Job creators, job creation and the tax code

Adrian Masters

SUNY Albany

∃ >

Lowering marginal tax rates on high income individuals is associated with:

- Increasing (before-tax) income dispersion (Occupy Wall Street)
- Job creation (Tea Party)

Objective: To understand when either or both can be true? **Requires:**

- Income dispersion (Lucas [1978] span-of-control)
- Matching frictions (DMP)

A B M A B M

• **Piketty et al [2011]:** Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.

∃ ► < ∃ ►</p>

- **Piketty et al [2011]:** Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a

∃ ▶ ∢ ∃ ▶

- **Piketty et al [2011]:** Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
 - Supply-side effect

-∢∃>

- **Piketty et al [2011]:** Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
 - Supply-side effect
 - Tax evasion effect

- **Piketty et al [2011]:** Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
 - Supply-side effect
 - Tax evasion effect
- In favor of a "bargaining effect"

- **Piketty et al [2011]:** Across OECD negative relationship between top marginal tax rates and the before-tax earnings of high income individuals.
- They rule out a
 - Supply-side effect
 - Tax evasion effect
- In favor of a "bargaining effect"
- **Bivens and Mishel [2013]:** High incomes largely come from corporate profits or capital gains

• Time:

• Continuous, Infinite horizon

Demography:

- Mass 1 of individuals indexed by $p \in [\underline{p}, \overline{p}]$
- $p \sim H(.)$ is their (ex ante) ability as firm owner
- The density, h(.), is the population of each type
- Infinite lives
- Everyone has the same ability as a worker
- Individuals decide (at no cost) to be a worker or to set up a firm

- Individuals are risk neutral
- They discount the future at rate r
- Workers experience disutility of work, z

- Employers establish a firm and can hire any number of workers
- When a worker is hired, capital is acquired from competitive market
- The *i*th worker hired by a firm type p associated with k_i units of capital produces pf(k_i) units of the consumption good.
- f(.) is increasing, concave, Inada conditions
- Depreciation rate of capital is δ
- Separation occurs at rate λ (irreconcilable tiff)
- Undepreciated capital returned to market

- Firms are always in the market
- Workers direct their search based on the ability of the employers
- Employers, firms and markets are indexed by $p \in P_A \subset [p, \bar{p}]$
- $\theta(p) = h(p)/u(p)$ is ratio of firms to job seekers in market p

- Workers meet firms at rate $m(\theta)$
- *m*(.) is
 - increasing,
 - concave,
 - passes through origin,
 - $m'(0) = \infty$,
 - $\eta(\theta) \equiv \theta m'(\theta) / m(\theta) < 1$
- Firms meet workers at rate $q(\theta) = m(\theta)u/h = m(\theta)/\theta$
 - So $q'(\theta) < 0$

ヨト イヨト

- Wage formation is by generalized Nash bargaining
- β is the bargaining power of the firm

∃ ► < ∃ ►</p>

- Tax code is exogenous for analytical part
- Tax on capital, au_k
- User cost, ho, solves $ho(1- au_k)=r+\delta$
- Tax on wages, τ_w
- Tax on profits, τ_f
- Revenues thrown away

• γ_n is the probability that the firm has n = 0, 1, 2... workers.

æ

イロト イヨト イヨト イヨト

- γ_n is the probability that the firm has n = 0, 1, 2... workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$q(heta)\gamma_0=\lambda\gamma_1, \,\, q(heta)\gamma_1=2\lambda\gamma_2 \,\, {
m and} \,\, q(heta)\gamma_n=(n+1)\lambda\gamma_{n+1}$$

-∢∃>

- γ_n is the probability that the firm has n = 0, 1, 2... workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$q(heta)\gamma_0=\lambda\gamma_1$$
, $q(heta)\gamma_1=2\lambda\gamma_2$ and $q(heta)\gamma_n=(n+1)\lambda\gamma_{n+1}$

• Solving,

$$\gamma_n = \left(\frac{q(\theta)}{\lambda}\right)^n \frac{\gamma_0}{n!}.$$

-∢∃>

- γ_n is the probability that the firm has n = 0, 1, 2... workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$q(heta)\gamma_0 = \lambda\gamma_1$$
, $q(heta)\gamma_1 = 2\lambda\gamma_2$ and $q(heta)\gamma_n = (n+1)\lambda\gamma_{n+1}$

Solving,

$$\gamma_n = \left(\frac{q(\theta)}{\lambda}\right)^n \frac{\gamma_0}{n!}.$$

• Given $\sum_{n} \gamma_{n} = 1$ firm's number of workers is distributed Poisson with parameter $q(\theta)/\lambda$.

