Commitment, advertising and efficiency of two-sided investment in competitive search equilibrium

Adrian Masters

SUNY Albany

March 2010

MOTIVATION

- The basis on which search can be directed depends on commitment and information
- Some characteristics are more "committable to" than others
- I consider human capital, physical capital and wages
- I address
(1) how outcomes depend on the extent to which commitment and/or advertising are possible
(2) the extent to which the efficiency properties of benchmark models pass through to the more general environment?

LITERATURE

- Moen JPE (1997)
- Acemoglu and Shimer IER (1999)
- Menzio JPE (2007)
- Acemoglu (1996) Masters (1998)

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$
- Newborn workers acquire human capital, $h \geq 0$, enter labor market unemployed

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$
- Newborn workers acquire human capital, $h \geq 0$, enter labor market unemployed
- Total mass of unemployed is u.

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$
- Newborn workers acquire human capital, $h \geq 0$, enter labor market unemployed
- Total mass of unemployed is u.
- A large number of firms create as many vacancies as they like

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$
- Newborn workers acquire human capital, $h \geq 0$, enter labor market unemployed
- Total mass of unemployed is u.
- A large number of firms create as many vacancies as they like
- Each vacancy has an associated level of physical capital, $k \geq 0$,

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$
- Newborn workers acquire human capital, $h \geq 0$, enter labor market unemployed
- Total mass of unemployed is u.
- A large number of firms create as many vacancies as they like
- Each vacancy has an associated level of physical capital, $k \geq 0$,
- The total mass of vacancies is v (endogenous)

ENVIRONMENT: Time and Demography

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate $=$ death rate $=\delta$
- Newborn workers acquire human capital, $h \geq 0$, enter labor market unemployed
- Total mass of unemployed is u.
- A large number of firms create as many vacancies as they like
- Each vacancy has an associated level of physical capital, $k \geq 0$,
- The total mass of vacancies is v (endogenous)
- All jobs face destruction at the rate λ.

ENVIRONMENT: Preferences

- Both workers and firms are risk neutral

ENVIRONMENT: Preferences

- Both workers and firms are risk neutral
- Workers' flow utility of leisure, b

ENVIRONMENT: Preferences

- Both workers and firms are risk neutral
- Workers' flow utility of leisure, b
- (Other than the set-up cost, firms face no cost of holding a vacancy.)

ENVIRONMENT: Preferences

- Both workers and firms are risk neutral
- Workers' flow utility of leisure, b
- (Other than the set-up cost, firms face no cost of holding a vacancy.)
- (Other than that induced by death and job destruction there is no discounting.)

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good
- $f(.,$.$) twice differentiable, strictly concave, CRS,$ $f(0, h)=f(k, 0)=0$, Inada conditions

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good
- $f(.,$.$) twice differentiable, strictly concave, CRS,$ $f(0, h)=f(k, 0)=0$, Inada conditions
- Education: Human capital h costs the worker $c(h)$

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good
- $f(.,$.$) twice differentiable, strictly concave, CRS,$ $f(0, h)=f(k, 0)=0$, Inada conditions
- Education: Human capital h costs the worker $c(h)$
- $c($.$) is strictly increasing, strictly convex. c(0)=c^{\prime}(0)=0$. $\lim _{h \rightarrow \infty} c^{\prime}(h)=\infty$

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good
- $f(.,$.$) twice differentiable, strictly concave, CRS,$ $f(0, h)=f(k, 0)=0$, Inada conditions
- Education: Human capital h costs the worker $c(h)$
- $c($.$) is strictly increasing, strictly convex. c(0)=c^{\prime}(0)=0$. $\lim _{h \rightarrow \infty} c^{\prime}(h)=\infty$
- h cannot be further augmented (except by exiting the market)

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good
- $f(.,$.$) twice differentiable, strictly concave, CRS,$ $f(0, h)=f(k, 0)=0$, Inada conditions
- Education: Human capital h costs the worker $c(h)$
- $c($.$) is strictly increasing, strictly convex. c(0)=c^{\prime}(0)=0$. $\lim _{h \rightarrow \infty} c^{\prime}(h)=\infty$
- h cannot be further augmented (except by exiting the market)
- Job creation: A job type k costs k units of the consumption good to create

ENVIRONMENT: Technologies

- Productive: matched worker type h and job type k produce $f(k, h)$ units of the consumption good
- $f(.,$.$) twice differentiable, strictly concave, CRS,$ $f(0, h)=f(k, 0)=0$, Inada conditions
- Education: Human capital h costs the worker $c(h)$
- $c($.$) is strictly increasing, strictly convex. c(0)=c^{\prime}(0)=0$. $\lim _{h \rightarrow \infty} c^{\prime}(h)=\infty$
- h cannot be further augmented (except by exiting the market)
- Job creation: A job type k costs k units of the consumption good to create
- k cannot be further augmented (except by exiting the market)

ENVIRONMENT: Technologies (cont.)

