CSI 445/660 – Part 8
(Diffusion in Networks)

Diffusion in Networks

Diffusion:

- Process by which a **contagion** (e.g. information, disease, fads) spreads through a social network.
- Also called **network dynamics**.

- Everett Rogers (1931–2004)
 - Ph.D. (Sociology & Statistics), Iowa State University, 1957.
 - Introduced the phrase “early adopter”.
- Taught at Ohio State University and the University of New Mexico.
Cultivation of Hybrid Seed Corn:

- Study by Bruce Ryan and Neal Gross in the 1920’s at Iowa State University.

- **Goal:** To understand how the practice of cultivating hybrid seed corn spread among farmers in Iowa.

- This form of corn had a higher yield and was disease resistant.

- Yet, there was resistance to its use ("inertia").

- The practice didn’t take off until 1934 when some elite farmers started cultivating it.

- Ryan/Gross analyzed surveys; they didn’t construct social networks.
Use of Tetracycline (an antibiotic):

- Study by James Coleman, Herbert Menzel and Elihu Katz in the 1960’s at Columbia University.
- Tetracycline was a new drug marketed by Pfizer.
- Analyzed data from doctors who prescribed the medicine and pharmacists that filled the prescriptions.
- Constructed a social network of doctors and pharmacists.

Summary:

- A large fraction of the initial prescriptions were by a small number of doctors in large cities.
- Doctors who had many physician friends started prescribing the medicine more quickly.
Other studies:

- Use of telephones (Claude Fischer).
- Use of email (Lynne Markus).

Modeling diffusion through a network:

- Consider diffusion of new behavior.

Assumptions:

- People make decisions about adopting a new behavior based on their friends.
- Benefits of adopting a new behavior increase as more friends adopt that behavior.

Example: It may be easier to collaborate with colleagues if compatible technologies are used.

This “direct benefit” model is due to Stephen Morris (Princeton University).
A Coordination Game

Rules of the game:

- A social network (an undirected graph) is given.
- Each node has a choice between behaviors A and B.
- For each edge \(\{x, y\} \), there is an incentive for the behaviors of nodes \(x \) and \(y \) to match, as given by the following payoff matrix.

\[
\begin{array}{cc}
A & B \\
A & a, a & 0, 0 \\
B & 0, 0 & b, b \\
\end{array}
\]

- If \(x \) and \(y \) both adopt A, they both get a benefit of a.
- If \(x \) and \(y \) both adopt B, they both get a benefit of b.
- If \(x \) and \(y \) don’t adopt the same behavior, their benefit is zero.
A Coordination Game (continued)

Rules of the game (continued):

- Each node \(v \) plays this game with each of its neighbors.
- The payoff for a node \(v \) is the sum of the payoffs over all the edge incident on \(v \).

Example:

```
A   B
A   A         B
A
```

- Let \(a = 5 \) and \(b = 7 \).
- If \(v \) adopts \(A \), payoff \(= 4 \times 5 \) = 20.
- If \(v \) adopts \(B \), payoff \(= 3 \times 7 \) = 21.
- So, \(v \) should adopt \(B \) (rational behavior).

Note: The example points out that \(v \)’s choice depends on the choices made by all its neighbors and the parameters \(a \) and \(b \).
A Coordination Game (continued)

Question: In general, how should a node v choose its behavior, given the choices of its neighbors?

Analysis:

- Suppose the degree of v is d.
- Suppose a fraction p of v's neighbors have chosen A and the remaining fraction $(1 - p)$ have chosen B.
- So, pd neighbors have chosen A and $(1 - p)d$ neighbors have chosen B.

- If v chooses A, its payoff $= pda$.
- If v chooses B, its payoff $= (1 - p)db$.
- So, A is the better choice if

 $$pda \geq (1 - p)db$$

 that is,
 $$p \geq b/(a + b).$$
A Coordination Game (continued)

Analysis (continued):

- Leads to a simple rule:
 - If a fraction of at least $b/(a + b)$ neighbors of v use A, then v must also use A.
 - Otherwise, v must use B.

- The rule is intuitive:
 1. If $b/(a + b)$ is small (say, 1/100):
 - Then b is small and A is the “more profitable” behavior.
 - So, a small fraction of neighbors adopting A is enough for v to change to A.
 2. If $b/(a + b)$ is large (say, 99/100):
 - Then b is large and B is the “more profitable” behavior.
 - So, a large fraction of neighbors adopting A is necessary for v to change to A.

A Coordination Game (continued)

Note: The quantity $b/(a + b)$ is called the **threshold** for a node to change from B to A.

Cascading behavior:

- The model has two situations that correspond to **equilibria**.
 - Every node uses A.
 - Every node uses B.

 In these situation no single node has an **incentive** to change to the other behavior.

Note: These situations are called **pure Nash equilibria** for the game.

- What happens if some subset of nodes ("early adopters") decide to change their behavior (for reasons outside the definition of the game)?
Cascading Behavior (continued)

Assumptions:

- At the starting point, all nodes use B.
- Some nodes change to A.
- Other nodes evaluate their payoffs and switch to A if it is more profitable.
- For simplicity, the system is assumed to be **progressive**; that is, once a node switches to A, it won’t switch back to B.