- γ_n is the probability that the firm has n = 0, 1, 2... workers.
- In steady state firms transition rates between any two levels of employment will be equalized

$$q(heta)\gamma_0 = \lambda\gamma_1$$
, $q(heta)\gamma_1 = 2\lambda\gamma_2$ and $q(heta)\gamma_n = (n+1)\lambda\gamma_{n+1}$

Solving,

$$\gamma_n = \left(\frac{q(\theta)}{\lambda}\right)^n \frac{\gamma_0}{n!}.$$

- Given $\sum_{n} \gamma_{n} = 1$ firm's number of workers is distributed Poisson with parameter $q(\theta)/\lambda$.
- The matching rate of the firm, $q(\theta)$, is proportional to its expected size (balanced matching).

• For the unemployed

$$rV_u = m(\theta)\mathbb{E}_n\left(V_e^n - V_u\right)$$

æ

∃ ► < ∃ ►</p>

• For the unemployed

$$rV_u = m(\theta)\mathbb{E}_n\left(V_e^n - V_u\right)$$

• For the employed

$$rV_e^n = w_n(1-\tau_w) - z + \lambda(V_u - V_e^n).$$

э

∃ ▶ ∢ ∃ ▶

• With *n* employees

$$rV_{f}^{n} = \sum_{i=1}^{n} y_{i} + q(\theta) \left(V_{f}^{n+1} - V_{f}^{n} \right) + n\lambda \left(V_{f}^{n-1} - V_{f}^{n} \right) \quad \text{for } n = 0, 1, 2..$$
$$y_{i} = (1 - \tau_{f}) \left(pf(k_{i}) - w_{i} - \rho k_{i} \right)$$

æ

イロト イヨト イヨト イヨト

• With *n* employees

۲

$$rV_{f}^{n} = \sum_{i=1}^{n} y_{i} + q(\theta) \left(V_{f}^{n+1} - V_{f}^{n} \right) + n\lambda \left(V_{f}^{n-1} - V_{f}^{n} \right) \text{ for } n = 0, 1, 2..$$
$$y_{i} = (1 - \tau_{f}) \left(pf(k_{i}) - w_{i} - \rho k_{i} \right)$$
$$\text{If } \Delta_{f}^{n} = V_{f}^{n} - V_{f}^{n-1},$$
$$(r + q(\theta) + n\lambda) \Delta_{f}^{n} = q(\theta)\Delta_{f}^{n+1} + (n-1)\lambda\Delta_{f}^{n-1} + y_{n}$$

æ

イロト イヨト イヨト イヨト

• With *n* employees

$$\begin{split} rV_{f}^{n} &= \sum_{i=1}^{n} y_{i} + q(\theta) \left(V_{f}^{n+1} - V_{f}^{n} \right) + n\lambda \left(V_{f}^{n-1} - V_{f}^{n} \right) \quad \text{for } n = 0, 1, 2..\\ y_{i} &= (1 - \tau_{f}) \left(pf(k_{i}) - w_{i} - \rho k_{i} \right) \\ \bullet \quad \text{If } \Delta_{f}^{n} &= V_{f}^{n} - V_{f}^{n-1}, \\ &\qquad (r + q(\theta) + n\lambda) \Delta_{f}^{n} = q(\theta) \Delta_{f}^{n+1} + (n-1)\lambda \Delta_{f}^{n-1} + y_{n} \end{split}$$

• **Example:** $y_n = y$ for all n (ruling out non-fundamental paths)

$$\Delta_f^n = \Delta_f \equiv \frac{y}{r+\lambda}.$$

æ

イロト イ理ト イヨト イヨト

• With *n* employees

$$rV_{f}^{n} = \sum_{i=1}^{n} y_{i} + q(\theta) \left(V_{f}^{n+1} - V_{f}^{n}\right) + n\lambda \left(V_{f}^{n-1} - V_{f}^{n}\right) \text{ for } n = 0, 1, 2...$$

$$y_{i} = (1 - \tau_{f}) \left(pf(k_{i}) - w_{i} - \rho k_{i}\right)$$

• If $\Delta_{f}^{n} = V_{f}^{n} - V_{f}^{n-1}$,
 $(r + q(\theta) + n\lambda) \Delta_{f}^{n} = q(\theta)\Delta_{f}^{n+1} + (n-1)\lambda\Delta_{f}^{n-1} + y_{n}$

