Problem 1:

(a) **High-level description of the algorithm:** Let \(t \) denote the total number of integers in the input and let \(a_1, a_2, \ldots, a_t \) denote the actual integer values (keys) themselves. Since each key has at least one digit, we have \(t \leq n \). The steps of the algorithm are as follows.

1. Let \(B[1..n] \) be an array of pointers (buckets). All pointers are initially NULL. \((B[i] \) will point to a list containing all the integers with exactly \(i \) digits, \(1 \leq i \leq n \).\)

2. For each input value \(a_i \), determine the number of digits \(d_i \) in \(a_i \), and insert \(a_i \) at the head of the list pointed to by \(B[d_i] \) (\(1 \leq i \leq t \)). Note that \(\sum_{i=1}^{t} d_i = n \).

3. For \(1 \leq i \leq n \), sort each nonempty bucket \(B[i] \) into ascending order using Radix-Sort.

4. For \(1 \leq i \leq n \), if \(B[i] \) is not NULL, output the sorted list pointed to by \(B[i] \).

(b) **Correctness:** The output is in ascending order since for every \(i \), all integers with \(i \) digits are output in ascending order before any integer with \(i + 1 \) digits.

(c) **Running time:**

 - Step 1: This step runs in \(O(n) \) time since we can initialize each bucket to NULL in \(O(1) \) time.

 - Step 2: For each input value \(a_i \), the number of digits \(d_i \) of \(a_i \) can be found in \(O(d_i) \) time using successive divisions by 10. So, the total time for finding the number of digits in all the input values is \(O(\sum_{i=1}^{t} d_i) = O(n) \). Once we have \(d_i \), key \(a_i \) can be inserted into bucket \(B[d_i] \) in \(O(1) \) time. So, the total time for inserting all the keys into buckets is \(O(n + t) = O(n) \) (since \(t \leq n \)).

 - Step 3: Consider bucket \(B[j] \). Let \(t_j \) denote the number of keys in \(B[j] \). Since each key in \(B[j] \) has \(j \) digits, Radix-Sort on \(B[j] \) takes \(O(j t_j) \) time. Therefore, the total time spent in Radix-Sort over all the buckets is \(O(\sum_{j=1}^{n} j t_j) \). Now, \(j t_j \) represents the total number of digits in all the \(t_j \) keys in \(B[j] \). Therefore, \(\sum_{j=1}^{n} j t_j \) gives the total number of digits over all the input values; that is, \(\sum_{j=1}^{n} j t_j = n \). In other words, the total time spent in Radix-Sort over all the buckets is \(O(n) \).

 - Step 4: The time needed to output all the keys is obviously \(O(n) \).

Since each of the four steps has a running time of \(O(n) \), the overall running time of the algorithm is also \(O(n) \).

Problem 2:

To avoid trivial cases, we assume that \(n \geq 2 \). We use a one-dimensional array \(C[1..n] \) of integers as our data structure. Thus, the additional space used is \(O(n) \). Using an appropriate preprocessing step, we ensure that for \(1 \leq i \leq n \), \(C[i] \) holds the number of keys that are \(\leq i \). (This is similar to the algorithm used for Counting Sort.)
Preprocessing Step: We assume that the m keys, each of which has a value in the range $[1 .. n]$, are stored in the array $S[1 .. m]$.

// Loop to initialize all counter values to 0.
1. for $i = 1$ to n do
 $C[i] = 0$;

// Loop to ensure that $C[i]$ has the number of keys = i, for $1 <= i <= n$.
2. for $j = 1$ to m do
 $C[S[j]] = C[S[j]] + 1$;

// Loop to ensure that $C[i]$ has the number of keys <= i, for $1 <= i <= n$.
3. for $i = 2$ to n do
 $C[i] = C[i] + C[i-1]$;

It is obvious that after Step 2 above, $C[i]$ contains the number of keys whose value is i, $1 \leq i \leq n$. We can now prove by induction that at the end of Step 3, for $1 \leq i \leq n$, $C[i]$ contains the number of keys whose value is $\leq i$.

Lemma 1: At the end of Step 3 of the preprocessing step, for $1 \leq i \leq n$, $C[i]$ contains the number of keys whose value is $\leq i$.

Proof by Induction:

Basis: $i = 1$. At the end of Step 2, $C[1]$ contains the number of keys with value 1. Step 3 does not change $C[1]$. Since no key has value less than 1, $C[1]$ contains the number of keys with value ≤ 1. Thus, basis holds.

Inductive Hypothesis: Assume that for some $k \geq 1$ and $k < n$, $C[k]$ contains at the end of Step 3, the number of keys whose value is $\leq k$.

To prove: At the end of Step 3, $C[k + 1]$ contains the number of keys whose value is $\leq k + 1$.

