f}\right)\left(p f\left(k_{i}\right)-w_{i}-\rho k_{i}\right)
\end{gathered}
$$

ANALYSIS: Firm Value functions

- With n employees

$$
\begin{gathered}
r V_{f}^{n}=\sum_{i=1}^{n} y_{i}+q(\theta)\left(V_{f}^{n+1}-V_{f}^{n}\right)+n \lambda\left(V_{f}^{n-1}-V_{f}^{n}\right) \quad \text { for } n=0,1,2 . \\
y_{i}=\left(1-\tau_{f}\right)\left(p f\left(k_{i}\right)-w_{i}-\rho k_{i}\right)
\end{gathered}
$$

- If $\Delta_{f}^{n}=V_{f}^{n}-V_{f}^{n-1}$,

$$
(r+q(\theta)+n \lambda) \Delta_{f}^{n}=q(\theta) \Delta_{f}^{n+1}+(n-1) \lambda \Delta_{f}^{n-1}+y_{n}
$$

ANALYSIS: Firm Value functions

- With n employees

$$
\begin{gathered}
r V_{f}^{n}=\sum_{i=1}^{n} y_{i}+q(\theta)\left(V_{f}^{n+1}-V_{f}^{n}\right)+n \lambda\left(V_{f}^{n-1}-V_{f}^{n}\right) \quad \text { for } n=0,1,2 . . \\
y_{i}=\left(1-\tau_{f}\right)\left(p f\left(k_{i}\right)-w_{i}-\rho k_{i}\right)
\end{gathered}
$$

- If $\Delta_{f}^{n}=V_{f}^{n}-V_{f}^{n-1}$,

$$
(r+q(\theta)+n \lambda) \Delta_{f}^{n}=q(\theta) \Delta_{f}^{n+1}+(n-1) \lambda \Delta_{f}^{n-1}+y_{n}
$$

- Example: $y_{n}=y$ for all n (ruling out non-fundamental paths)

$$
\Delta_{f}^{n}=\Delta_{f} \equiv \frac{y}{r+\lambda}
$$

ANALYSIS: Firm Value functions

- With n employees

$$
\begin{gathered}
r V_{f}^{n}=\sum_{i=1}^{n} y_{i}+q(\theta)\left(V_{f}^{n+1}-V_{f}^{n}\right)+n \lambda\left(V_{f}^{n-1}-V_{f}^{n}\right) \quad \text { for } n=0,1,2 . . \\
y_{i}=\left(1-\tau_{f}\right)\left(p f\left(k_{i}\right)-w_{i}-\rho k_{i}\right)
\end{gathered}
$$

- If $\Delta_{f}^{n}=V_{f}^{n}-V_{f}^{n-1}$,

$$
(r+q(\theta)+n \lambda) \Delta_{f}^{n}=q(\theta) \Delta_{f}^{n+1}+(n-1) \lambda \Delta_{f}^{n-1}+y_{n}
$$

- Example: $y_{n}=y$ for all n (ruling out non-fundamental paths)

$$
\begin{gathered}
\Delta_{f}^{n}=\Delta_{f} \equiv \frac{y}{r+\lambda} . \\
V_{f}^{0}=\frac{q(\theta) y}{r(r+\lambda)} \\
V_{f}^{n}=\left(\frac{q(\theta)+n r}{r}\right)\left(\frac{y}{r+\lambda}\right) .
\end{gathered}
$$

ANALYSIS: Bargaining and Capital stock

- On meeting a worker, a type p employer with $n-1$ workers solves

$$
\begin{array}{cc}
& \max _{k_{n}}\left(1-\tau_{f}\right)\left[p f\left(k_{n}\right)-w_{n}-\rho k_{n}\right] \\
\text { where: } \quad & w_{n}=\arg \max _{w}\left(\Delta_{f}^{n}\right)^{\beta}\left(V_{e}-V_{u}\right)^{1-\beta}
\end{array}
$$

ANALYSIS: Bargaining and Capital stock

- On meeting a worker, a type p employer with $n-1$ workers solves

$$
\begin{aligned}
& \max _{k_{n}}\left(1-\tau_{f}\right)\left[p f\left(k_{n}\right)-w_{n}-\rho k_{n}\right] \\
& w_{n}=\arg \max _{w}\left(\Delta_{f}^{n}\right)^{\beta}\left(V_{e}-V_{u}\right)^{1-\beta}
\end{aligned}
$$