• **Example:** $y_n = y$ for all n (ruling out non-fundamental paths)

$$\Delta_f^n = \Delta_f \equiv \frac{y}{r+\lambda}.$$

۲

$$V_f^0 = \frac{q(\theta)y}{r(r+\lambda)}$$
$$V_f^n = \left(\frac{q(\theta) + nr}{r}\right) \left(\frac{y}{r+\lambda}\right).$$

æ

イロト イ理ト イヨト イヨト

• On meeting a worker, a type p employer with n-1 workers solves

$$\begin{split} \max_{k_n} (1-\tau_f) [pf(k_n) - w_n - \rho k_n] \\ \text{where:} \qquad w_n = \arg\max_w \left(\Delta_f^n\right)^\beta \left(V_e - V_u\right)^{1-\beta} \end{split}$$

∃ ► < ∃ ►</p>

• On meeting a worker, a type p employer with n-1 workers solves

$$\begin{split} \max_{k_n} (1-\tau_f) [pf(k_n) - w_n - \rho k_n] \\ \text{where:} \qquad w_n = \arg\max_w \left(\Delta_f^n\right)^\beta \left(V_e - V_u\right)^{1-\beta} \end{split}$$

• Dependence of k_n and w_n on *n* comes from Δ_f^n which comes from y_n

• On meeting a worker, a type p employer with n-1 workers solves

$$\begin{aligned} \max_{k_n} (1-\tau_f) [pf(k_n) - w_n - \rho k_n] \\ \text{where:} \qquad w_n = \arg\max_{w} \left(\Delta_f^n\right)^{\beta} \left(V_e - V_u\right)^{1-\beta} \end{aligned}$$

- Dependence of k_n and w_n on n comes from Δ_f^n which comes from y_n
- Symmetry implies $y_n = y$ for all n is a solution

• On meeting a worker, a type p employer with n-1 workers solves

$$\begin{split} \max_{k_n} (1-\tau_f) [pf(k_n) - w_n - \rho k_n] \\ \text{where:} \qquad w_n = \arg\max_w \left(\Delta_f^n\right)^\beta \left(V_e - V_u\right)^{1-\beta} \end{split}$$

- Dependence of k_n and w_n on n comes from Δ_f^n which comes from y_n
- Symmetry implies $y_n = y$ for all n is a solution
- k = k(p), which solves $pf'(k) = \rho$, for all n

• On meeting a worker, a type p employer with n-1 workers solves

$$\begin{split} \max_{k_n} (1-\tau_f) [pf(k_n) - w_n - \rho k_n] \\ \text{where:} \qquad w_n = \arg\max_w \left(\Delta_f^n\right)^\beta \left(V_e - V_u\right)^{1-\beta} \end{split}$$

- Dependence of k_n and w_n on n comes from Δⁿ_f which comes from y_n
 Symmetry implies y_n = y for all n is a solution
- k = k(p), which solves $pf'(k) = \rho$, for all n
- $w = w(p, \theta)$, for all *n* solves

$$\max_{w} \left(\frac{(1-\tau_{f})[pf(k)-w-\rho k]}{r+\lambda} \right)^{\beta} \left(\frac{w(1-\tau_{w})-z+\lambda V_{u}}{r+\lambda} - V_{u} \right)^{1-\beta}$$

• For each $p \in P_A \subseteq [p, \bar{p}]$, tightness, $\theta(p)$, solves

$$V_u(p,\theta) \equiv \frac{m(\theta) \left[(1-\tau_w) w(p,\theta) - z \right]}{r \left(r + \lambda + m(\theta) \right)} = \bar{V}_u.$$

 $ar{V}_u$ is the common value to unemployment

- ∢ ∃ ▶

• For each $p \in P_A \subseteq [\underline{p}, \overline{p}]$, tightness, $\theta(p)$, solves

$$V_u(p,\theta) \equiv \frac{m(\theta) \left[(1-\tau_w) w(p,\theta) - z \right]}{r \left(r + \lambda + m(\theta) \right)} = \bar{V}_u.$$

 \bar{V}_u is the common value to unemployment

• The value to establishing a type p firm is

$$V_f^0(p) \equiv \frac{q(\theta(p))(1-\tau_f)[pf(k(p)) - w(p,\theta(p)) - \rho k(p)]}{r(r+\lambda)}$$

Lemma

For any given value of \bar{V}_u such that

$$(1-\tau_w)\left(\bar{p}f(\bar{k})-\rho\bar{k}\right)>z+r\bar{V}_u,$$

where $\bar{k} = k(\bar{p})$, $\theta(p)$ is unique and V_f^0 is strictly increasing in p.