- Matching:

ENVIRONMENT: Technologies (cont.)

- Matching:
- Occurs in submarkets associated with commonly observed characteristics of participants

ENVIRONMENT: Technologies (cont.)

- Matching:

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^{j}=M\left(u_{j}, v_{j}\right), u_{j}$ is mass of job-seekers, v_{j} is mass of vacancies.

ENVIRONMENT: Technologies (cont.)

- Matching:

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^{j}=M\left(u_{j}, v_{j}\right), u_{j}$ is mass of job-seekers, v_{j} is mass of vacancies.
- $M(. .$.$) , is twice differentiable, CRS, increasing in both arguments,$ concave.

ENVIRONMENT: Technologies (cont.)

- Matching:

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^{j}=M\left(u_{j}, v_{j}\right), u_{j}$ is mass of job-seekers, v_{j} is mass of vacancies.
- $M(. .$.$) , is twice differentiable, CRS, increasing in both arguments,$ concave.
- Workers meet firms at Poisson arrival rate $m\left(\theta_{j}\right)=M\left(v_{j}, u_{j}\right) / u_{j}$ where $\theta_{j} \equiv v_{j} / u_{j}$

ENVIRONMENT: Technologies (cont.)

- Matching:

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^{j}=M\left(u_{j}, v_{j}\right), u_{j}$ is mass of job-seekers, v_{j} is mass of vacancies.
- $M(.,$.$) , is twice differentiable, CRS, increasing in both arguments,$ concave.
- Workers meet firms at Poisson arrival rate $m\left(\theta_{j}\right)=M\left(v_{j}, u_{j}\right) / u_{j}$ where $\theta_{j} \equiv v_{j} / u_{j}$
- Vacancies meet workers at rate $m\left(\theta_{j}\right) / \theta_{j}$

EFFICIENCY

- Flow welfare: W, under symmetric steady-state behavior

$$
W=(1-u) f(k, h)+u b-\delta c(h)-s k
$$

s is the rate of vacancy (job) creation (endogenous)

EFFICIENCY

- Flow welfare: W, under symmetric steady-state behavior

$$
W=(1-u) f(k, h)+u b-\delta c(h)-s k
$$

s is the rate of vacancy (job) creation (endogenous)

- Equating job creation with destruction:

$$
s=\lambda(v+1-u)
$$

EFFICIENCY

- Flow welfare: W, under symmetric steady-state behavior

$$
W=(1-u) f(k, h)+u b-\delta c(h)-s k
$$

s is the rate of vacancy (job) creation (endogenous)

- Equating job creation with destruction:

$$
s=\lambda(v+1-u)
$$

- Equating steady state inflow and outflow to unemployment:

$$
\delta+\lambda(1-u)=(m(\theta)+\delta) u
$$

EFFICIENCY (cont.)

$$
W(k, h, \theta ; b)=\frac{m(\theta)[f(k, h)-\delta c(h)-\lambda k]+(\delta+\lambda)[b-\delta c(h)-\lambda \theta k]}{m(\theta)+\delta+\lambda}
$$

First order conditions, respectively for k, h and θ, for a maximum yield,

$$
\begin{aligned}
m\left(\theta^{*}\right)\left[f_{1}(k, h)-\lambda\right]-\lambda(\delta+\lambda) \theta^{*} & =0 \\
m\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda) c^{\prime}\left(h^{*}\right) & =0 \\
m^{\prime}\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right]-\lambda\left[\delta+\lambda+m\left(\theta^{*}\right)+\left(1-\theta^{*}\right) m^{\prime}\left(\theta^{*}\right)\right] k^{*} & =0
\end{aligned}
$$

- A finite solution $\left(k^{*}, h^{*}, \theta^{*}\right)$ exists in positive orthant.

EFFICIENCY (cont.)

$$
W(k, h, \theta ; b)=\frac{m(\theta)[f(k, h)-\delta c(h)-\lambda k]+(\delta+\lambda)[b-\delta c(h)-\lambda \theta k]}{m(\theta)+\delta+\lambda}
$$

First order conditions, respectively for k, h and θ, for a maximum yield,

$$
\begin{aligned}
m\left(\theta^{*}\right)\left[f_{1}(k, h)-\lambda\right]-\lambda(\delta+\lambda) \theta^{*} & =0 \\
m\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda) c^{\prime}\left(h^{*}\right) & =0 \\
m^{\prime}\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right]-\lambda\left[\delta+\lambda+m\left(\theta^{*}\right)+\left(1-\theta^{*}\right) m^{\prime}\left(\theta^{*}\right)\right] k^{*} & =0
\end{aligned}
$$

- A finite solution $\left(k^{*}, h^{*}, \theta^{*}\right)$ exists in positive orthant.
- If b not too large, k^{*}, h^{*} and θ^{*} are each strictly positive.