Equilibrium configuration:

![Diagram showing node configurations and payoffs](image)

- **Payoffs:** $a = 3$ and $b = 2$.
- **Threshold for switching from B to A:** $A = b/(a + b) = 2/5$.
- **Notation:** **Blue** represents B and **red** represents A.
- At some time point ($t = 0$), suppose nodes v and w switch to A.
Cascading Behavior (continued)

Configuration at \(t = 0 \):

\[
\begin{array}{c}
\text{r} \\
\text{t} \\
\text{v} \\
\text{w} \\
\text{s} \\
\text{u}
\end{array}
\]

- **Note:** Threshold for switching from B to A = 2/5.

Analysis:

- Node \(r \) has 2/3 of its neighbors using A. Since 2/3 > 2/5, \(r \) will switch to A.

- Node \(s \) also has 2/3 of its neighbors using A. So, \(s \) will also switch to A.

- Node \(t \) has 1/3 of its neighbors using A. Since 1/3 < 2/5, \(t \) won’t switch to A.

- Node \(u \) also has 1/3 of its neighbors using A. So, \(u \) won’t switch to A.
Cascading Behavior (continued)

Configuration at $t = 1$:

- **Note:** Threshold for switching from B to $A = \frac{2}{5}$.

Analysis:

- Now, node t has $\frac{2}{3}$ of its neighbors using A. Since $\frac{2}{3} > \frac{2}{5}$, t will switch to A.

- Node u also has $\frac{2}{3}$ of its neighbors using A. So, u will also switch to A.

Configuration at $t = 2$:

- The system has reached the other equilibrium.
Cascading Behavior (continued)

Notes:

- In the example, there was a cascade of switches that resulted in all nodes switching to A.
- The example shows complete cascade.
- Cascades may also be partial as shown by the following example.

Equilibrium configuration:

- Payoffs: $a = 3$, $b = 2$.
- Threshold for switching from B to A $= 2/5$.
- At some time point ($t = 0$), suppose nodes x, y and w switch to A.
Configuration at $t = 0$:

Node z has $2/3$ of its neighbors using A. Since $2/3 > 2/5$, z will switch to A.

Nodes p, q, r and s have zero neighbors using A. So, none of them will switch to A.

Note: Threshold for switching from B to $A = 2/5$.
Cascading Behavior (continued)

Configuration at $t = 1$:

Note: Threshold for switching from B to $A = 2/5$.

Analysis:

- Node p has $1/3$ of its neighbors using A. Since $1/3 < 2/5$, p won’t switch to A.
- Nodes q, r and s have zero neighbors using A. So, none of them will switch to A.
- Thus, the configuration shown above is another equilibrium for the system.
- Here, the cascade is partial.
Brief digression – A non-progressive system:

- A node may switch from A to B or vice versa.

Example – Equilibrium configuration:

\[
\begin{array}{c}
p & q \\
\hline \\
\text{r} & \text{s} \\
\text{u} & \text{v} \\
\end{array}
\]

- Payoffs: \(a = 3 \) and \(b = 2 \).
- Threshold for switching from B to A = \(2/5 \).
- At some time point \((t = 0) \), suppose nodes u and v switch to A.
A Non-progressive System (continued)

Configuration at $t = 0$:

- Nodes p and q have zero neighbors using A. So, they won’t switch to A.
- Nodes r and s have only $1/4$ of their neighbors using A. So, they won’t switch to A.

- The only neighbor of node u uses B. So, it is more profitable for u to switch back to B.
- For the same reason, it is more profitable for v to switch back to B.

- So, the system switches back to the previous equilibrium configuration.
- There is no cascade here.
Example: The cascade stopped in the following network.

Threshold for switching from B to $A = 2/5$.

- The cascade didn’t spread to nodes p, q, r and s.
- The situation can be explained formally.

Definition: Given an undirected graph $G(V, E)$, a subset $V_1 \subseteq V$ of nodes forms a cluster of density α if for every node $v \in V_1$, at least a fraction α of the neighbors of v in G are in V_1.
Example: (Density of a cluster)

Let $V_1 = \{x, y, z, w\}$.

For x, y and w, all their neighbors are in V_1. (So, fraction of neighbors in $V_1 = 1$.)

For z, a fraction $2/3$ of its neighbors are in V_1.

So, density of the cluster formed by $V_1 = 2/3$.

Note: Density of a cluster is determined by the smallest fractional value among the nodes in the cluster.
Brief discussion on clusters and their densities:

- The notion of clusters suggests some level of internal “cohesion”; that is, for all the nodes in the cluster, a specified fraction of their neighbors are also in the cluster.

- However, high cluster density *doesn’t* mean that two nodes in the same cluster have much in common.

 Reason: If we consider the whole graph, it forms a cluster of density 1. (This holds even when the graph is disconnected.)

- A formal relationship between cluster density and diffusion was established in [Morris, 2000].
Theorem: [due to Stephen Morris]

Suppose $G(V, E)$ is a network where each node is using behavior B. Let $V' \subseteq V$ be a subset of “early adopters” of behavior A. Further, let α be threshold for the other nodes to switch from B to A.

1. If the subnetwork of G formed on the remaining nodes (i.e., $V - V'$) has a cluster of density $> (1 - \alpha)$, then V' won’t cause a complete cascade.

2. If V' does not cause a complete cascade, then the subnetwork on the remaining nodes must contain a cluster of density $> (1 - \alpha)$.

