CSI 604 – Spring 2016

Proof of NP-Completeness: An Example

In this handout, we provide a proof that the Minimum Dominating Set problem for graphs is NP-complete. This is accomplished by a reduction from the Minimum Set Cover problem. The formal definitions of these problems are as follows.

Minimum Set Cover (MSC)

Instance: A base set \(Q = \{q_1, q_2, \ldots, q_n\} \), a collection \(C = \{c_1, c_2, \ldots, c_m\} \) where \(c_j \subseteq Q \ (1 \leq j \leq m) \) and an integer \(K \leq m \).

Question: Is there a subcollection \(C' \subseteq C \), with \(|C'| \leq K \), such that \(\bigcup_{c \in C'} c = Q \)?

Minimum Dominating Set (MDS)

Instance: An undirected graph \(G(V, E) \) and an integer \(R \leq |V| \).

Question: Is there a dominating set \(D \subseteq V \) for \(G \) such that \(|D| \leq R \)?

Theorem: MDS is NP-complete.

Proof: MDS is in NP since given a subset \(D \) of vertices we can verify in polynomial time that \(|D| \leq R \) and that for each node \(v \in V - D \), there is a node \(w \in D \) such that \(\{v, w\} \in E \).

To prove NP-hardness, we use a reduction from the MSC problem. Consider an instance \(I \) of MSC given by the set \(Q \), the collection \(C \) and the integer \(K \). An instance \(I' \) of the MDS problem consisting of graph \(G(V, E) \) and the integer \(R \) is constructed as follows.

1. Let \(V = V_1 \cup V_2 \) where \(V_1 = \{v_1, v_2, \ldots, v_n\} \) (i.e., there is one vertex in \(V_1 \) corresponding to each element in \(Q \)) and \(V_2 = \{w_1, w_2, \ldots, w_m\} \) (i.e., there is one vertex in \(V_2 \) corresponding to each set in \(C \)).

2. Let \(E = E_1 \cup E_2 \) where

\[
E_1 = \{\{v_i, w_j\} | q_i \in c_j\} \quad \text{and} \quad E_2 = \{\{w_i, w_j\} | i \neq j\}.
\]

Thus, the edges in \(E_1 \) represent the membership of elements in subsets and the edges in \(E_2 \) connect all the nodes in \(V_2 \) as a clique.

3. The construction is completed by setting the value of \(R \) (the dominating set size) to \(K \) (the size of set cover).

The construction can be carried out in polynomial time since \(V \) has \(m + n \) nodes and \(E \) has \(O(m(m + n)) \) edges (because \(E_1 \) has at most \(mn \) edges and \(E_2 \) has \(m(m - 1)/2 \) edges).
We now show that the resulting MDS instance I' has a solution if and only if the MSC instance I has a solution.

Part 1: Suppose the MSC instance I has a set cover of size at most K.

To prove: G has a dominating set D of size at most K.

Proof: Let $C' = \{c_{i_1}, c_{i_2}, \ldots, c_{i_r}\}$, where $r \leq K$, denote the given set cover. Consider the set $D = \{w_{i_1}, w_{i_2}, \ldots, w_{i_r}\}$ of nodes from G. We claim that D is a dominating set for G. To see this, first note that any node in D is adjacent to all the nodes in $V_2 - D$ (since the nodes in V_2 form a clique). Further, since C' is a set cover, every node in V_1 (i.e., an element node) is adjacent to at least one node in D (i.e., a set node). Thus, D is indeed a dominating set. Further, $|D| = r \leq K$ and so D is a dominating set of size at most K for G. This completes the proof of Part 1.

Part 2: Suppose the MDS instance has a dominating set of size at most K.

To prove: There is a set cover C' of size at most K for the MSC instance.

Proof: Let D' be dominating set of size $r \leq K$ for G. Partition D' into D_1 and D_2 where $D_i \subseteq V_i$, $i = 1, 2$. If D_1 is nonempty, we obtain a set of nodes D by repeatedly modifying D' as follows until D_1 becomes empty: Let v be a node (element node) in D_1. Find a node w (a set node) in V_2 such that $\{v, w\} \in E$. Such a node must exist since each element in the MSC instance occurs in at least one set. Delete v from D_1 and add w to D_2 if w is not already in D_2. After each step of this modification, $D_1 \cup D_2$ continues to be a dominating set since all the (set) nodes dominated by the element node v are also dominated by the set node w. Obviously, this modification does not increase the size of D. At the end of this modification, $D = D_2 \subseteq V_2$.

Let $D = \{w_{i_1}, w_{i_2}, \ldots, w_{i_r}\}$. Recall that $r \leq K$. Consider the subcollection $C' = \{c_{i_1}, c_{i_2}, \ldots, c_{i_r}\}$. We will prove that C' is a set cover. To see this, consider any element $q_x \in Q$. We will show that there is a set in C' that contains q_x. Recall that D' is the original dominating set for G. We have two cases to consider.

Case 1: Set D' contains v_x, the node corresponding to q_x.

In this case, the modified dominating set D was obtained by replacing v_x by a node $w_y \in V_2$ such that $\{w_y, v_x\}$ is an edge in G. By our construction and the choice of C', the set c_y corresponding to w_y is in C' and c_y contains q_x.

Case 2: Set D' does not contain v_x, the node corresponding to q_x.

In this case, since D' is a dominating set, there must be a node $w_y \in D_1$ such that $\{w_y, v_x\}$ is an edge in G. By our construction and the choice of C', the set c_y corresponding to w_y is in C' and c_y contains q_x.

Thus, C' is a valid set cover. Further, $|C'| = r \leq K$ and so C' is a solution to the MSC instance. This completes the proof of Part 2 as well as that of the theorem.