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
- the decisions to which each individual is committed

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
- the decisions to which each individual is committed
- whether or not decisions made with commitment are advertised (i.e. become public knowledge)

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
- the decisions to which each individual is committed
- whether or not decisions made with commitment are advertised (i.e. become public knowledge)
- Note:

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
- the decisions to which each individual is committed
- whether or not decisions made with commitment are advertised (i.e. become public knowledge)
- Note:
- Individuals cannot advertise decisions to which they are not committed; decisions made without commitment are vacuous (cf. Menzio 2007)

DECENTRALIZED MODELS

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
- the decisions to which each individual is committed
- whether or not decisions made with commitment are advertised (i.e. become public knowledge)
- Note:
- Individuals cannot advertise decisions to which they are not committed; decisions made without commitment are vacuous (cf. Menzio 2007)
- Hidden choices are obvious in bilateral meetings

DECENTRALIZED MODELS: Restrictions

- At most one side of the market can advertise a particular characteristic.

DECENTRALIZED MODELS: Restrictions

- At most one side of the market can advertise a particular characteristic.
- When neither side can advertise a characteristic, only one side can commit

DECENTRALIZED MODELS: Restrictions

- At most one side of the market can advertise a particular characteristic.
- When neither side can advertise a characteristic, only one side can commit
- When neither side can commit to the wage there is generalized Nash bargaining

ALLOCATIONS

Definition

A symmetric steady state allocation is a tuple, $\{k, h, w, \theta\}$ such that all firms invest k, all workers invest h and receive payment w when hired and there is unique active market in which the ratio of vacancies to job seekers is θ.

ALLOCATIONS (cont.)

- In a symmetric steady state allocation, $\{k, h, w, \theta\}$, in which all offers to match are accepted:

ALLOCATIONS (cont.)

- In a symmetric steady state allocation, $\{k, h, w, \theta\}$, in which all offers to match are accepted:
- For firms:

$$
\left.\begin{array}{c}
\lambda V_{v}=\frac{m(\theta)}{\theta}\left[V_{j}-V_{v}\right] \\
\lambda V_{j}=f(k, h)-w-\delta\left[V_{j}-V_{v}\right] \\
V_{c}=-k+V_{v}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
V_{v}(k, h, w, \theta) \\
V_{j}(k, h, w, \theta) \\
V_{c}(k, h, w, \theta)
\end{array}\right.
$$

If workers do not accept offers to match then $V_{v}=0$.

ALLOCATIONS (cont.)

- In a symmetric steady state allocation, $\{k, h, w, \theta\}$, in which all offers to match are accepted:
- For firms:

$$
\left.\begin{array}{c}
\lambda V_{v}=\frac{m(\theta)}{\theta}\left[V_{j}-V_{v}\right] \\
\lambda V_{j}=f(k, h)-w-\delta\left[V_{j}-V_{v}\right] \\
V_{c}=-k+V_{v}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
V_{v}(k, h, w, \theta) \\
V_{j}(k, h, w, \theta) \\
V_{c}(k, h, w, \theta)
\end{array}\right.
$$

If workers do not accept offers to match then $V_{v}=0$.

- For workers:

$$
\left.\begin{array}{c}
\delta V_{u}=b+m(\theta)\left[V_{e}-V_{u}\right] \\
\delta V_{e}=w+\lambda\left[V_{u}-V_{e}\right] \\
V_{b}=\max \left\{b / \delta, V_{u}-c(h)\right\}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{c}
V_{u}(w, \theta) \\
V_{e}(w, \theta) \\
V_{b}(h, w, \theta)
\end{array}\right.
$$

If firms do not accept offers to match then $V_{u}=b / \delta$

FIRM'S PROBLEM

- If $\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}$ is a symmetric steady state allocation, in which every firm/worker meeting leads to match formation.

FIRM'S PROBLEM

- If $\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}$ is a symmetric steady state allocation, in which every firm/worker meeting leads to match formation.
- The entrant firm solves

$$
\max _{k_{f}, h_{f}, w_{f}, \theta_{f}} V_{c}\left(\tilde{k}_{f}, \tilde{h}_{f}, \tilde{w}_{f}, \theta_{f}\right)
$$

subject to: worker indifference: $V_{b}\left(\hat{h}_{f}, \hat{w}_{f}, \theta_{f}\right)=V_{b}\left(h^{*}, w^{*}, \theta^{*}\right)$ worker acceptance: $V_{e}\left(\tilde{w}_{f}, \theta_{f}\right) \geq V_{u}\left(w^{*}, \theta^{*}\right)$

