CSI 604 – Spring 2016
Greedy Algorithms for Interval Scheduling

I. Finding a Largest Compatible Subset of Intervals:

In this problem, we are given \(n \) requests (intervals). For each request \(i, 1 \leq i \leq n \), the start time and finish time are denoted by \(s(i) \) and \(f(i) \) respectively. Two requests are compatible if they don’t overlap. The greedy algorithms below finds a maximum set of compatible requests.

Outline of the Greedy Algorithm:

1. Let \(R \) denote the set of requests (intervals). Set \(A = \emptyset \). (At the end, \(A \) contains the solution.)
2. while \(R \neq \emptyset \) do
 a. Choose a request \(i \in R \) with the smallest finish time.
 b. Add request \(i \) to \(A \).
 c. Delete from \(R \) all requests that conflict with \(i \).
3. Output \(A \).

An \(O(n \log n) \) implementation of the above Greedy Algorithm:

1. Sort the requests in increasing order of their finish times. Rename the requests if necessary so that the sorted order of requests is \(\langle 1, 2, \ldots, n \rangle \).
2. Let \(A = \{1\} \). (\(A \) will contain the solution at the end of the algorithm.)
3. Let \(j = 1 \). (Variable \(j \) represents the index of the last request chosen in \(A \) so that \(f(j) \) will be the maximum finish time among all the requests in \(A \).)
4. for \(i = 2 \) to \(n \) do
 if \(s(i) \geq f(j) \) then
 a. Add \(i \) to \(A \). (Request \(i \) is compatible with all the requests in \(A \).)
 b. Let \(j = i \). (Now, \(f(i) \) is the maximum finish time among the requests in \(A \).)
5. Output \(A \).

(over)
II. Partitioning All Intervals into a Minimum Number of Compatible Subsets:

Let d denote the depth of the given collection of intervals. Recall that the number of compatible sets into which the collection can be partitioned is at least d. The following greedy algorithm produces a partition with exactly d subsets.

The algorithm assigns a label from the set $\{1, 2, \ldots, d\}$ to each interval such that for each label ℓ, $1 \leq \ell \leq d$, all the intervals assigned the label ℓ are compatible.

Outline of the Greedy Algorithm for Scheduling All Intervals:

1. Sort the requests in increasing order of their start times. Rename the requests if necessary so that the sorted order of requests is $\langle 1, 2, \ldots, n \rangle$. (The requests will be assigned labels in that order.)

2. for $j = 2$ to n do

 for each interval r that precedes j and is incompatible with j do

 Exclude the label of r from consideration for j.

 if any of the labels in $\{1, 2, \ldots, d\}$ has not been excluded

 then Assign any non-excluded label to j.

 else Leave j unlabeled. /* This will never happen. */

3. For each request, output its label.

Exercise: Develop an $O(n \log n + dn)$ implementation of the above algorithm.