So,

- $\theta(p)$ is a well defined decreasing function of p.
- 2 $w(p, \theta(p))$ is a well defined increasing function of p.
- Solution For any given value of \bar{V}_u , $P_A = [\tilde{p}, \bar{p}]$.

ANALYSIS: Steady State

e(p) is the population of workers employed at type p firms u(p) is the population of workers looking for employment at type p firms j(p) = e(p) + u(p) is the total population of workers associated with market p

• The total workforce is given by

$$J(ilde{p}) = \int_{ ilde{p}}^{ar{p}} j(p) dp.$$

ANALYSIS: Steady State

e(p) is the population of workers employed at type p firms u(p) is the population of workers looking for employment at type p firms j(p) = e(p) + u(p) is the total population of workers associated with market p

• The total workforce is given by

$$J(ilde{p}) = \int_{ ilde{p}}^{ar{p}} j(p) dp.$$

In steady state,

$$m(\theta(p))u(p) = \lambda e(p)$$

ANALYSIS: Steady State

e(p) is the population of workers employed at type p firms u(p) is the population of workers looking for employment at type p firms j(p) = e(p) + u(p) is the total population of workers associated with market p

• The total workforce is given by

$$J(\tilde{p}) = \int_{\tilde{p}}^{\tilde{p}} j(p) dp.$$

In steady state,

$$m(\theta(p))u(p) = \lambda e(p)$$

So,

$$j(p) = \frac{\lambda + m(\theta(p))}{\lambda} u(p).$$

ANALYSIS: Steady State

e(p) is the population of workers employed at type p firms u(p) is the population of workers looking for employment at type p firms j(p) = e(p) + u(p) is the total population of workers associated with market p

• The total workforce is given by

$$J(\tilde{p}) = \int_{\tilde{p}}^{\tilde{p}} j(p) dp.$$

In steady state,

$$m(\theta(p))u(p) = \lambda e(p)$$

So,

$$j(p) = rac{\lambda + m(\theta(p))}{\lambda} u(p).$$

• As $\theta(p) = h(p)/u(p)$ $j(p) = \frac{[\lambda + m(\theta(p))] h(p)}{\lambda \theta(p)}.$

《曰》 《圖》 《臣》 《臣》

Definition

A steady state directed search equilibrium is a threshold value of entrepreneurial ability, \tilde{p} , and a market tightness function $\tilde{\theta}(p)$ such that:

- 2 Type \tilde{p} individuals are indifferent between being a worker and starting a firm, $V_f^0(\tilde{p}) = \bar{V}_u$.
- $\ \, {\bar V}_u = V_u(p,{\tilde \theta}(p)) \ \, \text{for all} \ \, p \geq {\tilde p}$
- The population of workers equals the labor force: $H(ilde{p})=J(ilde{p})$

• Result 1:

$$H(\tilde{p}) = \int_{\tilde{p}}^{\tilde{p}} \left(rac{\lambda + m(\tilde{ heta}(p))}{\lambda \tilde{ heta}(p)}
ight) dH(p).$$

 \tilde{p} is unique.

æ

イロト イヨト イヨト イヨト

EQUILIBRIUM: Characterization

• Result 1:

$$H(\tilde{p}) = \int_{\tilde{p}}^{\bar{p}} \left(\frac{\lambda + m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)} \right) dH(p).$$

 \tilde{p} is unique.

• Result 2:

$$ilde{ heta} \equiv ilde{ heta}(ilde{ heta}) = rac{eta(1- au_f)}{(1-eta)(1- au_w)}$$

æ

イロト イヨト イヨト イヨト

• Result 1:

$$H(\tilde{p}) = \int_{\tilde{p}}^{\bar{p}} \left(\frac{\lambda + m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)} \right) dH(p).$$

 \tilde{p} is unique.

