Commitment, advertising and efficiency of two-sided investment in competitive search equilibrium

Adrian Masters

SUNY Albany

March 2010

A. Masters (SUNY Albany)

Two-sided investment

03/06 1 / 29

- The basis on which search can be directed depends on commitment and information
- Some characteristics are more "committable to" than others
- I consider human capital, physical capital and wages
- I address
 - how outcomes depend on the extent to which commitment and/or advertising are possible
 - e the extent to which the efficiency properties of benchmark models pass through to the more general environment?

- Moen JPE (1997)
- Acemoglu and Shimer IER (1999)
- Menzio JPE (2007)
- Acemoglu (1996) Masters (1998)

• Continuous time, infinite horizon

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ
- Newborn workers acquire human capital, h ≥ 0, enter labor market unemployed

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ
- Newborn workers acquire human capital, h ≥ 0, enter labor market unemployed
- Total mass of unemployed is *u*.

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ
- Newborn workers acquire human capital, h ≥ 0, enter labor market unemployed
- Total mass of unemployed is *u*.
- A large number of firms create as many vacancies as they like

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ
- Newborn workers acquire human capital, h ≥ 0, enter labor market unemployed
- Total mass of unemployed is *u*.
- A large number of firms create as many vacancies as they like
- Each vacancy has an associated level of physical capital, $k \ge 0$,

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ
- Newborn workers acquire human capital, h ≥ 0, enter labor market unemployed
- Total mass of unemployed is *u*.
- A large number of firms create as many vacancies as they like
- Each vacancy has an associated level of physical capital, $k \ge 0$,
- The total mass of vacancies is v (endogenous)

- Continuous time, infinite horizon
- Mass 1 of workers, birth rate = death rate = δ
- Newborn workers acquire human capital, h ≥ 0, enter labor market unemployed
- Total mass of unemployed is *u*.
- A large number of firms create as many vacancies as they like
- Each vacancy has an associated level of physical capital, $k \ge 0$,
- The total mass of vacancies is v (endogenous)
- All jobs face destruction at the rate λ .

• Both workers and firms are risk neutral

- Both workers and firms are risk neutral
- Workers' flow utility of leisure, b

- Both workers and firms are risk neutral
- Workers' flow utility of leisure, b
- (Other than the set-up cost, firms face no cost of holding a vacancy.)

- Both workers and firms are risk neutral
- Workers' flow utility of leisure, b
- (Other than the set-up cost, firms face no cost of holding a vacancy.)
- (Other than that induced by death and job destruction there is no discounting.)

• **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good

- **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good
 - f(.,.) twice differentiable, strictly concave, CRS, f(0, h) = f(k, 0) = 0, Inada conditions

- **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good
 - f(.,.) twice differentiable, strictly concave, CRS, f(0, h) = f(k, 0) = 0, Inada conditions
- Education: Human capital h costs the worker c(h)

- **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good
 - f(.,.) twice differentiable, strictly concave, CRS, f(0, h) = f(k, 0) = 0, Inada conditions
- Education: Human capital h costs the worker c(h)
 - c(.) is strictly increasing, strictly convex. c(0) = c'(0) = 0. $\lim_{h\to\infty} c'(h) = \infty$

- **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good
 - f(.,.) twice differentiable, strictly concave, CRS, f(0, h) = f(k, 0) = 0, Inada conditions
- Education: Human capital h costs the worker c(h)
 - c(.) is strictly increasing, strictly convex. c(0) = c'(0) = 0. $\lim_{h\to\infty} c'(h) = \infty$
 - *h* cannot be further augmented (except by exiting the market)

- **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good
 - f(.,.) twice differentiable, strictly concave, CRS, f(0, h) = f(k, 0) = 0, Inada conditions
- Education: Human capital h costs the worker c(h)
 - c(.) is strictly increasing, strictly convex. c(0) = c'(0) = 0. $\lim_{h\to\infty} c'(h) = \infty$
 - h cannot be further augmented (except by exiting the market)
- **Job creation:** A job type k costs k units of the consumption good to create

- **Productive:** matched worker type *h* and job type *k* produce *f*(*k*, *h*) units of the consumption good
 - f(.,.) twice differentiable, strictly concave, CRS, f(0, h) = f(k, 0) = 0, Inada conditions
- Education: Human capital h costs the worker c(h)
 - c(.) is strictly increasing, strictly convex. c(0) = c'(0) = 0. $\lim_{h\to\infty} c'(h) = \infty$
 - h cannot be further augmented (except by exiting the market)
- **Job creation:** A job type k costs k units of the consumption good to create
 - k cannot be further augmented (except by exiting the market)

イロト イヨト イヨト イヨト

ENVIRONMENT: Technologies (cont.)