- Dependence of k_{n} and w_{n} on n comes from Δ_{f}^{n} which comes from y_{n}

ANALYSIS: Bargaining and Capital stock

- On meeting a worker, a type p employer with $n-1$ workers solves

$$
\begin{aligned}
& \max _{k_{n}}\left(1-\tau_{f}\right)\left[p f\left(k_{n}\right)-w_{n}-\rho k_{n}\right] \\
& w_{n}=\arg \max _{w}\left(\Delta_{f}^{n}\right)^{\beta}\left(V_{e}-V_{u}\right)^{1-\beta}
\end{aligned}
$$

- Dependence of k_{n} and w_{n} on n comes from Δ_{f}^{n} which comes from y_{n}
- Symmetry implies $y_{n}=y$ for all n is a solution

ANALYSIS: Bargaining and Capital stock

- On meeting a worker, a type p employer with $n-1$ workers solves

$$
\begin{aligned}
& \max _{k_{n}}\left(1-\tau_{f}\right)\left[p f\left(k_{n}\right)-w_{n}-\rho k_{n}\right] \\
& w_{n}=\arg \max _{w}\left(\Delta_{f}^{n}\right)^{\beta}\left(V_{e}-V_{u}\right)^{1-\beta}
\end{aligned}
$$

- Dependence of k_{n} and w_{n} on n comes from Δ_{f}^{n} which comes from y_{n}
- Symmetry implies $y_{n}=y$ for all n is a solution
- $k=k(p)$, which solves $p f^{\prime}(k)=\rho$, for all n

ANALYSIS: Bargaining and Capital stock

- On meeting a worker, a type p employer with $n-1$ workers solves

$$
\begin{aligned}
& \max _{k_{n}}\left(1-\tau_{f}\right)\left[p f\left(k_{n}\right)-w_{n}-\rho k_{n}\right] \\
& w_{n}=\arg \max _{w}\left(\Delta_{f}^{n}\right)^{\beta}\left(V_{e}-V_{u}\right)^{1-\beta}
\end{aligned}
$$

- Dependence of k_{n} and w_{n} on n comes from Δ_{f}^{n} which comes from y_{n}
- Symmetry implies $y_{n}=y$ for all n is a solution
- $k=k(p)$, which solves $p f^{\prime}(k)=\rho$, for all n
- $w=w(p, \theta)$, for all n solves

$$
\max _{w}\left(\frac{\left(1-\tau_{f}\right)[p f(k)-w-\rho k]}{r+\lambda}\right)^{\beta}\left(\frac{w\left(1-\tau_{w}\right)-z+\lambda V_{u}}{r+\lambda}-V_{u}\right)^{1-\beta}
$$

ANALYSIS: Directed search

- For each $p \in P_{A} \subseteq[\underline{p}, \bar{p}]$, tightness, $\theta(p)$, solves

$$
V_{u}(p, \theta) \equiv \frac{m(\theta)\left[\left(1-\tau_{w}\right) w(p, \theta)-z\right]}{r(r+\lambda+m(\theta))}=\bar{V}_{u}
$$

\bar{V}_{u} is the common value to unemployment

ANALYSIS: Directed search

- For each $p \in P_{A} \subseteq[\underline{p}, \bar{p}]$, tightness, $\theta(p)$, solves

$$
V_{u}(p, \theta) \equiv \frac{m(\theta)\left[\left(1-\tau_{w}\right) w(p, \theta)-z\right]}{r(r+\lambda+m(\theta))}=\bar{V}_{u}
$$

\bar{V}_{u} is the common value to unemployment

- The value to establishing a type p firm is

$$
V_{f}^{0}(p) \equiv \frac{q(\theta(p))\left(1-\tau_{f}\right)[p f(k(p))-w(p, \theta(p))-\rho k(p)]}{r(r+\lambda)}
$$

ANALYSIS: Threshold value of ability

Lemma

For any given value of \bar{V}_{u} such that

$$
\left(1-\tau_{w}\right)(\bar{p} f(\bar{k})-\rho \bar{k})>z+r \bar{V}_{u}
$$

where $\bar{k}=k(\bar{p}), \theta(p)$ is unique and V_{f}^{0} is strictly increasing in p.
So,
(1) $\theta(p)$ is a well defined decreasing function of p.
(2) $w(p, \theta(p))$ is a well defined increasing function of p.
(3) For any given value of $\bar{V}_{u}, P_{A}=[\tilde{p}, \bar{p}]$.