Proof: Since $1 \leq k < n$, we have $2 \leq k + 1 \leq n$. Thus, $C[k + 1]$ is a valid array element. In Step 3 before $C[k + 1]$ is changed, $C[k + 1]$ contains the number of keys with value equal to $k + 1$. By the inductive hypothesis, $C[k]$ contains the number of keys with value $\leq k$. Thus, the sum $C[k + 1] + C[k]$ is the number of keys with value $\leq k + 1$. Since $C[k + 1]$ is set to $C[k + 1] + C[k]$ in Step 3 and this value is not subsequently modified, it follows that $C[k + 1]$ contains the number of keys with value $\leq k + 1$. This completes the inductive proof.

Running time of the preprocessing step: Step 1 uses $O(n)$ time. Step 2 uses $O(m)$ time and Step 3 uses $O(n)$ time. Therefore, the total preprocessing time is $O(n + m)$.

With the above preprocessing step, the pseudo-code needed for each of the operations is straightforward.

(a) **Member(i):** Returns `true` if there is at least one key with value i and `false` otherwise.

1. if ($i == 1$) {
 if ($C[1] > 0$) return `true`;
 else return `false`;
}
else {
 if ($C[i] - C[i-1] > 0$) return `true`;
else return false;
}

(b) **Less(i):** Returns the number of keys which are strictly less than \(i \).

1. if (i == 1) return 0;

 else return \(C[i-1] \);

(c) **Range(i, j):** Returns the number of key values in the range \([i .. j]\). (It is assumed that \(i \leq j \)).

1. if (i == j) {

 if (i == 1) return \(C[1] \);

 else return \(C[i] - C[i-1] \);

 }

 else return \(C[j] - C[i-1] \).

For each of the operations above, the number of comparisons and other arithmetic operations is independent of the number \(m \) of keys and the value \(n \). Thus, the running time for each operation is \(O(1) \).

Note: If we add an extra element \(C[0] \) to the array \(C \) and set \(C[0] = 0 \), then we can simplify the pseudocode for the three operations. (In particular, there will be no need to check the special case \(i = 1 \).) This modification is left as an exercise.

Problem 3:

Idea: We use an array \(A[1 .. m] \). Suppose we were allowed to initialize each element of \(A \) to 0. Then, for each element \(x \) of \(T \), we can set \(A[x] = 1 \). Thus, \(A \) is the “bit vector” representation of set \(T \); that is, for each element \(x \in T \), \(A[x] = 1 \), and for each element \(x \notin T \), \(A[x] = 0 \). Once we have the bit vector representation, for each element \(y \in S \), we can check in \(O(1) \) time whether or not \(y \in T \).

However, we cannot initialize \(A \), since the running time of the algorithm must be \(O(n + r) \). We can achieve an “effective” bit vector representation without fully initializing \(A \) as follows. Let the set \(T \) be represented by the array \(T[1 .. r] \). Thus, \(T[1], T[2], \ldots, T[r] \) are the elements of the set \(T \). For each element \(T[j] \), we set \(A[T[j]] = j \), \(1 \leq j \leq r \). (Thus, we initialize only \(r \) elements of \(A \); the other \(m - r \) elements of \(A \) contain unknown values.) We can now prove the following.

Lemma 2: An element \(x \in T \) if and only if there is an integer \(j \), \(1 \leq j \leq r \), such that \(A[x] = j \) and \(T[j] = x \).

Proof: Suppose there is an integer \(j \), \(1 \leq j \leq r \), such that \(A[x] = j \) and \(T[j] = x \). Since \(T[j] = x \), \(x \in T \). For the other direction, suppose \(x \in T \). Thus \(x = T[j] \) for some index \(j \), \(1 \leq j \leq r \). Our method sets \(A[x] \), which is \(A[T[j]] \), to \(j \). Thus there is an integer \(j \), \(1 \leq j \leq r \), such that \(A[x] = j \) and \(T[j] = x \).

Description of the algorithm: We will assume that sets \(T \) and \(S \) are both represented as arrays and that the auxiliary array \(A \) of size \(m \) (discussed above) is available.
// Construct an effective bit vector representation of T using A.
1. for j = 1 to r do
 A[T[j]] = j.

// Check whether each element of S is in T using A.
2. for i = 1 to n do
 (a) Let y = S[i] and z = A[y].

 // We must check whether y is in T. By Lemma 2, y is in T if
 // and only if z is in the range [1 .. r] and T[z] = y.

 (b) if ((z < 1) or (z > r) or (T[z] != y))
 print "S is not a subset of T" and stop.

// Here, we have verified that every element of S is also in T.
3. Print "S is a subset of T".

The correctness of the above algorithm is a consequence of Lemma 2. Step 1 takes $O(r)$ time, Step 2 takes $O(n)$ time, and Step 3 takes $O(1)$ time. So, the running time of the algorithm is $O(n + r)$.