1. **Generic MST Algorithm:**

 Note: $G(V, E)$ is a given connected undirected graph and w is a function that assigns a weight (real number) to each edge. At the end of the algorithm, the set $A \subseteq E$ contains the edges in an MST. (The notion of a “safe edge” will be discussed in class.)

 Generic-MST (G, w)

 1. $A = \emptyset$.

 2. while (A does not form a spanning tree) do

 (a) Find a safe edge $\{u, v\}$.

 (b) Add $\{u, v\}$ to A.

 3. return A.

2. **Kruskal’s MST Algorithm:**

 Note: The following outline uses UNION and FIND operations on disjoint sets. These will be defined in the lecture.

 MST-Kruskal (G, w)

 1. $A = \emptyset$.

 2. for each vertex $v \in V$ do

 MAKE-SET(v).

 3. Sort the edges of E by non-decreasing weight.

 4. for each edge $\{u, v\} \in E$ in order by non-decreasing weight do

 if (FIND-SET(u) \neq FIND-SET(v)) then

 (a) Add $\{u, v\}$ to A.

 (b) UNION (u, v).

 5. return A. (over)
3. Prim’s MST Algorithm:

Notes:

- We assume that a root r of an MST is also given.
- The implementation uses a priority queue (heap) Q which contains a key value for each node that is not currently in the tree.
- For each node v that is not currently in the tree, $\text{key}[v]$ is the minimum weight among the edges that join v to some node in the tree. In other words, $\text{key}[v]$ is the cheapest cost of adding v to the tree.
- $\pi[v]$ is the node u such that $w(v, \pi[v]) = \text{key}[v]$. (Think of $\pi[v]$ as the parent of v in the tree.)
- The algorithm terminates when Q becomes empty.
- The edge set A of the MST computed by the algorithm is given by $A = \{ \{v, \pi[v]\} : v \in V - \{r\} \}$.

MST-Prim (G, w, r)

1. for each vertex $v \in V$ do

 Set $\text{key}[v] = \infty$ and $\pi[v] = \text{NULL}$.

2. $\text{key}[r] = 0$.

3. Create a priority queue Q containing all the nodes in V.

4. while $(Q$ is not empty$)$ do

 (a) $u = \text{Extract-Min}(Q)$.

 (b) for each $v \in \text{Adj}[u]$ do

 if $((v \in Q) \text{ and } (w(u, v) < \text{key}[v]))$ then

 (i) $\pi[v] = u$.

 (ii) $\text{key}[v] = w(u, v)$.

 enddo

endwhile