Interpretation:

- Part 1: Clusters of density $> (1 - \alpha)$ act as “obstacles” to a complete cascade.
- Part 2: Clusters of density $> (1 - \alpha)$ are the only “obstacles” to a complete cascade.
An Example for Morris’s Theorem

- Recall: Threshold α for B to A switch = $2/5$.
- Let $V' = \{x, y, z\}$ be the “early adopters”.

- Consider $V_1 = \{p, q, r, s\}$.
- For q, r and s, all their neighbors are in V_1. (So, fraction of neighbors in $V_1 = 1$.)
- For p, a fraction $2/3$ of its neighbors are in V_1.
- So, density of the cluster formed by $V_1 = 2/3$.
- Note that $1 - (2/5) = 3/5$ and $2/3 > 3/5$.
- So, the cascade cannot be complete.
Recall:

- A **local bridge** is an edge \(\{x, y\} \) such that \(x \) and \(y \) don’t have any neighbor in common.

- Local bridges are weak ties but enable nodes to get information from other parts of the network (“strength of weak ties”).

Do local bridges help in the diffusion of behavior?

- Edges \(\{z, p\} \) and \(\{w, d\} \) are local bridges.

- Let threshold for switching be \(2/5 \).

- Let \(z \) and \(w \) be the “early adopters”.
Nodes x and y will switch to A. However, none of the other nodes will switch.

- Local bridges are “too weak” to propagate behaviors that require higher thresholds.
- If threshold for each node v is set to $1/\text{degree}(v)$, then there will be a complete cascade (**low threshold**).
- The concept of thresholds provides one way to explain why information (e.g. jokes, link to videos, news) spreads to a much larger population compared to behaviors such as political mobilization.
Homogeneous and Heterogeneous Thresholds

- In the coordination game, all the nodes had the same threshold value (homogeneous thresholds).
- In the context of weak ties, using a different threshold for each node can cause a complete cascade (heterogeneous thresholds).
- Heterogeneous thresholds can also arise in the coordination game: choose a different payoff for each node.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a_x, a_y</td>
<td>0, 0</td>
</tr>
<tr>
<td>B</td>
<td>0, 0</td>
<td>b_x, b_y</td>
</tr>
</tbody>
</table>

- If x and y both adopt A, x gets a_x and y gets a_y.
- If x and y both adopt B, x gets b_x and y gets b_y.
- If x and y don’t adopt the same behavior, their benefit is zero.
The threshold for any node \(v \) (to switch from \(B \) to \(A \)) is \(b_v/(a_v + b_v) \). (Thus, each node may have a different threshold.)

Morris’s Theorem can be generalized to the case of heterogeneous thresholds.

Definition: (Blocking Cluster)

Consider a network \(G(V, E) \) where each node \(v \) has a threshold \(\alpha_v \). A subset \(V_1 \subseteq V \) of nodes is a **blocking cluster** if for every node \(v \in V_1 \), more than \(1 - \alpha_v \) fraction of the neighbors of \(v \) are in \(V_1 \).

Note: This generalizes the notion of a cluster defined in the homogeneous case.
Example 1: (Blocking Cluster)

Consider the cluster $V_1 = \{p, q, r, s\}$.

- For p, $1 - \alpha_p = 1/2$, the fraction of neighbors in $V_1 = 2/3$ and $2/3 > 1/2$.
- For the nodes q, r and s, all their neighbors are in V_1.
- So, V_1 is a blocking cluster.

Let $\alpha_p = 1/2$ and $\alpha_q = \alpha_r = \alpha_s = 2/5$.
Example: (continued)

Let $\alpha_p = 1/6$ and $\alpha_q = \alpha_r = \alpha_s = 2/5$.

The only change is that $\alpha_p = 1/6$ (instead of 1/2).

- For p, $1 - \alpha_p = 5/6$ and the fraction of neighbors in $V_1 = 2/3$. However, $2/3 < 5/6$.
- So, V_1 is not a blocking cluster with the new threshold value for p.
- Easy to verify that $V_2 = \{q, r, s\}$ is still a blocking cluster.
Generalization of Morris’s Theorem:

Suppose $G(V, E)$ is a network where each node v has a threshold α_v. Let $V' \subseteq V$ be the “early adopters”.

1. If the subnetwork of G formed on the remaining nodes (i.e., $V - V'$) has a blocking cluster, then V' won’t cause a complete cascade.

2. If V' does not cause a complete cascade, then the subnetwork on the remaining nodes must contain a blocking cluster.

Note: The idea of using thresholds to study diffusion in social networks is due to Mark Granovetter in 1978.
Note: Think of A and B as competing products.

Example with a partial cascade:

Threshold for switching from B to $A = \frac{2}{5}$.

- A didn’t propagate to the cluster \{p, q, r, s\} at the threshold value of 2/5.

What can the marketing agency for A do?

1. Try to decrease the threshold.
2. Try to choose the early adopters carefully.
Decreasing the threshold:

- Formula for threshold $= \frac{b}{a + b}$.
- With $a = 3$ and $b = 2$, threshold $= \frac{2}{5}$.
- The threshold can be decreased by increasing a; that is, by improving the quality of A.
- **Example:** Let $a = 4$ while b remains at 2.
 - New threshold $= \frac{2}{4 + 2} = \frac{1}{3}$.
 - This threshold causes a complete cascade. (See the next two slides).
Cascades and Viral Marketing (continued)

Configuration at $t = 0$:

- Threshold for switching from B to $A = 1/3$.