• Matching:

- (A 🖓

• Occurs in submarkets associated with commonly observed characteristics of participants

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^j = M(u_j, v_j)$, u_j is mass of job-seekers, v_j is mass of vacancies.

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^j = M(u_j, v_j)$, u_j is mass of job-seekers, v_i is mass of vacancies.
- *M*(.,.), is twice differentiable, CRS, increasing in both arguments, concave.

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^j = M(u_j, v_j)$, u_j is mass of job-seekers, v_i is mass of vacancies.
- *M*(.,.), is twice differentiable, CRS, increasing in both arguments, concave.
- Workers meet firms at Poisson arrival rate $m(\theta_j) = M(v_j, u_j)/u_j$ where $\theta_j \equiv v_j/u_j$

- Occurs in submarkets associated with commonly observed characteristics of participants
- In submarket j, the total flow meeting rate is $M^j = M(u_j, v_j)$, u_j is mass of job-seekers, v_j is mass of vacancies.
- *M*(.,.), is twice differentiable, CRS, increasing in both arguments, concave.
- Workers meet firms at Poisson arrival rate $m(\theta_j) = M(v_j, u_j)/u_j$ where $\theta_j \equiv v_j/u_j$
- Vacancies meet workers at rate $m(\theta_j)/\theta_j$

EFFICIENCY

• Flow welfare: W, under symmetric steady-state behavior

$$W = (1 - u)f(k, h) + ub - \delta c(h) - sk$$

s is the rate of vacancy (job) creation (endogenous)

EFFICIENCY

• Flow welfare: W, under symmetric steady-state behavior

$$W = (1 - u)f(k, h) + ub - \delta c(h) - sk$$

s is the rate of vacancy (job) creation (endogenous)

• Equating job creation with destruction:

$$s = \lambda(v + 1 - u)$$

EFFICIENCY

• Flow welfare: W, under symmetric steady-state behavior

$$W = (1 - u)f(k, h) + ub - \delta c(h) - sk$$

s is the rate of vacancy (job) creation (endogenous)

• Equating job creation with destruction:

$$s = \lambda(v + 1 - u)$$

• Equating steady state inflow and outflow to unemployment:

$$\delta + \lambda(1-u) = (m(\theta) + \delta)u$$

r

$$W(k, h, \theta; b) = \frac{m(\theta) \left[f(k, h) - \delta c(h) - \lambda k \right] + (\delta + \lambda) \left[b - \delta c(h) - \lambda \theta k \right]}{m(\theta) + \delta + \lambda}$$

First order conditions, respectively for k, h and θ , for a maximum yield,

$$m(\theta^*) [f_1(k, h) - \lambda] - \lambda(\delta + \lambda)\theta^* = 0$$

$$n(\theta^*) \left[f_2(k^*, h^*) - \delta c'(h^*) \right] - \delta(\delta + \lambda) c'(h^*) = 0$$

$$m'(\theta^*)[f(k^*, h^*) - b] - \lambda[\delta + \lambda + m(\theta^*) + (1 - \theta^*)m'(\theta^*)]k^* = 0$$

• A finite solution (k^*, h^*, θ^*) exists in positive orthant.

$$W(k, h, \theta; b) = \frac{m(\theta) \left[f(k, h) - \delta c(h) - \lambda k \right] + (\delta + \lambda) \left[b - \delta c(h) - \lambda \theta k \right]}{m(\theta) + \delta + \lambda}$$

First order conditions, respectively for k, h and θ , for a maximum yield,

$$m(\theta^*) [f_1(k, h) - \lambda] - \lambda(\delta + \lambda)\theta^* = 0$$

$$m(\theta^*) \left[f_2(k^*, h^*) - \delta c'(h^*) \right] - \delta(\delta + \lambda) c'(h^*) = 0$$

$$m'(\theta^*)[f(k^*, h^*) - b] - \lambda[\delta + \lambda + m(\theta^*) + (1 - \theta^*)m'(\theta^*)]k^* = 0$$

• A finite solution (k^*, h^*, θ^*) exists in positive orthant.

