Recall the statement of the Minimum Cost Prefix Tree problem.

Given: A set C of $n \geq 2$ symbols to be encoded; for each symbol $c \in C$, a frequency value $f(c)$.

Required: A codeword for each symbol in C such that the encoding cost is minimized.

I. Recursive Version of Huffman’s Algorithm:

1. **if** $(|C| = 2)$ **then**

 Encode one symbol using 0 and the other using 1.

 else

 (a) Let x and y be the symbols with the lowest frequencies in C.

 (b) Combine x and y into a new symbol w with frequency $f(w) = f(x) + f(y)$.

 (c) Recursively construct a tree T' for $C' = (C - \{x, y\}) \cup \{w\}$.

 (d) From T', construct tree T for C by making x and y the children of w.

2. Return T.

II. Iterative Version of Huffman’s Algorithm:

1. Create a node (of the tree) corresponding to each symbol in C. Let S denote the resulting set of nodes.

2. **while** $(n \geq 2)$ **do**

 (a) Let x be a node with smallest frequency value in S. Remove x from S.

 (b) Let y be a node with smallest frequency value in S. Remove y from S.

 (c) Create a new node w with x and y as its children. Add w to S.

 (d) Set $f(w) = f(x) + f(y)$.

 (e) Set $n = n - 1$.

3. For each internal node of the tree, label the edge to the left child as 0 and the edge to the right child as 1.

4. For each leaf c (i.e., symbol in C), construct its codeword by concatenating the bits in the path from the root to c.

(over)
Note: The correctness of Huffman’s Algorithm (Theorem 4 below) can be shown through the proofs of the following three lemmas.

Lemma 1: (a) Every canonical binary tree represents a prefix code. (b) Each prefix code can be represented by a canonical binary tree.

Lemma 2: Every optimal solution to the problem is a full binary tree (i.e., each internal node has exactly two children).

Lemma 3: Let x and y be two symbols in C with the two lowest frequencies. There is an optimal solution for C in which x and y are leaves with maximum depth.

Theorem 4: Huffman’s Algorithm produces an optimal solution.