ANALYSIS: Steady State

$e(p)$ is the population of workers employed at type p firms $u(p)$ is the population of workers looking for employment at type p firms $j(p)=e(p)+u(p)$ is the total population of workers associated with market p

- The total workforce is given by

$$
J(\tilde{p})=\int_{\tilde{p}}^{\bar{p}} j(p) d p .
$$

ANALYSIS: Steady State

$e(p)$ is the population of workers employed at type p firms $u(p)$ is the population of workers looking for employment at type p firms $j(p)=e(p)+u(p)$ is the total population of workers associated with market p

- The total workforce is given by

$$
J(\tilde{p})=\int_{\tilde{p}}^{\bar{p}} j(p) d p
$$

- In steady state,

$$
m(\theta(p)) u(p)=\lambda e(p)
$$

ANALYSIS: Steady State

$e(p)$ is the population of workers employed at type p firms $u(p)$ is the population of workers looking for employment at type p firms $j(p)=e(p)+u(p)$ is the total population of workers associated with market p

- The total workforce is given by

$$
J(\tilde{p})=\int_{\tilde{p}}^{\bar{p}} j(p) d p
$$

- In steady state,

$$
m(\theta(p)) u(p)=\lambda e(p)
$$

- So,

$$
j(p)=\frac{\lambda+m(\theta(p))}{\lambda} u(p)
$$

ANALYSIS: Steady State

$e(p)$ is the population of workers employed at type p firms $u(p)$ is the population of workers looking for employment at type p firms $j(p)=e(p)+u(p)$ is the total population of workers associated with market p

- The total workforce is given by

$$
J(\tilde{p})=\int_{\tilde{p}}^{\bar{p}} j(p) d p
$$

- In steady state,

$$
m(\theta(p)) u(p)=\lambda e(p)
$$

- So,

$$
j(p)=\frac{\lambda+m(\theta(p))}{\lambda} u(p)
$$

- As $\theta(p)=h(p) / u(p)$

$$
j(p)=\frac{[\lambda+m(\theta(p))] h(p)}{\lambda \theta(p)}
$$

EQUILIBRIUM: Definition

Definition

A steady state directed search equilibrium is a threshold value of entrepreneurial ability, \tilde{p}, and a market tightness function $\tilde{\theta}(p)$ such that:
(1) All individuals with $p<\tilde{p}$ are workers while those with $p \geq \tilde{p}$ are employers
(2) Type \tilde{p} individuals are indifferent between being a worker and starting a firm, $V_{f}^{0}(\tilde{p})=\bar{V}_{u}$.
(3) $\bar{V}_{u}=V_{u}(p, \tilde{\theta}(p))$ for all $p \geq \tilde{p}$
(9) The population of workers equals the labor force: $H(\tilde{p})=J(\tilde{p})$

EQUILIBRIUM: Characterization

- Result 1:

$$
H(\tilde{p})=\int_{\tilde{p}}^{\bar{p}}\left(\frac{\lambda+m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)}\right) d H(p)
$$

\tilde{p} is unique.

EQUILIBRIUM: Characterization

- Result 1:

$$
H(\tilde{p})=\int_{\tilde{p}}^{\bar{p}}\left(\frac{\lambda+m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)}\right) d H(p)
$$

\tilde{p} is unique.

- Result 2:

$$
\tilde{\theta} \equiv \tilde{\theta}(\tilde{p})=\frac{\beta\left(1-\tau_{f}\right)}{(1-\beta)\left(1-\tau_{w}\right)}
$$

EQUILIBRIUM: Characterization

- Result 1:

$$
H(\tilde{p})=\int_{\tilde{p}}^{\bar{p}}\left(\frac{\lambda+m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)}\right) d H(p)
$$

\tilde{p} is unique.