• If b not too large, k^* , h^* and θ^* are each strictly positive.

r

• Workers decide on: h, w and desired k

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
 - the decisions to which each individual is committed

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
 - the decisions to which each individual is committed
 - whether or not decisions made with commitment are advertised (i.e. become public knowledge)

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
 - the decisions to which each individual is committed
 - whether or not decisions made with commitment are advertised (i.e. become public knowledge)
- Note:

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
 - the decisions to which each individual is committed
 - whether or not decisions made with commitment are advertised (i.e. become public knowledge)

Note:

• Individuals cannot advertise decisions to which they are not committed; decisions made without commitment are vacuous (cf. Menzio 2007)

- Workers decide on: h, w and desired k
- Firms decide on: k, w, desired h
- Definition: An institutional arrangement specifies:
 - the decisions to which each individual is committed
 - whether or not decisions made with commitment are advertised (i.e. become public knowledge)

Note:

- Individuals cannot advertise decisions to which they are not committed; decisions made without commitment are vacuous (cf. Menzio 2007)
- Hidden choices are obvious in bilateral meetings

• At most one side of the market can advertise a particular characteristic.

- At most one side of the market can advertise a particular characteristic.
- When neither side can advertise a characteristic, only one side can commit

- At most one side of the market can advertise a particular characteristic.
- When neither side can advertise a characteristic, only one side can commit
- When neither side can commit to the wage there is generalized Nash bargaining

Definition

A symmetric steady state allocation is a tuple, $\{k, h, w, \theta\}$ such that all firms invest k, all workers invest h and receive payment w when hired and there is unique active market in which the ratio of vacancies to job seekers is θ .

ALLOCATIONS (cont.)

 In a symmetric steady state allocation, {k, h, w, θ}, in which all offers to match are accepted:

ALLOCATIONS (cont.)

- In a symmetric steady state allocation, {k, h, w, θ}, in which all offers to match are accepted:
- For firms:

$$\lambda V_{v} = \frac{m(\theta)}{\theta} [V_{j} - V_{v}] \lambda V_{j} = f(k, h) - w - \delta [V_{j} - V_{v}] V_{c} = -k + V_{v}$$

$$\Rightarrow \begin{cases} V_{v}(k, h, w, \theta) \\ V_{j}(k, h, w, \theta) \\ V_{c}(k, h, w, \theta) \end{cases}$$

If workers do not accept offers to match then $V_{\nu} = 0$.

ALLOCATIONS (cont.)

- In a symmetric steady state allocation, {k, h, w, θ}, in which all offers to match are accepted:
- For firms:

$$\lambda V_{v} = \frac{m(\theta)}{\theta} [V_{j} - V_{v}] \lambda V_{j} = f(k, h) - w - \delta [V_{j} - V_{v}] V_{c} = -k + V_{v}$$

$$\Rightarrow \begin{cases} V_{v}(k, h, w, \theta) \\ V_{j}(k, h, w, \theta) \\ V_{c}(k, h, w, \theta) \end{cases}$$

If workers do not accept offers to match then $V_{\nu} = 0$.

• For workers:

$$\begin{cases} \delta V_u = b + m(\theta) \left[V_e - V_u \right] \\ \delta V_e = w + \lambda \left[V_u - V_e \right] \\ V_b = \max\{b/\delta, V_u - c(h)\} \end{cases} \} \Longrightarrow \begin{cases} V_u(w, \theta) \\ V_e(w, \theta) \\ V_b(h, w, \theta) \end{cases}$$

If firms do not accept offers to match then $V_u = b/\delta$

A. Masters (SUNY Albany)

 If {k*, h*, w*, θ*} is a symmetric steady state allocation, in which every firm/worker meeting leads to match formation.