Configuration at $t = 1$:

- Node p switched from B to A.

Cascades and Viral Marketing (continued)

Configuration at $t = 2$:

- Nodes q and s switched from B to A.

Configuration at $t = 3$:

- Node r switched from B to A.
- The cascade is complete.
Choose early adopters carefully.

- With \(\{x, y, z\} \) as the early adopters, the cascade is partial.
- Suppose the early adopters are \(\{x, y, p, q\} \).

Configuration at \(t = 0 \):

- Threshold for switching from \(B \) to \(A \) = \(2/5 \).
- This set of early adopters will cause a complete cascade. (See the next slide.)
Cascades and Viral Marketing (continued)

Configuration at $t = 1$:

- Nodes w and s switched from B to A.

Configuration at $t = 2$:

- Nodes z and t switched from B to A.
- The cascade is complete.
Cascades and Viral Marketing (continued)

Notes on Viral Marketing:

- Marketing units can only choose a limited number of early adopters due to budget constraints.

Influence Maximization Problem:

- **Given:** A social network $G(V, E)$, a threshold value α and a budget on the number of early adopters N.

- **Required:** Find a subset of V with at most N nodes (the early adopters) so that a maximum number of nodes change to A.

- The problem is known to be computationally difficult (NP-hard).

- The problem has also been studied under other models (e.g. probabilistic switches).
Towards a More General Model for Diffusion

Features of the current model:

1. A social network where the interaction is between a node and its neighbors (local interactions).
2. The current configuration of the system (i.e., the current behavior of each node).
3. A threshold value. (This was chosen based on the coordination game.)
4. A scheme for nodes to evaluate their payoffs and decide whether or not to switch behaviors (synchronous evaluation and update).
Why generalization is useful:

- There are several diffusion phenomena (e.g. disease propagation) where there is no underlying game with payoffs.
- The decision to switch may involve more complex computations.
 Example: Most disease propagation models are probabilistic.
- The generalization also allows precise formulations of several other problems related to diffusion.

Note: The generalized model is called a *Synchronous Dynamical System* (or SyDS).
Components of a Synchronous Dynamical System

1. An undirected graph $G(V, E)$. (In most applications, this graph represents a social contact network.)

2. Each node v has **state** value, denoted by $s(v)$.

 - The state value is from a specified set (domain).
 - A typical example is the Boolean domain $\{0, 1\}$.
 - In some disease models, the domain is larger.
 - The interpretation of the state value depends on the application.
Interpretation of state values in some applications:

(a) **Coordination game:** Values 0 and 1 represent behaviors A and B respectively.

(b) **Simple disease models:** Value 0 \Rightarrow node is *uninfected* and 1 \Rightarrow node is *infected*.

(c) **Information propagation:** Value 0 \Rightarrow node *does not have* the information and 1 \Rightarrow node *has* the information.

(d) **Complex disease models:** State values represent different *levels of infection*.
3 A local function f_v for each node v of the graph. (This function captures the local interactions between a node and its neighbors.)

Notes:

- The inputs to the function f_v are the current state of node v and those of its neighbors.
- The value computed by the function f_v gives the state value of v for the next time instant.
Example of a local function: Assume that the domain is \(\{0, 1\} \).

\[
\begin{array}{c|c|c|c}
\hline
s(v) & s(w_1) & s(w_2) & f_v \\
\hline
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\hline
\end{array}
\]

Notes:

- The above specification is a **truth table** for \(f_v \).
- When a node has degree \(r \), the truth table specifying \(f_v \) will have \(2^{r+1} \) rows. (This is **exponential** in the degree of node \(v \).)
- This is not practical for nodes of large degree.
A more common local function: The domain is \(\{0, 1\} \).

- For each node \(v \), an integer threshold value \(\tau \) is specified. (The value of \(\tau \) may vary from node to node.)

- The function \(f_v \) has the value 1 if the number of 1's in the input is at least \(\tau \); it is 0 otherwise.

- This function is called the \(\tau \)-threshold function.

- If \(v \) has degree \(d \), then the \(\tau \)-threshold function can be represented using a table with \(d + 2 \) rows.

\[
\begin{array}{c|c}
\text{No. of 1's} & \text{Value of } f_v \\
\hline
0 & 0 \\
1 & 0 \\
2 & 1 \\
3 & 1 \\
\end{array}
\]

A 2-threshold function
Absolute and Relative Thresholds

- In the definition of τ-threshold functions, the value τ specifies an **absolute threshold**.

- The threshold value specified in the coordination game is called a **relative threshold**; this is a fraction relative to the degree of the node.

- Any relative threshold can be converted into a corresponding absolute threshold and vice versa.

Example: Suppose a node v has a degree of 9. (So, the number of inputs to the function $f_v = 10$.)

- If f_v is specified by the absolute threshold value 3, then the relative threshold value is $3/10 = 0.3$.

- If f_v is specified using the relative threshold value $1/3$, the absolute threshold value is $\lceil 10 \times (1/3) \rceil = 4$.
A SyDS uses *synchronous computation and update*.

- All nodes compute the values of their local functions *synchronously* (i.e., in parallel).
- After all the computations are finished, all the nodes update their state values synchronously.

The synchronous computation and update proceeds until the system reaches an *equilibrium*, where no further state changes occur.

In a *progressive* SyDS over the Boolean domain, states of nodes may be change from 0 to 1; however, the states *cannot* change from 1 to 0.

