Suppose we want to prove the NP-completeness of a problem Y. Here is the sequence of steps to be used in proving such a result.

1. Show that problem Y is in NP. (For this, you need to show how to verify in polynomial time that a given solution satisfies all the required properties.)

2. Identify a suitable problem X which is known to be NP-complete.

3. Explain how any instance I_x of problem X can be transformed into an instance I_y of problem Y.

4. Show that the transformation described in Step 3 can be carried out in polynomial time.

5. Show that there is a solution to instance I_x of X if and only if there is a solution to instance I_y of Y. This proof involves the following two parts.

 (i) Assume that I_x has a solution and show how a solution to I_y can be constructed.

 (ii) Assume that I_y has a solution and show how a solution to I_x can be constructed.

Note: Step 1 above proves the membership of problem Y in NP. The remaining steps prove the the NP-hardness of problem Y.

 CSI 604 – Spring 2016

Sequence of Steps Used to Prove NP-completeness