- If {k*, h*, w*, θ*} is a symmetric steady state allocation, in which every firm/worker meeting leads to match formation.
- The entrant firm solves

$$\begin{split} \max_{k_f,h_f,w_f,\theta_f} V_c(\tilde{k}_f,\tilde{h}_f,\tilde{w}_f,\theta_f) \\ \text{subject to: worker indifference: } V_b(\hat{h}_f,\hat{w}_f,\theta_f) = V_b(h^*,w^*,\theta^*) \\ \text{worker acceptance: } V_e(\tilde{w}_f,\theta_f) \geq V_u(w^*,\theta^*) \end{split}$$

The entrant worker solves

$$\begin{split} \max_{k_w,h_w,w_w,\theta_w} & V_b(\tilde{h}_w,\tilde{w}_w,\theta_w) \\ \text{subject to: firm indifference: } & V_c(\hat{k}_w,\hat{h}_w,\hat{w}_w,\theta_w) = V_c(k^*,h^*,w^*,\theta^*) \\ & \text{firm acceptance: } & V_j(\tilde{k}_w,\tilde{h}_w,\tilde{w}_w,\theta_w) \geq V_v(k^*,h^*,w^*,\theta^*) \end{split}$$

Image: Image:

Definition

A (free entry) competitive search equilibrium is a symmetric steady state allocation, $\{k^*, h^*, w^*, \theta^*\}$, such that when everyone else conforms, it solves both the firm's and worker's problems, and $V_v(k^*, h^*, w^*, \theta^*) = 0$

TRANSPARENCY

Example: Firms advertise k_f and h_f workers advertise w_w .

• The entrant firm solves

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_f, h_f, w_f, \theta_f} V_c(k_f, h_f, w^*, \theta_f)$$

subject to, worker indifference: $V_b(h_f, w^*, \theta_f) = V_b(h^*, w^*, \theta^*)$
worker acceptance: $V_e(w^*, \theta_f) \ge V_u(w^*, \theta^*)$

▶ ∢ ⊒

TRANSPARENCY

Example: Firms advertise k_f and h_f workers advertise w_w .

• The entrant firm solves

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_f, h_f, w_f, \theta_f} V_c(k_f, h_f, w^*, \theta_f)$$

subject to, worker indifference: $V_b(h_f, w^*, \theta_f) = V_b(h^*, w^*, \theta^*)$
worker acceptance: $V_e(w^*, \theta_f) \ge V_u(w^*, \theta^*)$

• The entrant worker solves

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_w, h_w, w_w, \theta_w} V_b(h^*, w_w, \theta_w)$$

subject to, firm indifference: $V_c(k^*, h^*, w_w, \theta_w) = V_c(k^*, h^*, w^*, \theta^*)$ firm acceptance: $V_j(k^*, h^*, w_w, \theta_w) \ge V_v(k^*, h^*, w^*, \theta^*)$

A. Masters (SUNY Albany)

MARKET EQUIVALENCE

• Under transparency, with $w^* > b$, $f(k^*, h^*) > w$, acceptance conditions do not bind:

.

MARKET EQUIVALENCE

- Under transparency, with w* > b, f(k*, h*) > w, acceptance conditions do not bind:
- If co-state variable on the worker indifference constraint is μ_f , F.O.C. with respect to θ_f is,

$$\frac{\partial V_c}{\partial \theta_f} - \mu_f \frac{\partial V_b}{\partial \theta_f} = 0$$

MARKET EQUIVALENCE

- Under transparency, with w* > b, f(k*, h*) > w, acceptance conditions do not bind:
- If co-state variable on the worker indifference constraint is μ_f , F.O.C. with respect to θ_f is,

$$\frac{\partial V_c}{\partial \theta_f} - \mu_f \frac{\partial V_b}{\partial \theta_f} = 0$$

• If co-state on the worker indifference constraint is μ_w , F.O.C. with respect to θ_w is,

$$\frac{\partial V_b}{\partial \theta_w} - \mu_w \frac{\partial V_c}{\partial \theta_w} = 0$$

- Under transparency, with w* > b, f(k*, h*) > w, acceptance conditions do not bind:
- If co-state variable on the worker indifference constraint is μ_f , F.O.C. with respect to θ_f is,

$$\frac{\partial V_c}{\partial \theta_f} - \mu_f \frac{\partial V_b}{\partial \theta_f} = 0$$

• If co-state on the worker indifference constraint is $\mu_w,$ F.O.C. with respect to θ_w is,

$$\frac{\partial V_b}{\partial \theta_w} - \mu_w \frac{\partial V_c}{\partial \theta_w} = 0$$