Consequence: In a progressive SyDS, once the state of node becomes 1, it remains at 1 for ever.

- In the discussion on SyDSs, local functions will be specified using *absolute* thresholds.
An Example of a SyDS

Example 1:

- Domain = \{0, 1\}.
- Each local function is the 1-threshold function (simple contagion).
- Note that the state of a node can’t change from 1 to 0; the system is progressive.

Configuration at $t = 0$:

- **Green** indicates state value 0.
- **Red** indicates state value 1.
- The configuration at $t = 0$ can also be represented as (0, 1, 0, 0, 0, 0, 0).
An Example of a SyDS (continued)

Configuration at $t = 1$:

- Nodes v_3 and v_4 switched from 0 to 1.
- The configuration at $t = 1$: $(0, 1, 1, 1, 0, 0)$.

Configuration at $t = 2$:

- Nodes v_1, v_5 and v_6 switched from 0 to 1.
- The configuration at $t = 2$: $(1, 1, 1, 1, 1, 1)$.
- The cascade is complete.
Why did we get a complete cascade?

Explanation 1:

Since the graph is connected, there is a path from node v_2 (the "early adopter") to every other node.

So, if the interaction graph is connected, a simple contagion always results in a complete cascade.

Note: The order in which nodes change to state 1 is given by breadth-first search (BFS) starting from the set of early adopters.
Explanation 2: Morris’s theorem.

- When a cascade stops, the remaining nodes (which have not switched) must form a **blocking cluster**.

- For each node \(v \) in the blocking cluster, **more than** \(1 - \alpha_v \) fraction of the neighbors must be in the cluster, where \(\alpha_v \) is the **relative** threshold of \(v \).

- When the graph is connected and the relative threshold for each node \(v \) is \(1 / \text{degree}(v) \), there is at least one node for which the above condition is **not** satisfied.

- So, the cascade can’t be partial.
Another Example of a SyDS

Example 2:

- Domain = \{0, 1\}.
- Each local function is the 2-threshold function.
- We will assume that the system is \textit{progressive} (i.e., the state of a node \textit{can’t} change from 1 to 0).

\textbf{Note:} If at least one of the thresholds is > 1, the system models a \textit{complex contagion}.

\textbf{Configuration at } t = 0:

- The configuration at } t = 0 is (1, 1, 0, 0, 0, 0, 0).
A Second Example of a SyDS (continued)

Configuration at \(t = 1 \):

- Node \(v_3 \) switched from 0 to 1.
- The configuration at \(t = 1 \):
 \[(1, 1, 1, 0, 0, 0).\]

Configuration at \(t = 2 \):

- Node \(v_4 \) switched from 0 to 1.
- The configuration at \(t = 2 \):
 \[(1, 1, 1, 1, 0, 0).\]
- No further state changes can occur; the system has reached an equilibrium (fixed point).
- The cascade is partial.
Phase Space of a SyDS

Sequences of configurations:

Example 1

\[
\begin{align*}
\text{t = 0} & \quad (0, 1, 0, 0, 0, 0) \\
\text{t = 1} & \quad (0, 1, 1, 1, 0, 0) \\
\text{t = 2} & \quad (1, 1, 1, 1, 1, 1)
\end{align*}
\]

Example 2

\[
\begin{align*}
\text{t = 0} & \quad (1, 1, 0, 0, 0, 0) \\
\text{t = 1} & \quad (1, 1, 1, 0, 0, 0) \\
\text{t = 2} & \quad (1, 1, 1, 1, 0, 0)
\end{align*}
\]

- For any SyDS, we can construct these sequences starting from any initial configuration.
- The collection of all such sequences forms the phase space of a SyDS.
Definition: The phase space of a SyDS is a directed graph where

- each node represents a configuration and
- for any two nodes x and y, there is a directed edge (x, y) if the configuration represented by x changes to that represented by y in one time step.

Comment: The phase space may have self-loops.

How Large is the Phase Space? (Assume that the Domain is $\{0, 1\}$.)

- If the underlying network of the SyDS has n nodes, then the number of nodes in the phase space $= 2^n$; that is, the size of the phase space is exponential in the number of nodes.
- For the SyDSs considered so far (deterministic SyDSs), each node in the phase space has an outdegree of 1. (So, the number of edges in the phase space is also 2^n.)
Example – A SyDS and its Phase Space: The domain is $\{0, 1\}$ and each node has a 1-threshold function.

Notes:

- **Fixed points:** $(0, 0, 0)$ and $(1, 1, 1)$.
- The configuration $(1, 1, 0)$ is the **successor** of $(0, 1, 0)$. (Each configuration has a **unique** successor.)
Notes (continued):

- The configuration \((1, 1, 0)\) is a **predecessor** of \((1, 1, 1)\).
 (A configuration may have **zero or more** predecessors.)

- The configuration \((1, 0, 0)\) **doesn’t** have a predecessor. It is a **Garden of Eden** configuration.
Some Known Results Regarding SyDSs

- Every progressive SyDS has a fixed point. (If the underlying network has \(n \) nodes, the system reaches a fixed point in at most \(n \) time steps.)