- Result 2:

$$
\tilde{\theta} \equiv \tilde{\theta}(\tilde{p})=\frac{\beta\left(1-\tau_{f}\right)}{(1-\beta)\left(1-\tau_{w}\right)}
$$

- Result 3: For any $p, p^{\prime} \in[\tilde{p}, \bar{p}]$,

$$
\frac{V_{f}^{0}\left(p^{\prime}\right)}{V_{f}^{0}(p)}=\frac{\tilde{\theta}(p)}{\tilde{\theta}\left(p^{\prime}\right)}
$$

EFFICIENCY

- Focus on steady states and constant government spending without discounting

$$
\begin{aligned}
& \max _{k(p), \theta(p), \tilde{p}} \int_{\tilde{p}}^{\bar{p}}(p f(p)-\delta k(p)-z) \frac{m(\theta(p))}{\lambda \theta(p)} d H(p)-G \\
& \text { subject to } H(\tilde{p})=\int_{\tilde{p}}^{\bar{p}}\left(\frac{\lambda+m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)}\right) d H(p) .
\end{aligned}
$$

EFFICIENCY

- Focus on steady states and constant government spending without discounting

$$
\begin{aligned}
\max _{k(p), \theta(p), \tilde{p}} \int_{\tilde{p}}^{\bar{p}}(p f(p)-\delta k(p)-z) & \frac{m(\theta(p))}{\lambda \theta(p)} d H(p)-G \\
& \text { subject to } H(\tilde{p})=\int_{\tilde{p}}^{\bar{p}}\left(\frac{\lambda+m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)}\right) d H(p) .
\end{aligned}
$$

- Results:

$$
\tilde{\theta}_{p}=\frac{\eta\left(\tilde{\theta}_{p}\right)}{1-\eta\left(\tilde{\theta}_{p}\right)}
$$

If $\eta\left(\tilde{\theta}_{p}\right)=\beta$ and $\tau_{w}=\tau_{f}$, the market economy will choose $\tilde{\theta}$ optimally.

EFFICIENCY

- Focus on steady states and constant government spending without discounting

$$
\begin{aligned}
\max _{k(p), \theta(p), \tilde{p}} \int_{\tilde{p}}^{\bar{p}}(p f(p)-\delta k(p)-z) & \frac{m(\theta(p))}{\lambda \theta(p)} d H(p)-G \\
\text { subject to } H(\tilde{p}) & =\int_{\tilde{p}}^{\bar{p}}\left(\frac{\lambda+m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)}\right) d H(p) .
\end{aligned}
$$

- Results:

$$
\tilde{\theta}_{p}=\frac{\eta\left(\tilde{\theta}_{p}\right)}{1-\eta\left(\tilde{\theta}_{p}\right)}
$$

If $\eta\left(\tilde{\theta}_{p}\right)=\beta$ and $\tau_{w}=\tau_{f}$, the market economy will choose $\tilde{\theta}$ optimally.

- If $m($.$) isoeslastic with \eta=\beta$ and $G=0$ (no taxes) market economy coincides with constrained efficient allocation

SIMULATIONS: Government Budget Constraint

$$
\begin{aligned}
G=\int_{\tilde{p}}^{\bar{p}}\{[p f(k(p))-w(p, \theta(p))- & \rho k(p)] \tau_{f}+ \\
& \left.\rho k(p) \tau_{k}+w(p, \theta(p)) \tau_{w}\right\} e(p) d p
\end{aligned}
$$

SIMULATIONS: Functional Forms

- Production: $f(k)=k^{\phi}$
- Matching: $m(\theta)=\bar{m} \theta^{\eta}$
- Distribution of p is Pareto:

$$
H(p)=1-\left(\frac{p}{p}\right)^{\sigma}
$$

So

$$
\tilde{H}(p)=\frac{H(p)-H(\tilde{p})}{1-H(\tilde{p})}=1-\left(\frac{\tilde{p}}{p}\right)^{\sigma}
$$

SIMULATIONS: Parameters for leading example

- Time unit: 1 Year
- Normalization: $\underline{p}=1$
- External: $r=0.04, \lambda=0.2, \eta=0.5, \phi=0.33, \beta=0.96, \delta=0.1$, $\tau_{f}=0.15,\left(\tau_{k}=0\right)$
- Quantitative Targets:
- unemployment rate, 6%
- share of employers in the economy at 5%
- government spending 18.6% of GDP
- A share of before-tax income going to top 1% of earners at 20%
- Internal parameters: $\bar{m}=4.52, z=0.748, \sigma=7.65, \tau_{w}=35.5 \%$
- Implied value of $G=0.6954$.