• So $\mu_f = 1/\mu_w$

• Necessary conditions for an equilibrium, $\{k^*, h^*, w^*, \theta^*\}$:

$$\begin{split} m(\theta^*)f_1(k^*,h^*) - \lambda[(\delta+\lambda)\theta^* + m(\theta^*)] &= 0\\ m(\theta^*)f_2(k^*,h^*) - \delta[\delta+\lambda + m(\theta^*)]c'(h^*) &= 0\\ m(\theta^*)m'(\theta^*)(w^*-b) - \lambda[m(\theta^*) - \theta^*m'(\theta^*)][\delta+\lambda + m(\theta^*)]k^* &= 0\\ m(\theta^*)[f(k^*,h^*) - w^*] - \lambda[(\delta+\lambda)\theta^* + m(\theta^*)]k^* &= 0 \end{split}$$

• Necessary conditions for an equilibrium, $\{k^*, h^*, w^*, \theta^*\}$:

$$\begin{split} m(\theta^*)f_1(k^*,h^*) - \lambda[(\delta+\lambda)\theta^* + m(\theta^*)] &= 0\\ m(\theta^*)f_2(k^*,h^*) - \delta[\delta+\lambda + m(\theta^*)]c'(h^*) &= 0\\ m(\theta^*)m'(\theta^*)(w^*-b) - \lambda[m(\theta^*) - \theta^*m'(\theta^*)][\delta+\lambda + m(\theta^*)]k^* &= 0\\ m(\theta^*)[f(k^*,h^*) - w^*] - \lambda[(\delta+\lambda)\theta^* + m(\theta^*)]k^* &= 0 \end{split}$$

• Firms and workers receive their marginal product

• Necessary conditions for an equilibrium, $\{k^*, h^*, w^*, \theta^*\}$:

$$\begin{split} m(\theta^*)f_1(k^*,h^*) - \lambda[(\delta+\lambda)\theta^* + m(\theta^*)] &= 0\\ m(\theta^*)f_2(k^*,h^*) - \delta[\delta+\lambda + m(\theta^*)]c'(h^*) &= 0\\ m(\theta^*)m'(\theta^*)(w^*-b) - \lambda[m(\theta^*) - \theta^*m'(\theta^*)][\delta+\lambda + m(\theta^*)]k^* &= 0\\ m(\theta^*)[f(k^*,h^*) - w^*] - \lambda[(\delta+\lambda)\theta^* + m(\theta^*)]k^* &= 0 \end{split}$$

- Firms and workers receive their marginal product
- Eliminating w^{*} yields Planner's optimality conditions.

HIDDEN HUMAN CAPITAL

Example: Firms advertise k_f and w_f ; h_w hidden

• The entrant firm solves

su

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_f, h_f, w_f, \theta_f} V_c(k_f, h^*, w_f, \theta_f)$$

bject to, worker indifference: $V_b(h^*, w_f, \theta_f) = V_b(h^*, w^*, \theta^*)$
worker acceptance: $V_e(w_f, \theta_f) \ge V_u(w^*, \theta^*)$

3 🕨 🖌 3

HIDDEN HUMAN CAPITAL

Example: Firms advertise k_f and w_f ; h_w hidden

• The entrant firm solves

su

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_f, h_f, w_f, \theta_f} V_c(k_f, h^*, w_f, \theta_f)$$

bject to, worker indifference: $V_b(h^*, w_f, \theta_f) = V_b(h^*, w^*, \theta^*)$
worker acceptance: $V_e(w_f, \theta_f) \ge V_u(w^*, \theta^*)$

• The entrant worker solves

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_w, h_w, w_w, \theta_w} V_b(h_w, w^*, \theta_w)$$

subject to, firm indifference: $V_c(k^*, h^*, w^*, \theta_w) = V_c(k^*, h^*, w^*, \theta^*)$ firm acceptance: $V_j(k^*, h_w, w^*, \theta_w) \ge V_v(k^*, h^*, w^*, \theta^*)$

A. Masters (SUNY Albany)

HIDDEN HUMAN CAPITAL

Example: Firms advertise k_f and w_f ; h_w hidden

• The entrant firm solves

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_f, h_f, w_f, \theta_f} V_c(k_f, h^*, w_f, \theta_f)$$

subject to, worker indifference: $V_b(h^*, w_f, \theta_f) = V_b(h^*, w^*, \theta^*)$
worker acceptance: $V_e(w_f, \theta_f) \ge V_u(w^*, \theta^*)$