- In general, the following problems for SyDSs are computationally intractable:
 - **(Fixed Point Existence)** Given a SyDS \(S \), does \(S \) have a fixed point?
 - **(Predecessor Existence)** Given a SyDS \(S \) and a configuration \(C \), does \(C \) have a predecessor?
 - **(Garden of Eden Existence)** Given a SyDS \(S \), does \(S \) have a Garden of Eden configuration?
 - **(Reachability)** Given a SyDS \(S \) and two configurations \(C_1 \) and \(C_2 \), does \(S \) starting from \(C_1 \) reach \(C_2 \)?

Note: A SyDS with suitable local functions is computationally as powerful as a Turing Machine.
Assumption: The domain is \{0, 1\}.

Zero Threshold:

- A node with zero threshold changes from 0 to 1 at the first possible opportunity; it won’t change back to 0.
- Useful in modeling early adopters.

Infinite Threshold:

- A node with infinite threshold will stay at 0.
- For a node of degree d, setting its threshold to $d + 2$ will ensure that property.
- Useful in several applications.

- **Opinion propagation:** Nodes with infinite thresholds model “stubborn” people.
- **Disease propagation:** Nodes with infinite thresholds model nodes which have been vaccinated (so that they will never get infected).
Some Applications of the Model

Blocking Disease Propagation:

- **Given:** A social network, local functions that model disease propagation, the set of initially infected nodes and a budget β on the number of people who can be vaccinated.

- **Goal:** Vaccinate at most β nodes of the network so that the number of new infections is minimized.

Example:

- Assume that threshold for each node is 1.

- If the vaccination budget is 2, then nodes v_2 and v_3 should be chosen.
Some Results on Blocking Disease Propagation:

Ref: [Kuhlman et al. 2015]

- For simple contagions (or when the graph has some special properties), the blocking problem can be solved efficiently.

- For complex contagions, the blocking problem is computationally intractable. (Even obtaining near-optimal solutions is computationally intractable.)

- Many algorithms that work well on large networks are available. (The above reference also presents experimental results obtained from these algorithms.)

- The problem has also been investigated under probabilistic disease transmission models.
Viral Marketing:

- **Given:** A social network, local functions that model propagation of behavior and a budget β on the number of initial adopters.
- **Goal:** Choose a subset of at most β initial adopters so that the number of nodes to which the behavior propagates is *maximized*.

Example:

- Suppose $\beta = 2$.
- If the threshold for each node is 1, the solution is $\{v_1, v_3\}$.
- If the threshold for each node is 2, the solution is $\{v_1, v_2\}$.
Some Results on Viral Marketing:

Ref: [Kempe et al. 2005] and [Zhang et al. 2014].

- For simple contagions (or when the graph has some special properties), the viral marketing problem can be solved efficiently.

- For complex contagions, the problem is computationally intractable. (However, near-optimal solutions can be obtained efficiently.)

- The problem has been studied extensively under various propagation models (including probabilistic models).
A Bi-threshold Model

Ref: [Kuhlman et al. 2011]

- Models for some social phenomena require “back and forth” state changes (i.e., changes from 0 to 1 as well as 1 to 0).

- **Examples:** Smoking, Drinking, Dieting.

- The bi-threshold model was proposed to address such behaviors.

- Each node v has **two** threshold values, denoted by T^1_v (the up threshold) and T^0_v (the down threshold).

 - If the current state of v is 0 and at least T^1_v neighbors of v are in state 1, then the next state of v is 1; otherwise, the next state of v is 0.

 - If the current state of v is 1 and at least T^0_v neighbors of v are in state 0, then the next state of v is 0. Otherwise, the next state of v is 1.
Examples: Assume that T^1_v (the up threshold) is 2 and T^0_v (the down threshold) is 1. (Also, \textcolor{green}{green} and \textcolor{red}{red} represent states 0 and 1 respectively.)

- The state of v will change to 1.

- The next state of v is also 0.

- The state of v will change to 0.
Example – A bi-threshold SyDS:

For each node, the up and down threshold values are 1.

Configuration at $t = 0$:

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
</tr>
</thead>
</table>

States of v_1 and v_2 will change.

Configuration at $t = 1$:

<table>
<thead>
<tr>
<th>v1</th>
<th>v2</th>
<th>v3</th>
<th>v4</th>
</tr>
</thead>
</table>

States of v_1, v_2 and v_3 will change.
A Bi-threshold Model (continued)

Configuration at \(t = 2 \):

- States of \(v_1 \), \(v_2 \) and \(v_3 \) will change.

Configuration at \(t = 3 \):

- States of all the nodes will change.

Configuration at \(t = 4 \):

- States of all the nodes will change.

Note: From this point on, the system goes back and forth between the two configurations for \(t = 2 \) and \(t = 3 \).
Bi-threshold System: Partial Phase Space

Note: The phase space contains a (directed) cycle of length 2.
SyDSs with Probabilistic Threshold Functions

- In general, diffusion is a probabilistic phenomenon.
- Even if the threshold is met, a person may decide not to change his/her behavior.
- Probabilistic threshold functions provide a way to model this uncertainty.

Probabilistic Thresholds: [Barrett et al. 2011]

- Domain = \{0, 1\}.
- For each node \(v\), a threshold \(\tau_v\) and a probability \(p_v\) are given.
- If the number of 1’s in the input to \(f_v\) is \(<\tau_v\), the next state of \(v = 0\).
- If the number of 1’s in the input to \(f_v\) is \(\geq \tau_v\):
 - The next state of \(v\) is 1 with probability \(p_v\) and 0 with probability \(1 - p_v\).
- This generalizes the deterministic case (where \(p_v = 1\)).
Assumption: Nodes make independent choices.