• Result 2:

$$ilde{ heta} \equiv ilde{ heta}(ilde{ heta}) = rac{eta(1- au_f)}{(1-eta)(1- au_w)}$$

• **Result 3:** For any $p, p' \in [\tilde{p}, \bar{p}]$,

$$\frac{V_f^0(p')}{V_f^0(p)} = \frac{\tilde{\theta}(p)}{\tilde{\theta}(p')}$$

э

ヨト イヨト

EFFICIENCY

• Focus on steady states and constant government spending without discounting

$$\begin{split} \max_{k(p),\theta(p),\tilde{p}} \int_{\tilde{p}}^{\tilde{p}} \left(pf(p) - \delta k(p) - z \right) \frac{m(\theta(p))}{\lambda \theta(p)} dH(p) - G \\ \text{subject to } H(\tilde{p}) &= \int_{\tilde{p}}^{\tilde{p}} \left(\frac{\lambda + m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)} \right) dH(p). \end{split}$$

æ

E ► < E ►

EFFICIENCY

Focus on steady states and constant government spending without discounting

$$\begin{split} \max_{k(p),\theta(p),\tilde{p}} \int_{\tilde{p}}^{\tilde{p}} \left(pf(p) - \delta k(p) - z \right) \frac{m(\theta(p))}{\lambda \theta(p)} dH(p) - G \\ \text{subject to } H(\tilde{p}) &= \int_{\tilde{p}}^{\tilde{p}} \left(\frac{\lambda + m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)} \right) dH(p). \end{split}$$

Results:

$$\tilde{\theta}_{p} = \frac{\eta(\tilde{\theta}_{p})}{1 - \eta(\tilde{\theta}_{p})}$$

If $\eta(\tilde{\theta}_p) = \beta$ and $\tau_w = \tau_f$, the market economy will choose $\tilde{\theta}$ optimally.

3

- 4 週 ト - 4 三 ト - 4 三 ト -

EFFICIENCY

Focus on steady states and constant government spending without discounting

$$\begin{split} \max_{k(p),\theta(p),\tilde{p}} \int_{\tilde{p}}^{\tilde{p}} \left(pf(p) - \delta k(p) - z \right) \frac{m(\theta(p))}{\lambda \theta(p)} dH(p) - G \\ \text{subject to } H(\tilde{p}) &= \int_{\tilde{p}}^{\tilde{p}} \left(\frac{\lambda + m(\tilde{\theta}(p))}{\lambda \tilde{\theta}(p)} \right) dH(p). \end{split}$$

Results:

$$\tilde{\theta}_{p} = \frac{\eta(\tilde{\theta}_{p})}{1 - \eta(\tilde{\theta}_{p})}$$

If $\eta(\tilde{\theta}_p) = \beta$ and $\tau_w = \tau_f$, the market economy will choose $\tilde{\theta}$ optimally.

If m(.) isoeslastic with η = β and G = 0 (no taxes) market economy coincides with constrained efficient allocation

$$G = \int_{\tilde{p}}^{\tilde{p}} \left\{ \left[pf(k(p)) - w(p, \theta(p)) - \rho k(p) \right] \tau_f + \rho k(p) \tau_k + w(p, \theta(p)) \tau_w \right\} e(p) dp$$

æ

イロト イヨト イヨト イヨト

- Production: $f(k) = k^{\phi}$
- Matching: $m(\theta) = \bar{m} \theta^{\eta}$
- Distribution of *p* is Pareto:

$$H(p) = 1 - \left(\frac{\underline{p}}{p}\right)^{\sigma}$$

So

$$ilde{H}(p) = rac{H(p) - H(ilde{p})}{1 - H(ilde{p})} = 1 - \left(rac{ ilde{p}}{p}
ight)^{\sigma}$$

3

문에 비용에 다

SIMULATIONS: Parameters for leading example

- Time unit: 1 Year
- Normalization: p = 1
- External: r = 0.04, $\lambda = 0.2$, $\eta = 0.5$, $\phi = 0.33$, $\beta = 0.96$, $\delta = 0.1$, $\tau_f = 0.15$, $(\tau_k = 0)$
- Quantitative Targets:
 - unemployment rate, 6%
 - share of employers in the economy at 5%
 - government spending 18.6% of GDP
 - $\bullet\,$ A share of before-tax income going to top 1% of earners at 20%
- Internal parameters: $\bar{m} = 4.52$, z = 0.748, $\sigma = 7.65$, $\tau_w = 35.5\%$
- Implied value of G = 0.6954.