• The entrant worker solves

$$\{k^*, h^*, w^*, \theta^*\} = \max_{k_w, h_w, w_w, \theta_w} V_b(h_w, w^*, \theta_w)$$

subject to, firm indifference: $V_c(k^*, h^*, w^*, \theta_w) = V_c(k^*, h^*, w^*, \theta^*)$ firm acceptance: $V_j(k^*, h_w, w^*, \theta_w) \ge V_v(k^*, h^*, w^*, \theta^*)$

No non-trivial equilibrium (Diamond Paradox)

• **Hidden wages:** when neither side advertises a wage commitment there is no non-trivial equilibrium; individual workers (resp. firms) can increase (resp. decrease) it, with impunity (Diamond Paradox)

- **Hidden wages:** when neither side advertises a wage commitment there is no non-trivial equilibrium; individual workers (resp. firms) can increase (resp. decrease) it, with impunity (Diamond Paradox)
- Hidden physical capital: Given w* and h* workers do not care about k. Firms are residual claimants; their private and the social returns to investment coincide. Market equivalence applies. (cf. rental contracts)

ARRANGEMENTS WITH BARGAINING

• Generalized Nash:

$$V_e - V_u = \beta \left(V_j - V_v + V_e - V_u \right)$$

ARRANGEMENTS WITH BARGAINING

• Generalized Nash:

$$V_e - V_u = \beta \left(V_j - V_v + V_e - V_u \right)$$

So

$$w = \delta V_u + \beta \left[f(k, h) - \lambda V_v - \delta V_u \right]$$

(日) (同) (三) (三)

ARRANGEMENTS WITH BARGAINING

Generalized Nash:

$$V_e - V_u = \beta \left(V_j - V_v + V_e - V_u \right)$$

So

$$w = \delta V_u + \beta \left[f(k, h) - \lambda V_v - \delta V_u \right]$$

 Substituting into V_v and V_u taking continuation values of other side parametrically:

$$V_{v}^{B} = \frac{(1-\beta)m(\theta)[f(k,h)-\delta V_{u}]}{\lambda[(\delta+\lambda)\theta+(1-\beta)m(\theta)]}$$
$$V_{u}^{B} = \frac{\beta m(\theta)[f(k,h)-\lambda V_{v}]+[\delta+\lambda]b}{\delta[\delta+\lambda+\beta m(\theta)]}$$

3 🕨 🖌 3

ARRANGEMENTS WITH BARGAINING (cont.)

• In equilibrium $V_v^B = V_v$ and $V_u^B = V_u$. Solving yields

$$V_{v}^{B}(k^{*}, h^{*}, \theta^{*}) \equiv \frac{(1-\beta)m(\theta^{*})[f(k^{*}, h^{*}) - b]}{\lambda[(\delta+\lambda)\theta^{*} + (1-\beta+\theta^{*}\beta)m(\theta^{*})]}$$
$$V_{u}^{B}(k^{*}, h^{*}, \theta^{*}) \equiv \frac{\theta^{*}\beta m(\theta^{*})[f(k^{*}, h^{*}) - b]}{\delta[(\delta+\lambda)\theta^{*} + (1-\beta+\theta^{*}\beta)m(\theta^{*})]} + \frac{b}{\delta}$$

(日) (同) (三) (三)

ARRANGEMENTS WITH BARGAINING (cont.)

• In equilibrium $V_v^B = V_v$ and $V_u^B = V_u$. Solving yields

$$V_{v}^{B}(k^{*}, h^{*}, \theta^{*}) \equiv \frac{(1-\beta)m(\theta^{*})[f(k^{*}, h^{*}) - b]}{\lambda[(\delta+\lambda)\theta^{*} + (1-\beta+\theta^{*}\beta)m(\theta^{*})]}$$
$$V_{u}^{B}(k^{*}, h^{*}, \theta^{*}) \equiv \frac{\theta^{*}\beta m(\theta^{*})[f(k^{*}, h^{*}) - b]}{\delta[(\delta+\lambda)\theta^{*} + (1-\beta+\theta^{*}\beta)m(\theta^{*})]} + \frac{b}{\delta}$$

• Competitive entry of vacancies: $V^B_v(k^*,h^*, heta^*)-k^*=0$ so,

$$\begin{aligned} (1-\beta)m(\theta^*)[f(k^*,h^*)-b] \\ &-\lambda\left[m(\theta^*)(1-\beta+\beta\theta^*)+(\delta+\lambda)\theta^*\right]k^*=0 \end{aligned}$$

Hosios condition: In Pissarides environment, equating worker's bargaining power to the elasticity of matching with respect to unemployment generates efficient vacancy creation.