Example:

Assume that each node has a threshold of 1 and probability of $3/4$.

Table specifying local function f_1 (for v_1):

<table>
<thead>
<tr>
<th>No. of 1’s in the input</th>
<th>$\Pr{s(v_1) = 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>$3/4$</td>
</tr>
<tr>
<td>2</td>
<td>$3/4$</td>
</tr>
<tr>
<td>3</td>
<td>$3/4$</td>
</tr>
</tbody>
</table>
Computing the transition probability – Example 1:

- Each node has a threshold of 1 and probability of $\frac{3}{4}$.
- Let the current configuration C_1 be $(1, 0, 0)$.
- **Goal:** To compute the probability that the next configuration is $C_2 = (1, 0, 1)$.

Steps: Note that in C_1, the thresholds for all three nodes are satisfied.

- The probability that v_1 remains 1 is $\frac{3}{4}$.
- The probability that v_2 remains 0 is $\frac{1}{4}$.
- The probability that v_3 changes to 1 is $\frac{3}{4}$.
- So, the probability of transition from C_1 to C_2 is
 \[
 \left(\frac{3}{4}\right) \times \left(\frac{1}{4}\right) \times \left(\frac{3}{4}\right) = \frac{9}{64}.
 \]
Computing the transition probability – Example 2:

- Each node has a threshold of 1 and probability of 3/4.
- Let the current configuration C_1 be $(0, 0, 1)$.
- **Goal:** To compute the probability that the next configuration is $C_2 = (0, 1, 1)$.

Steps:

- In C_1, the thresholds are satisfied for v_1 and v_3 but not for v_2.
- Thus, the probability that v_2 changes to 1 is 0.
- So, the probability of transition from C_1 to C_2 is $= 0$.
Phase Space with Probabilistic Transitions:

- There is a node for each configuration.
- The is a directed edge from node x to node y if the probability of transition from x to y (in one step) is **positive**.
- The probability value is indicated on the edge.
- The outdegree of each node may be (much) larger than 1.
- This represents the **Markov Chain** for the diffusion process.
Example – A Part of the Phase Space:

Note: For each node, the sum of the probability values on the outgoing edges must be 1.

Note: For each node, threshold = 1 and probability = 3/4.
The following problems for probabilistic SyDSs are computationally intractable [Barrett et al. 2011].

- **(Fixed Point Existence)** Given a probabilistic SyDS S and a probability value p, is there a configuration C such that C is its own successor with probability $\geq p$?

- **(Predecessor Existence)** Given a SyDS S, a configuration C_1 and a probability p, is there a configuration C_0 such that the probability of transition from C_0 to C_1 is $\geq p$?

- **(Reachability)** Given a SyDS S, two configurations C_1 and C_2 and a probability value p, does S starting from C_1 reach C_2 with probability $\geq p$?
Basics of the SIR Model:

- Proposed by William Kermack and Anderson McKendrick in 1927.
- Effective in the study of several diseases that affect humans.
- Each individual may be in one of the following three states:
 - **Susceptible** (denoted by S),
 - **Infected** (denoted by I) or
 - **Recovered** (denoted by R).
- For any individual, the sequence of states is as follows:

 $S \rightarrow I \rightarrow R$

So, the system is **progressive**.
Basics of the SIR Model (continued):

- An individual remains in state \(I \) for a certain period (usually assumed to be 1) and changes to \(R \).
- Each edge of the network has a probability value (transmission probability).
- Nodes in state \(R \) play no further role in transmitting the disease.

Example:
The SIR Epidemic Model (continued)

Notation:

- For any edge $e = \{u, v\}$, the transmission probability of e is denoted by p_e (or $p_{\{u,v\}}$).
- For each node v_i, the set of neighbors of v_i is denoted by N_i.
- For any node v_i, $X_i(t) \subseteq N_i$ denotes the set of neighbors of v_i whose state at time t is I.

Definition of the local function f_i at node v_i:

- If the state of v_i at time t is R, then the state of v_i at time $t + 1$ is also R.
- If the state of v_i at time t is I, then the state of v_i at time $t + 1$ is R.
Definition of the local function (continued):

- If the state of v_i at time t is S, then the state of v_i at time $t + 1$ is either S or I as determined by the following stochastic process.

- Define $\pi(i, t)$ as follows:

$$
\pi(i, t) = \begin{cases}
0 & \text{if } X_i(t) = \emptyset \\
1 - \prod_{u \in X_i(t)} (1 - p\{u, v_i\}) & \text{otherwise.}
\end{cases}
$$

- The state of v_i is I with probability $\pi(i, t)$ and S with probability $1 - \pi(i, t)$.
Example 1:

- At $t = 0$, let v_0 be the node in state I. (All other nodes are in state S.)
- **Goal:** To compute the probability that node v_1 gets infected.

- For v_1, the only infected neighbor at $t = 0$ is v_0.
- So, $\Pr\{v_1 \text{ gets infected}\} = 1/2$.
- Similarly, $\Pr\{v_2 \text{ gets infected}\} = 1/2$ and
- $\Pr\{v_3 \text{ gets infected}\} = 1/2$.
Example 2: System configuration at $t = 1$.

- **Notation:** Blue, Red and Black circles indicate states S, I and R respectively.