RESULTS: Leading example

Equal: $\tau_{w}=\tau_{f}=28.2 \%\left(\tau_{k}=0\right)$; Unequal: $\tau_{w}=35.5 \%, \tau_{f}=15 \%$

Metric	Equal tax	Lower τ_{f}	Unequal tax
Unemployment (\%)	5.38	5.32	6.00
GDP	3.660	3.649	3.731
Welfare	1.090	(1.209)	1.140
\% Employers	5.29	5.45	5.00
Before-tax income shares:			
All Employers	25.67	25.54	25.27
Top 1\% of population	19.49	19.40	20.00
Top 0.1\% of population	8.01	7.96	8.45
Top 0.01\% of population	2.17	2.14	2.38
Before-tax incomes:			
Top 0.002\% of population	1,684	1,653	1,895
Average worker wage	1.693	1.696	1.749

RESULTS: Leading example

Equal: $\tau_{w}=\tau_{f}=28.2 \%\left(\tau_{k}=0\right)$; Unequal: $\tau_{w}=35.5 \%, \tau_{f}=15 \%$

Metric	Equal tax	Lower τ_{f}	Unequal tax	Efficient outcome
Unemployment (\%)	5.38	5.32	6.00	27.57
GDP	3.660	3.649	3.731	4.404
Welfare	1.090	(1.209)	1.140	2.414
\% Employers	5.29	5.45	5.00	0.71
Before-tax income shares:				
All Employers	25.67	25.54	25.27	-
Top 1\% of population	19.49	19.40	20.00	-
Top 0.1\% of population	8.01	7.96	8.45	-
Top 0.01\% of population	2.17	2.14	2.38	-
Before-tax incomes				
Top 0.002\% of population	1,684	1,653	1,895	-
Average worker wage	1.693	1.696	1.749	-

SIMULATIONS: Alternative (Hosios) Parameters

- External: $r=0.04, \lambda=0.2, \eta=0.5, \phi=0.33, \beta=0.5, \delta=0.1$, $\tau_{f}=0.15, \tau_{k}=0$
- Quantitative Targets:
- unemployment rate, 6%
- share of employers in the economy at 5%
- government spending 18.6% of GDP
- 20\% of income going to top 1% of earners now not achievable
- Internal parameters: $\bar{m}=3.3, z=0, \sigma=69.4, \tau_{w}=28.70 \%$
- Implied value of $G=0.2763$.

RESULTS: Alternative (Hosios) Parameters

Unequal: $\tau_{w}=28.7 \%, \tau_{f}=15 \%,\left(\tau_{k}=0\right) ;$ Equal $\tau_{w}=\tau_{f}=27.8 \%$

Metric	Equal tax	Lower τ_{f}	Unequal tax
Unemployment (\%)	6.46	6.05	6.01
GDP	1.486	1.486	1.486
Welfare	0.720	(0.728)	0.719
\% Employers	4.60	4.94	4.97
Before-tax income shares:			
Employers	4.97	4.69	4.67
1\% share	1.621	1.482	1.472
0.1\% share	0.267	0.248	0.248
0.01\% share	0.040	0.036	0.036
Before-tax incomes:			
0.002\% income	7.634	7.149	7.112
Average worker wage	1.037	1.040	1.040

RESULTS: Leading example, tax on capital

Unequal: $\tau_{k}=15 \%, \tau_{w}=35.39 \%,\left(\tau_{f}=0\right)$; Equal: $\tau_{k}=\tau_{w}=28.89 \%$

Metric	Equal tax	Unequal tax
Unemployment (\%)	6.60	6.65
GDP	3.208	3.506
Welfare	0.791	0.992
\% Entrepreneurs	4.65	4.66
Before-tax income shares:		
Entrepreneurs' share (\%)	25.12	25.06
1\% share (\%)	20.46	20.49
0.1\% share (\%)	8.80	8.85
0.01\% share (\%)	2.27	2.28
Before-tax incomes:		
0.002\% income	1,787	1,963
Average worker wage	1.514	1.658

CONCLUSIONS

In a span-of-control model with labor market frictions:

- Lowering taxes on profits decreases unemployment and decreases inequality
- Effects of budget-balancing increases in the wage tax depend on firm bargaining power:
- With high power, tax is borne by the firms with a disproportionate effect on small ones
- With low power, more is borne by workers incentivizing entrepreneurship
- Taxes on capital off-set distributional effects of wage taxes but have a strong impact on investment and output
- Issue: how to distinguish between payments to capital and excess profits.