WORKER'S PROBLEM

The entrant worker solves

$$
\max _{k_{w}, h_{w}, w_{w}, \theta_{w}} V_{b}\left(\tilde{h}_{w}, \tilde{w}_{w}, \theta_{w}\right)
$$

subject to: firm indifference: $V_{c}\left(\hat{k}_{w}, \hat{h}_{w}, \hat{w}_{w}, \theta_{w}\right)=V_{c}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$ firm acceptance: $V_{j}\left(\tilde{k}_{w}, \tilde{h}_{w}, \tilde{w}_{w}, \theta_{w}\right) \geq V_{v}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$

EQUILIBRIUM

Definition

A (free entry) competitive search equilibrium is a symmetric steady state allocation, $\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}$, such that when everyone else conforms, it solves both the firm's and worker's problems, and $V_{v}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)=0$

TRANSPARENCY

Example: Firms advertise k_{f} and h_{f} workers advertise w_{w}.

- The entrant firm solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{f}, h_{f}, w_{f}, \theta_{f}} V_{c}\left(k_{f}, h_{f}, w^{*}, \theta_{f}\right)
$$

subject to, worker indifference: $V_{b}\left(h_{f}, w^{*}, \theta_{f}\right)=V_{b}\left(h^{*}, w^{*}, \theta^{*}\right)$
worker acceptance: $V_{e}\left(w^{*}, \theta_{f}\right) \geq V_{u}\left(w^{*}, \theta^{*}\right)$

TRANSPARENCY

Example: Firms advertise k_{f} and h_{f} workers advertise w_{w}.

- The entrant firm solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{f}, h_{f}, w_{f}, \theta_{f}} V_{c}\left(k_{f}, h_{f}, w^{*}, \theta_{f}\right)
$$

subject to, worker indifference: $V_{b}\left(h_{f}, w^{*}, \theta_{f}\right)=V_{b}\left(h^{*}, w^{*}, \theta^{*}\right)$ worker acceptance: $V_{e}\left(w^{*}, \theta_{f}\right) \geq V_{u}\left(w^{*}, \theta^{*}\right)$

- The entrant worker solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{w}, h_{w}, w_{w}, \theta_{w}} V_{b}\left(h^{*}, w_{w}, \theta_{w}\right)
$$

subject to, firm indifference: $V_{c}\left(k^{*}, h^{*}, w_{w}, \theta_{w}\right)=V_{c}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$ firm acceptance: $V_{j}\left(k^{*}, h^{*}, w_{w}, \theta_{w}\right) \geq V_{v}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$

MARKET EQUIVALENCE

- Under transparency, with $w^{*}>b, f\left(k^{*}, h^{*}\right)>w$, acceptance conditions do not bind:

MARKET EQUIVALENCE

- Under transparency, with $w^{*}>b, f\left(k^{*}, h^{*}\right)>w$, acceptance conditions do not bind:
- If co-state variable on the worker indifference constraint is μ_{f}, F.O.C. with respect to θ_{f} is,

$$
\frac{\partial V_{c}}{\partial \theta_{f}}-\mu_{f} \frac{\partial V_{b}}{\partial \theta_{f}}=0
$$

MARKET EQUIVALENCE

- Under transparency, with $w^{*}>b, f\left(k^{*}, h^{*}\right)>w$, acceptance conditions do not bind:
- If co-state variable on the worker indifference constraint is μ_{f}, F.O.C. with respect to θ_{f} is,

$$
\frac{\partial V_{c}}{\partial \theta_{f}}-\mu_{f} \frac{\partial V_{b}}{\partial \theta_{f}}=0
$$

- If co-state on the worker indifference constraint is μ_{w}, F.O.C. with respect to θ_{w} is,

$$
\frac{\partial V_{b}}{\partial \theta_{w}}-\mu_{w} \frac{\partial V_{c}}{\partial \theta_{w}}=0
$$

MARKET EQUIVALENCE

- Under transparency, with $w^{*}>b, f\left(k^{*}, h^{*}\right)>w$, acceptance conditions do not bind:
- If co-state variable on the worker indifference constraint is μ_{f}, F.O.C. with respect to θ_{f} is,

$$
\frac{\partial V_{c}}{\partial \theta_{f}}-\mu_{f} \frac{\partial V_{b}}{\partial \theta_{f}}=0
$$

- If co-state on the worker indifference constraint is μ_{w}, F.O.C. with respect to θ_{w} is,

$$
\frac{\partial V_{b}}{\partial \theta_{w}}-\mu_{w} \frac{\partial V_{c}}{\partial \theta_{w}}=0
$$

- So $\mu_{f}=1 / \mu_{w}$

TRANSPARENCY (Cont.)