- **Goal:** To compute the probability that node v_4 gets infected.

- For v_4, the infected neighbors are v_1 and v_2.

- $\Pr\{v_4$ doesn’t get infected by $v_1\} = 1 - (3/4) = 1/4$.

- $\Pr\{v_4$ doesn’t get infected by $v_2\} = 1 - (1/2) = 1/2$.

- Thus, $\Pr\{v_4$ doesn’t get infected$\} = (1/4) \times (1/2) = 1/8$.

- So, $\Pr\{v_4$ gets infected$\} = 1 - (1/8) = 7/8$.
A Possible Sequence of Configurations

Note: **Blue**, **Red** and **Black** circles indicate states S, I and R respectively.

Configuration at $t = 0$:

Configuration at $t = 1$:
Note: Blue, Red and Black circles indicate states S, I and R respectively.

Configuration at $t = 2$:

Configuration at $t = 3$:
Note: Blue, Red and Black circles indicate states S, I and R respectively.

Configuration at $t = 4$:

- Node v_5 is in state S while all others are in state R.
- This configuration is a fixed point.
Every SIR system has a fixed point. (If the underlying network has \(n \) nodes, the system reaches a fixed point in at most \(n \) time steps.)

The following problems for the SIR model are computationally intractable:

- **(Expected Number of Infections)** Given an SIR system and the set of initially infected nodes, compute the expected number of nodes that get infected.

- **(Node Vulnerability)** Given an SIR system, the set of initially infected nodes and a node \(v \), compute the probability that \(v \) gets infected.
Model Calibration: [Eubank et al. 2005]

- **Given:** Graph $G(V, E)$, the initially infected set of nodes and a sequence σ of numbers representing new infections for some successive time steps.

- **Goal:** Find the transmission probabilities so that the sequence of expected number of new infections of the resulting system matches σ as closely as possible.

Forecasting: [Marathe et al. 2015]

- **Given:** An SIR system, the initially infected set of nodes, a time value $t \geq 1$ and an integer γ.

- **Goal:** Compute the probability that the number of new infections at t is at least γ.

Note: The above forecasting problem can be solved efficiently for $t = 1$. It is computationally intractable for all $t \geq 2$.
Motivating example:

- Organizing a protest/revolt against a repressive regime.
- If a lot of people participate, then the regime would be weakened and the protesters can win.
- If only a few people participate, then all protesters may be arrested (strong negative payoff).
- Also a threshold phenomenon.
- The social network conveys information regarding people’s willingness to participate.
Some difficulties:

- One can discuss participation on protests only with a few close friends.
- It is hard to know how many others are willing to participate. (Repressive regimes want to keep it that way!)

Pluralistic Ignorance:

- Many people may be opposed to the regime but they may believe that they are in a small minority.
- People have highly erroneous estimates regarding prevailing opinions.
Examples of pluralistic ignorance:

- The illusory popular support for the communist regime in the Soviet Union.

- Surveys conducted in USA during the late 1960’s showed the following.
 - A big majority of people believed that much of the country was in favor of racial segregation.
 - However, it was preferred only by a small minority of people.
A Model for Collective Action (continued)

- **Setting:** A small number of Senior Vice Presidents must confront an unpopular CEO at a Board Meeting.

- There is a social network where nodes represent senior VPs and edges represent strong ties (i.e., trusted relationships).

- Each node v has a **threshold** τ_v.

- Node v will be part of the group confronting the CEO if the group has at least τ_v people (**including** v).

- All nodes know the nodes and edges of the network.

- Each node knows the thresholds of its neighbors but **doesn’t** know the thresholds of other nodes.

- Careful analysis is needed to determine whether or not collective action (confrontation) occurs.
Example 1: (Simple case)

Each integer is the threshold for the corresponding node.

Goal: To determine whether or not the collective action (protest) occurs.

Reasoning by node w:

- My threshold is 4 but there are only 3 nodes in the network.
- So, I won’t join the protest.

Reasoning by node v:

- Node w’s threshold is 4 and so w won’t join. Thus my threshold of 3 won’t be met.
- So, I won’t join the protest.
A Model for Collective Action (continued)

Example 1: (continued)

- **Reasoning used by node** u: Similar to that of v.

- **Result**: None of the nodes will join the protest.

Example 2: (More subtle)

- Each node “sees” that there are 3 nodes each with threshold 3.

- Is this enough for collective action to occur?
Example 2: (continued)

Each node must consider what other nodes know.

Reasoning by node u:

- Nodes v and w have a threshold value of 3.
- I don’t know the threshold of node x; it may be a high value (such as 5).
- If x’s threshold is indeed high, then neither w nor v will join the protest.
- So, it is not safe for me to join the protest.
Example 2: (continued)

Because of symmetry, the reasoning used by the other node will be similar to that of u.

Result: None of the nodes joins the protest.

Even though each node “sees” a group of three nodes each with a threshold of 3, collective action doesn’t occur.

Reason: Each node is not sure whether its two neighbors will participate.
Example 3:

Note: This example is obtained by replacing the edge \(\{v, x\} \) in Example 2 by the edge \(\{v, w\} \).

- Now, nodes \(u, v \) and \(w \) all “know” that there is a group of 3 nodes, each with a threshold of 3.
- The above fact is common knowledge; each node knows for sure that the other two nodes have all the information that enables them to participate.
- Result: Collective action occurs in this case.