RESULTS: Leading example

Equal: $au_w = au_f = 28.2\%~(au_k = 0)$; Unequal: $au_w = 35.5\%$, $au_f = 15\%$

Metric	Equal	Lower	Unequal
	tax	$ au_f$	tax
Unemployment (%)	5.38	5.32	6.00
GDP	3.660	3.649	3.731
Welfare	1.090	(1.209)	1.140
% Employers	5.29	5.45	5.00
Before-tax income shares:			
All Employers	25.67	25.54	25.27
Top 1% of population	19.49	19.40	20.00
Top 0.1% of population	8.01	7.96	8.45
Top 0.01% of population	2.17	2.14	2.38
Before-tax incomes:			
Top 0.002% of population	1,684	1,653	1,895
Average worker wage	1.693	1.696	1.749

3

RESULTS: Leading example

Equal: $au_w = au_f = 28.2\%~(au_k = 0)$; Unequal: $au_w = 35.5\%$, $au_f = 15\%$

	Equal	Lower	Unequal	Efficient
Metric	•	Lower		
	tax	$ au_f$	tax	outcome
Unemployment (%)	5.38	5.32	6.00	27.57
GDP	3.660	3.649	3.731	4.404
Welfare	1.090	(1.209)	1.140	2.414
% Employers	5.29	5.45	5.00	0.71
Before-tax income shares:				
All Employers	25.67	25.54	25.27	-
Top 1% of population	19.49	19.40	20.00	-
Top 0.1% of population	8.01	7.96	8.45	-
Top 0.01% of population	2.17	2.14	2.38	-
Before-tax incomes				
Top 0.002% of population	1,684	1,653	1,895	-
Average worker wage	1.693	1.696	1.749	

A. Masters (SUNY Albany)

SIMULATIONS: Alternative (Hosios) Parameters

- External: r = 0.04, $\lambda = 0.2$, $\eta = 0.5$, $\phi = 0.33$, $\beta = 0.5$, $\delta = 0.1$, $\tau_f = 0.15$, $\tau_k = 0$
- Quantitative Targets:
 - unemployment rate, 6%
 - share of employers in the economy at 5%
 - government spending 18.6% of GDP
- 20% of income going to top 1% of earners now not achievable
- Internal parameters: $\bar{m} = 3.3$, z = 0, $\sigma = 69.4$, $\tau_w = 28.70\%$
- Implied value of G = 0.2763.

RESULTS: Alternative (Hosios) Parameters

Unequal: $\tau_w = 28.7\%$, $\tau_f = 15\%$, $(\tau_k = 0)$; Equal $\tau_w = \tau_f = 27.8\%$

Metric	Equal	Lower	Unequal
	tax	$ au_f$	tax
Unemployment (%)	6.46	6.05	6.01
GDP	1.486	1.486	1.486
Welfare	0.720	(0.728)	0.719
% Employers	4.60	4.94	4.97
Before-tax income shares:			
Employers	4.97	4.69	4.67
1% share	1.621	1.482	1.472
0.1% share	0.267	0.248	0.248
0.01% share	0.040	0.036	0.036
Before-tax incomes:			
0.002% income	7.634	7.149	7.112
Average worker wage	1.037	1.040	1.040

소리가 소문가 소문가 소문가 ...

RESULTS: Leading example, tax on capital

Unequal: $\tau_k = 15\%$, $\tau_w = 35.39\%$, $(\tau_f = 0)$; Equal: $\tau_k = \tau_w = 28.89\%$

Metric	Equal	Unequal
Wethe	tax	tax
Unemployment (%)	6.60	6.65
GDP	3.208	3.506
Welfare	0.791	0.992
% Entrepreneurs	4.65	4.66
Before-tax income shares:		
Entrepreneurs' share (%)	25.12	25.06
1% share (%)	20.46	20.49
0.1% share (%)	8.80	8.85
0.01% share (%)	2.27	2.28
Before-tax incomes:		
0.002% income	1,787	1,963
Average worker wage	1.514	1.658

(日) (周) (三) (三)

In a span-of-control model with labor market frictions:

- Lowering taxes on profits decreases unemployment and decreases inequality
- Effects of budget-balancing increases in the wage tax depend on firm bargaining power:
 - With high power, tax is borne by the firms with a disproportionate effect on small ones
 - With low power, more is borne by workers incentivizing entrepreneurship
- Taxes on capital off-set distributional effects of wage taxes but have a strong impact on investment and output
- **Issue:** how to distinguish between payments to capital and excess profits.

(B)