- Necessary conditions for an equilibrium, $\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}$:

$$
\begin{gathered}
m\left(\theta^{*}\right) f_{1}\left(k^{*}, h^{*}\right)-\lambda\left[(\delta+\lambda) \theta^{*}+m\left(\theta^{*}\right)\right]=0 \\
m\left(\theta^{*}\right) f_{2}\left(k^{*}, h^{*}\right)-\delta\left[\delta+\lambda+m\left(\theta^{*}\right)\right] c^{\prime}\left(h^{*}\right)=0 \\
m\left(\theta^{*}\right) m^{\prime}\left(\theta^{*}\right)\left(w^{*}-b\right)-\lambda\left[m\left(\theta^{*}\right)-\theta^{*} m^{\prime}\left(\theta^{*}\right)\right]\left[\delta+\lambda+m\left(\theta^{*}\right)\right] k^{*}=0 \\
m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-w^{*}\right]-\lambda\left[(\delta+\lambda) \theta^{*}+m\left(\theta^{*}\right)\right] k^{*}=0
\end{gathered}
$$

TRANSPARENCY (Cont.)

- Necessary conditions for an equilibrium, $\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}$:

$$
\begin{gathered}
m\left(\theta^{*}\right) f_{1}\left(k^{*}, h^{*}\right)-\lambda\left[(\delta+\lambda) \theta^{*}+m\left(\theta^{*}\right)\right]=0 \\
m\left(\theta^{*}\right) f_{2}\left(k^{*}, h^{*}\right)-\delta\left[\delta+\lambda+m\left(\theta^{*}\right)\right] c^{\prime}\left(h^{*}\right)=0 \\
m\left(\theta^{*}\right) m^{\prime}\left(\theta^{*}\right)\left(w^{*}-b\right)-\lambda\left[m\left(\theta^{*}\right)-\theta^{*} m^{\prime}\left(\theta^{*}\right)\right]\left[\delta+\lambda+m\left(\theta^{*}\right)\right] k^{*}=0 \\
m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-w^{*}\right]-\lambda\left[(\delta+\lambda) \theta^{*}+m\left(\theta^{*}\right)\right] k^{*}=0
\end{gathered}
$$

- Firms and workers receive their marginal product

TRANSPARENCY (Cont.)

- Necessary conditions for an equilibrium, $\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}$:

$$
\begin{gathered}
m\left(\theta^{*}\right) f_{1}\left(k^{*}, h^{*}\right)-\lambda\left[(\delta+\lambda) \theta^{*}+m\left(\theta^{*}\right)\right]=0 \\
m\left(\theta^{*}\right) f_{2}\left(k^{*}, h^{*}\right)-\delta\left[\delta+\lambda+m\left(\theta^{*}\right)\right] c^{\prime}\left(h^{*}\right)=0 \\
m\left(\theta^{*}\right) m^{\prime}\left(\theta^{*}\right)\left(w^{*}-b\right)-\lambda\left[m\left(\theta^{*}\right)-\theta^{*} m^{\prime}\left(\theta^{*}\right)\right]\left[\delta+\lambda+m\left(\theta^{*}\right)\right] k^{*}=0 \\
m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-w^{*}\right]-\lambda\left[(\delta+\lambda) \theta^{*}+m\left(\theta^{*}\right)\right] k^{*}=0
\end{gathered}
$$

- Firms and workers receive their marginal product
- Eliminating w^{*} yields Planner's optimality conditions.

HIDDEN HUMAN CAPITAL

Example: Firms advertise k_{f} and $w_{f} ; h_{w}$ hidden

- The entrant firm solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{f}, h_{f}, w_{f}, \theta_{f}} V_{c}\left(k_{f}, h^{*}, w_{f}, \theta_{f}\right)
$$

subject to, worker indifference: $V_{b}\left(h^{*}, w_{f}, \theta_{f}\right)=V_{b}\left(h^{*}, w^{*}, \theta^{*}\right)$ worker acceptance: $V_{e}\left(w_{f}, \theta_{f}\right) \geq V_{u}\left(w^{*}, \theta^{*}\right)$

HIDDEN HUMAN CAPITAL

Example: Firms advertise k_{f} and $w_{f} ; h_{w}$ hidden

- The entrant firm solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{f}, h_{f}, w_{f}, \theta_{f}} V_{c}\left(k_{f}, h^{*}, w_{f}, \theta_{f}\right)
$$

subject to, worker indifference: $V_{b}\left(h^{*}, w_{f}, \theta_{f}\right)=V_{b}\left(h^{*}, w^{*}, \theta^{*}\right)$ worker acceptance: $V_{e}\left(w_{f}, \theta_{f}\right) \geq V_{u}\left(w^{*}, \theta^{*}\right)$