• Here this means

$$\beta = \beta_H \equiv \frac{m(\theta) - \theta m'(\theta)}{m(\theta)}$$
• **Complete ignorance:** Physical and human capital investments are hidden

- **Complete ignorance:** Physical and human capital investments are hidden
- V_v and V_u taken as parameters:

- **Complete ignorance:** Physical and human capital investments are hidden
- V_v and V_u taken as parameters:
- For firms,

$$(1-\beta)m(\theta^*)[f_1(k^*,h^*)-\lambda]-\lambda(\delta+\lambda)\theta^*=0$$

- **Complete ignorance:** Physical and human capital investments are hidden
- V_v and V_u taken as parameters:
- For firms,

$$(1-\beta)m(\theta^*)[f_1(k^*,h^*)-\lambda]-\lambda(\delta+\lambda)\theta^*=0$$

For workers,

$$\beta m(\theta^*) \left[f_2(k^*, h^*) - \delta c'(h^*) \right] - \delta(\delta + \lambda) c'(h^*) = 0$$

- **Complete ignorance:** Physical and human capital investments are hidden
- V_v and V_u taken as parameters:
- For firms,

$$(1-\beta)m(\theta^*)[f_1(k^*,h^*)-\lambda]-\lambda(\delta+\lambda)\theta^*=0$$

• For workers,

$$\beta m(\theta^*) \left[f_2(k^*, h^*) - \delta c'(h^*) \right] - \delta(\delta + \lambda) c'(h^*) = 0$$

 Hold-up problems on both investment margins imply robust underinvestment.

- **Complete ignorance:** Physical and human capital investments are hidden
- V_v and V_u taken as parameters:
- For firms,

$$(1-\beta)m(\theta^*)[f_1(k^*,h^*)-\lambda]-\lambda(\delta+\lambda)\theta^*=0$$

• For workers,

$$\beta m(\theta^*) \left[f_2(k^*, h^*) - \delta c'(h^*) \right] - \delta(\delta + \lambda) c'(h^*) = 0$$

- Hold-up problems on both investment margins imply robust underinvestment.
- Under Hosios, free entry condition same as planners F.O.C. for θ .

• **Transparency:** Physical and human capital investments are advertised by one side or the other

- **Transparency:** Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_v and V_u **not** taken as parameters:

- **Transparency:** Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_v and V_u **not** taken as parameters:
- Market equivalence applies, here firms advertise k_f and h_f

$$\{k^*, h^*, \theta^*\} = \arg \max_{k,h,\theta} V_v^B(k_f, h_f, \theta_f) - k_f$$

subject to $V_u^B(k_f, h_f, \theta_f) = V_u^B(k^*, h^*, \theta^*)$

- **Transparency:** Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_v and V_u **not** taken as parameters:
- Market equivalence applies, here firms advertise k_f and h_f

$$\{k^*, h^*, \theta^*\} = \arg \max_{k, h, \theta} V_v^B(k_f, h_f, \theta_f) - k_f$$

subject to $V_u^B(k_f, h_f, \theta_f) = V_u^B(k^*, h^*, \theta^*)$

Yield

$$(1-\beta)m^{2}(\theta^{*})\left[f_{1}(k^{*},h^{*})-\lambda\right]-\lambda(\delta+\lambda)\theta^{*2}m'(\theta^{*})=0$$

$$\beta m^{2}(\theta^{*})\left[f_{2}(k^{*},h^{*})-\delta c'(h^{*})\right]-\delta(\delta+\lambda)\left[m(\theta^{*})-\theta^{*}m'(\theta^{*})\right]c'(h^{*})=0$$