- The entrant worker solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{w}, h_{w}, w_{w}, \theta_{w}} V_{b}\left(h_{w}, w^{*}, \theta_{w}\right)
$$

subject to, firm indifference: $V_{c}\left(k^{*}, h^{*}, w^{*}, \theta_{w}\right)=V_{c}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$ firm acceptance: $V_{j}\left(k^{*}, h_{w}, w^{*}, \theta_{w}\right) \geq V_{v}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$

HIDDEN HUMAN CAPITAL

Example: Firms advertise k_{f} and $w_{f} ; h_{w}$ hidden

- The entrant firm solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{f}, h_{f}, w_{f}, \theta_{f}} V_{c}\left(k_{f}, h^{*}, w_{f}, \theta_{f}\right)
$$

subject to, worker indifference: $V_{b}\left(h^{*}, w_{f}, \theta_{f}\right)=V_{b}\left(h^{*}, w^{*}, \theta^{*}\right)$ worker acceptance: $V_{e}\left(w_{f}, \theta_{f}\right) \geq V_{u}\left(w^{*}, \theta^{*}\right)$

- The entrant worker solves

$$
\left\{k^{*}, h^{*}, w^{*}, \theta^{*}\right\}=\max _{k_{w}, h_{w}, w_{w}, \theta_{w}} V_{b}\left(h_{w}, w^{*}, \theta_{w}\right)
$$

subject to, firm indifference: $V_{c}\left(k^{*}, h^{*}, w^{*}, \theta_{w}\right)=V_{c}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$ firm acceptance: $V_{j}\left(k^{*}, h_{w}, w^{*}, \theta_{w}\right) \geq V_{v}\left(k^{*}, h^{*}, w^{*}, \theta^{*}\right)$

- No non-trivial equilibrium (Diamond Paradox)

Other arrangements with wage commitment

- Hidden wages: when neither side advertises a wage commitment there is no non-trivial equilibrium; individual workers (resp. firms) can increase (resp. decrease) it, with impunity (Diamond Paradox)

Other arrangements with wage commitment

- Hidden wages: when neither side advertises a wage commitment there is no non-trivial equilibrium; individual workers (resp. firms) can increase (resp. decrease) it, with impunity (Diamond Paradox)
- Hidden physical capital: Given w^{*} and h^{*} workers do not care about k. Firms are residual claimants; their private and the social returns to investment coincide. Market equivalence applies. (cf. rental contracts)

ARRANGEMENTS WITH BARGAINING

- Generalized Nash:

$$
V_{e}-V_{u}=\beta\left(V_{j}-V_{v}+V_{e}-V_{u}\right)
$$

ARRANGEMENTS WITH BARGAINING

- Generalized Nash:

$$
V_{e}-V_{u}=\beta\left(V_{j}-V_{v}+V_{e}-V_{u}\right)
$$

- So

$$
w=\delta V_{u}+\beta\left[f(k, h)-\lambda V_{v}-\delta V_{u}\right]
$$

ARRANGEMENTS WITH BARGAINING

- Generalized Nash:

$$
V_{e}-V_{u}=\beta\left(V_{j}-V_{v}+V_{e}-V_{u}\right)
$$

- So

$$
w=\delta V_{u}+\beta\left[f(k, h)-\lambda V_{v}-\delta V_{u}\right]
$$

- Substituting into V_{v} and V_{u} taking continuation values of other side parametrically:

$$
\begin{gathered}
V_{v}^{B}=\frac{(1-\beta) m(\theta)\left[f(k, h)-\delta V_{u}\right]}{\lambda[(\delta+\lambda) \theta+(1-\beta) m(\theta)]} \\
V_{u}^{B}=\frac{\beta m(\theta)\left[f(k, h)-\lambda V_{v}\right]+[\delta+\lambda] b}{\delta[\delta+\lambda+\beta m(\theta)]}
\end{gathered}
$$

ARRANGEMENTS WITH BARGAINING (cont.)

- In equilibrium $V_{v}^{B}=V_{v}$ and $V_{u}^{B}=V_{u}$. Solving yields

$$
\begin{aligned}
V_{v}^{B}\left(k^{*}, h^{*}, \theta^{*}\right) & \equiv \frac{(1-\beta) m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right]}{\lambda\left[(\delta+\lambda) \theta^{*}+\left(1-\beta+\theta^{*} \beta\right) m\left(\theta^{*}\right)\right]} \\
V_{u}^{B}\left(k^{*}, h^{*}, \theta^{*}\right) & \equiv \frac{\theta^{*} \beta m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right]}{\delta\left[(\delta+\lambda) \theta^{*}+\left(1-\beta+\theta^{*} \beta\right) m\left(\theta^{*}\right)\right]}+\frac{b}{\delta}
\end{aligned}
$$

ARRANGEMENTS WITH BARGAINING (cont.)

- In equilibrium $V_{v}^{B}=V_{v}$ and $V_{u}^{B}=V_{u}$. Solving yields

$$
\begin{aligned}
V_{v}^{B}\left(k^{*}, h^{*}, \theta^{*}\right) & \equiv \frac{(1-\beta) m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right]}{\lambda\left[(\delta+\lambda) \theta^{*}+\left(1-\beta+\theta^{*} \beta\right) m\left(\theta^{*}\right)\right]} \\
V_{u}^{B}\left(k^{*}, h^{*}, \theta^{*}\right) & \equiv \frac{\theta^{*} \beta m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right]}{\delta\left[(\delta+\lambda) \theta^{*}+\left(1-\beta+\theta^{*} \beta\right) m\left(\theta^{*}\right)\right]}+\frac{b}{\delta}
\end{aligned}
$$

- Competitive entry of vacancies: $V_{v}^{B}\left(k^{*}, h^{*}, \theta^{*}\right)-k^{*}=0$ so,

$$
\begin{aligned}
& (1-\beta) m\left(\theta^{*}\right)\left[f\left(k^{*}, h^{*}\right)-b\right] \\
& \quad-\lambda\left[m\left(\theta^{*}\right)\left(1-\beta+\beta \theta^{*}\right)+(\delta+\lambda) \theta^{*}\right] k^{*}=0
\end{aligned}
$$

ARRANGEMENTS WITH BARGAINING (cont.)

Hosios condition: In Pissarides environment, equating worker's bargaining power to the elasticity of matching with respect to unemployment generates efficient vacancy creation.

- Here this means

$$
\beta=\beta_{H} \equiv \frac{m(\theta)-\theta m^{\prime}(\theta)}{m(\theta)}
$$

ARRANGEMENTS WITH BARGAINING (cont.)

- Complete ignorance: Physical and human capital investments are hidden

ARRANGEMENTS WITH BARGAINING (cont.)

- Complete ignorance: Physical and human capital investments are hidden
- V_{v} and V_{u} taken as parameters:

ARRANGEMENTS WITH BARGAINING (cont.)

- Complete ignorance: Physical and human capital investments are hidden
- V_{v} and V_{u} taken as parameters:
- For firms,

$$
(1-\beta) m\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{*}=0
$$

ARRANGEMENTS WITH BARGAINING (cont.)

- Complete ignorance: Physical and human capital investments are hidden
- V_{v} and V_{u} taken as parameters:
- For firms,

$$
(1-\beta) m\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{*}=0
$$

- For workers,

$$
\beta m\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda) c^{\prime}\left(h^{*}\right)=0
$$

ARRANGEMENTS WITH BARGAINING (cont.)

- Complete ignorance: Physical and human capital investments are hidden
- V_{v} and V_{u} taken as parameters:
- For firms,

$$
(1-\beta) m\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{*}=0
$$

- For workers,

$$
\beta m\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda) c^{\prime}\left(h^{*}\right)=0
$$

- Hold-up problems on both investment margins imply robust underinvestment.

ARRANGEMENTS WITH BARGAINING (cont.)

- Complete ignorance: Physical and human capital investments are hidden
- V_{v} and V_{u} taken as parameters:
- For firms,

$$
(1-\beta) m\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{*}=0
$$

- For workers,

$$
\beta m\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda) c^{\prime}\left(h^{*}\right)=0
$$

- Hold-up problems on both investment margins imply robust underinvestment.
- Under Hosios, free entry condition same as planners F.O.C. for θ.

ARRANGEMENTS WITH BARGAINING (cont.)

- Transparency: Physical and human capital investments are advertised by one side or the other

ARRANGEMENTS WITH BARGAINING (cont.)

- Transparency: Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_{v} and V_{u} not taken as parameters:

ARRANGEMENTS WITH BARGAINING (cont.)

- Transparency: Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_{v} and V_{u} not taken as parameters:
- Market equivalence applies, here firms advertise k_{f} and h_{f}

$$
\left\{k^{*}, h^{*}, \theta^{*}\right\}=\arg \max _{k, h, \theta} V_{v}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)-k_{f}
$$

subject to $V_{u}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)=V_{u}^{B}\left(k^{*}, h^{*}, \theta^{*}\right)$

ARRANGEMENTS WITH BARGAINING (cont.)

- Transparency: Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_{v} and V_{u} not taken as parameters:
- Market equivalence applies, here firms advertise k_{f} and h_{f}

$$
\left\{k^{*}, h^{*}, \theta^{*}\right\}=\arg \max _{k, h, \theta} V_{v}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)-k_{f}
$$

subject to $V_{u}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)=V_{u}^{B}\left(k^{*}, h^{*}, \theta^{*}\right)$

- Yield

$$
\begin{gathered}
(1-\beta) m^{2}\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{* 2} m^{\prime}\left(\theta^{*}\right)=0 \\
\beta m^{2}\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda)\left[m\left(\theta^{*}\right)-\theta^{*} m^{\prime}\left(\theta^{*}\right)\right] c^{\prime}\left(h^{*}\right)=
\end{gathered}
$$

ARRANGEMENTS WITH BARGAINING (cont.)