- **Transparency:** Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_v and V_u **not** taken as parameters:
- Market equivalence applies, here firms advertise k_f and h_f

$$\{k^*, h^*, \theta^*\} = \arg \max_{k,h,\theta} V_v^B(k_f, h_f, \theta_f) - k_f$$

subject to $V_u^B(k_f, h_f, \theta_f) = V_u^B(k^*, h^*, \theta^*)$

Yield

5

$$(1-\beta)m^{2}(\theta^{*})\left[f_{1}(k^{*},h^{*})-\lambda\right]-\lambda(\delta+\lambda)\theta^{*2}m'(\theta^{*})=0$$

$$\beta m^{2}(\theta^{*})\left[f_{2}(k^{*},h^{*})-\delta c'(h^{*})\right]-\delta(\delta+\lambda)\left[m(\theta^{*})-\theta^{*}m'(\theta^{*})\right]c'(h^{*})=0$$

• In general matching frictions mean inefficient levels of vacancy creation and investment

- **Transparency:** Physical and human capital investments are advertised by one side or the other
- Deviations open up new markets so V_v and V_u **not** taken as parameters:
- Market equivalence applies, here firms advertise k_f and h_f

$$\{k^*, h^*, \theta^*\} = \arg \max_{k,h,\theta} V_v^B(k_f, h_f, \theta_f) - k_f$$

subject to $V_u^B(k_f, h_f, \theta_f) = V_u^B(k^*, h^*, \theta^*)$

Yield

$$(1-\beta)m^{2}(\theta^{*})\left[f_{1}(k^{*},h^{*})-\lambda\right]-\lambda(\delta+\lambda)\theta^{*2}m'(\theta^{*})=0$$

$$\beta m^{2}(\theta^{*})\left[f_{2}(k^{*},h^{*})-\delta c'(h^{*})\right]-\delta(\delta+\lambda)\left[m(\theta^{*})-\theta^{*}m'(\theta^{*})\right]c'(h^{*})=0$$

- In general matching frictions mean inefficient levels of vacancy creation and investment
- Hosios condition restores efficiency on every margin

A. Masters (SUNY Albany)

SIMULATIONS

Functional forms and parameters:

$$c(h) = \bar{c}h^{\sigma}$$
, $f(k,h) = k^{\alpha}h^{1-\alpha}$ and $m(\theta) = \bar{m}\theta^{\eta}$.

Time unit: 1 year

	b	ō	m	α	δ	η	λ	σ		
	15	$8 imes10^{-8}$	4	0.35	0.05	0.5	0.2	8		
		Parameter								
65% labor share of output									α	
5.5% unemployment								m		
Expected life of job $pprox$ 5.5 years									λ	
Expected years in labor force $pprox$ 20									δ	
human capital investment as share of output $pprox 7\%$									σ	
average years of schooling $pprox$ 13.3								Ē		
value of leisure $pprox$ 40% of wage (Shimer [2005])								Ь		
usual range for matching elasticity (Shimer [2005])									η	

→ 3 → 4 3

Image: Image:

Model	β	k*	h*	<i>f</i> *	<i>w</i> *	и	Y	W
BTR	0.25	98.44	99.80	99.32	97.52	59.38	101.8	98.93
	0.5	100	100	100	100	100	100	100
	0.75	98.44	99.80	99.32	101.1	166.5	95.21	98.93
BHK	0.25	87.70	99.30	95.08	96.76	56.51	97.65	98.70
	0.5	90.44	99.56	96.26	99.27	95.87	96.51	99.83
	0.75	87.70	99.30	95.08	100.1	159.0	91.58	98.70
ВНН	0.25	97.57	98.87	98.41	96.64	59.62	100.9	98.89
	0.5	99.22	99.19	99.20	99.20	100.3	99.18	99.97
	0.75	97.57	98.87	98.41	100.2	167.2	94.30	98.89
BCI	0.25	87.00	98.42	94.26	95.93	56.74	96.80	98.65
	0.5	98.79	98.78	95.53	98.51	96.20	95.76	99.78
	0.75	87.00	98.42	94.26	99.27	159.6	90.76	98.65

< A

→ ∃ →

• Commitment with advertising imply constrained efficient decisions.

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
 - advertised wage and minimum education requirement

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
 - advertised wage and minimum education requirement
 - advertised rent and minimum physical capital investment

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
 - advertised wage and minimum education requirement
 - advertised rent and minimum physical capital investment
- More information better than less?

- Commitment with advertising imply constrained efficient decisions.
- Commitment without advertising implies constrained efficient choices by residual claimant.
- Minimum requirements for efficiency:
 - advertised wage and minimum education requirement
 - advertised rent and minimum physical capital investment
- More information better than less?
- Ignorance may not be too costly.