- Transparency: Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_{v} and V_{u} not taken as parameters:
- Market equivalence applies, here firms advertise k_{f} and h_{f}

$$
\left\{k^{*}, h^{*}, \theta^{*}\right\}=\arg \max _{k, h, \theta} V_{v}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)-k_{f}
$$

subject to $V_{u}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)=V_{u}^{B}\left(k^{*}, h^{*}, \theta^{*}\right)$

- Yield

$$
\begin{gathered}
(1-\beta) m^{2}\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{* 2} m^{\prime}\left(\theta^{*}\right)=0 \\
\beta m^{2}\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda)\left[m\left(\theta^{*}\right)-\theta^{*} m^{\prime}\left(\theta^{*}\right)\right] c^{\prime}\left(h^{*}\right)=
\end{gathered}
$$

- In general matching frictions mean inefficient levels of vacancy creation and investment

ARRANGEMENTS WITH BARGAINING (cont.)

- Transparency: Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_{v} and V_{u} not taken as parameters:
- Market equivalence applies, here firms advertise k_{f} and h_{f}

$$
\left\{k^{*}, h^{*}, \theta^{*}\right\}=\arg \max _{k, h, \theta} V_{v}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)-k_{f}
$$

subject to $V_{u}^{B}\left(k_{f}, h_{f}, \theta_{f}\right)=V_{u}^{B}\left(k^{*}, h^{*}, \theta^{*}\right)$

- Yield

$$
\begin{gathered}
(1-\beta) m^{2}\left(\theta^{*}\right)\left[f_{1}\left(k^{*}, h^{*}\right)-\lambda\right]-\lambda(\delta+\lambda) \theta^{* 2} m^{\prime}\left(\theta^{*}\right)=0 \\
\beta m^{2}\left(\theta^{*}\right)\left[f_{2}\left(k^{*}, h^{*}\right)-\delta c^{\prime}\left(h^{*}\right)\right]-\delta(\delta+\lambda)\left[m\left(\theta^{*}\right)-\theta^{*} m^{\prime}\left(\theta^{*}\right)\right] c^{\prime}\left(h^{*}\right)=
\end{gathered}
$$

- In general matching frictions mean inefficient levels of vacancy creation and investment
- Hosios condition restores efficiency on every margin

SIMULATIONS

Functional forms and parameters:

$$
c(h)=\bar{c} h^{\sigma}, \quad f(k, h)=k^{\alpha} h^{1-\alpha} \quad \text { and } \quad m(\theta)=\bar{m} \theta^{\eta}
$$

Time unit: 1 year

b	\bar{c}	\bar{m}	α	δ	η	λ
Target				σ		
15	8×10^{-8}	4	0.35	0.05	0.5	0.2

Results (\% of efficient allocation value)

Model	β	k^{*}	h^{*}	f^{*}	w^{*}	u	Y	W
BTR	0.25	98.44	99.80	99.32	97.52	59.38	101.8	98.93
	0.5	100	100	100	100	100	100	100
	0.75	98.44	99.80	99.32	101.1	166.5	95.21	98.93
BHK	0.25	87.70	99.30	95.08	96.76	56.51	97.65	98.70
	0.5	90.44	99.56	96.26	99.27	95.87	96.51	99.83
	0.75	87.70	99.30	95.08	100.1	159.0	91.58	98.70
BHH	0.25	97.57	98.87	98.41	96.64	59.62	100.9	98.89
	0.5	99.22	99.19	99.20	99.20	100.3	99.18	99.97
	0.75	97.57	98.87	98.41	100.2	167.2	94.30	98.89
$B C I$	0.25	87.00	98.42	94.26	95.93	56.74	96.80	98.65
	0.5	98.79	98.78	95.53	98.51	96.20	95.76	99.78
	0.75	87.00	98.42	94.26	99.27	159.6	90.76	98.65

Conclusions

- Commitment with advertising imply constrained efficient decisions.

Conclusions

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.

Conclusions

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:

Conclusions

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
- advertised wage and minimum education requirement

Conclusions

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
- advertised wage and minimum education requirement
- advertised rent and minimum physical capital investment

Conclusions

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
- advertised wage and minimum education requirement
- advertised rent and minimum physical capital investment
- More information better than less?

Conclusions

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
- advertised wage and minimum education requirement
- advertised rent and minimum physical capital investment
- More information better than less?
- Ignorance may not be too costly.

